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Abstract

The paper analyzes the sustainability of governmental debt and its welfare
properties in an overlapping generations economy with stochastic production and
capital accumulation. In the absence of taxation, equilibria with positive debt
generically converge to debtless equilibria which are typically inefficient. It is
shown that this may be overcome by a tax on labor income which stabilizes the
level of debt against unfavorable shocks. A long-run welfare criterion is formulated
which measures consumer utility at the stabilized equilibrium. Based on this cri-
terion, the welfare effects of different interest policies and alternative stabilization
objectives are investigated. The results offer a simple explanation why empirical
debt levels are high and typically yield a riskless return despite both fails to be
optimal in the long run.
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Introduction

Most industrialized countries have large governmental debt. In the U.S., total outstand-
ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about
66% in 2007. Largely due to the gigantic fiscal stimuli in response to the recent economic
crisis, the past three years have seen a dramatic increase of this ratio to more than 90%
as of 2010. Similar figures apply for other countries suggesting that the sustainability
of governmental debt is - or should be - a highly relevant issue for policy making.
From a theoretical perspective, it is well-known that an increase in governmental debt
may stimulate aggregate demand in the short run but crowds out capital investment in
the long run, cf. Elmendorf & Mankiw (1999). The latter effect is particularly important
in overlapping generations (OLG) economies where the first welfare theorem need not
hold and competitive equilibria may be inefficient due to an overaccumulation of cap-
ital. In such a situation, as first shown by Diamond (1965), introducing governmental
debt leads to a welfare improvement by implementing a dynamically efficient allocation.
Subsequent studies to investigate governmental debt in deterministic OLG economies
may be found, e.g., in de la Croix & Michel (2002, Ch.4), Farmer (1986), and in Bullard
& Russell (1999) for consumers with multiperiod lives.

There is a close relationship between the sustainability of governmental debt and the
emergence of a bubble. The latter corresponds to an intrinsically worthless asset that
is traded at a positive price such as fiat money or a private asset that does not pay
dividends. The differences between debt and a bubble are thoroughly exhibited in de
la Croix & Michel (2002, p.212). Starting with the work by Tirole (1985), a large body
of the literature discusses the emergence of bubbles in deterministic OLG models. For
examples see, e.g., in Bertocchi & Wang (1994), Kunieda (2008), or Michel & Wigniolle
(2003). Due to the structural similarities between debt and a bubble, the results by
Tirole (1985) also characterize sustainable levels of governmental debt in deterministic
OLG models. In the absence of taxation, there exists a unique sustainable debt-to GDP
ratio for which the economy converges to the golden-rule steady state with positive debt.
Debt smaller than the critical level leads to an asymptotically debtless (and inefficient)
situation while larger values imply an unsustainable situation in which debt grows with-
out bound.

Starting with the work of Wang (1993), the literature has increasingly focused on OLG
economies with aggregate risk due to random production shocks. It seems not yet known,
however, how the previous deterministic findings carry over to a stochastic setting, i.e.,
under what conditions equilibria with positive debt exist and which debt levels are sus-
tainable. A first approach in this direction is put forward in Bertocchi (1994), who
analyzes possible equilibrium scenarios in an OLG model with riskless debt. If there
is aggregate risk, another function of governmental debt is to provide a possibility of
risk-sharing between generations. While, e.g., Bohn (1998) and Kriiger & Kiibler (2006)
analyze the issue of intergenerational risk-sharing in the context of Social Security, a
similar study for governmental debt seems not to have been conducted in the literature.
If payments on outstanding debt are financed by issuing new debt to the next genera-
tion, the implied risk sharing is essentially determined by the extent to which interest
payments on debt are indexed to risk. This motivates the question how different interest
policies affect intergenerational risk-sharing and consumer welfare.

Following the previous motivation, the present paper studies the role of governmental
debt in a stochastic OLG framework. Two issues are at the center of interest: 1. Which




levels of debt are sustainable and which level is optimal? 2. Which interest policy s fa-
vorable and induces optimal risk sharing between generations? The main contributions
of the paper are as follows. Firstly, we unveil the forward-recursive structure of equi-
libria and derive necessary and sufficient conditions for their existence together with an
explicit characterization of sustainable levels of debt under arbitrary interest policies.
Secondly, we provide a complete characterization of the long-run dynamic behavior of
the model with and without tax stabilization of debt. Furthermore, we develop a long-
run welfare criterion on the basis of which an optimal interest policy and an optimal
stabilization objective can be selected. Based on this criterion we analyze the welfare
effects of alternative debt policies and use numerical simulations to characterize optimal
policies. The results offer a simple explanation why empirical debt levels are so high and
typically yield a riskless return despite both fails to be optimal in the long run. Finally,
our results shed light on the emergence of asset bubbles in stochastic OLG economies.

The paper is organized as follows. Section 1 introduces the model. Section 2 analyzes
equilibria when the return on debt coincides with the capital return. This structure is
generalized in Section 3 which allows for general interest policies. Section 4 demonstrates
how the level of debt can be stabilized by a labor income tax. The welfare properties of
stabilized equilibria under different debt policies are investigated in Section 5. Section
6 concludes, all proofs are placed in the Mathematical Appendix.

1 The Model

The framework to be introduced in this section generalizes the stochastic overlapping
generations model in Wang (1993) to include governmental debt and a tax system.

Population. The consumption sector consists of overlapping generations of homogeneous
consumers who live for two periods. The index j € {y, 0} identifies the young and old
generation in each period. Abstracting from population growth, each generation consists
of N > 0 consumers. A young consumer is endowed with one unit of labor time supplied
inelastically to the labor market. Since old consumers are retired and do not supply
labor, L; = N denotes aggregate labor force at time ¢ > 0. The old generation in period
t owns the existing stock of capital K; which they supply to the production process.

Production. A single representative firm employs labor and capital as inputs to produce
a homogeneous consumption good. In addition, the production process in period ¢ is
subjected to an exogenous random production shock ¢, € £. The linear homogeneous
technology is represented by the intensive form production function f: Ry x & — R,
which determines gross output Y; (including depreciated capital) produced at time ¢ as

Y, = Ltf(Kt/Lt; 5t)- (1)

The function f is assumed to be continuous and twice differentiable with respect to its
first argument with continuous derivatives satisfying frr(k;e) < 0 < fr(k;e) forallk > 0
and € € £ as well as the Inada conditions limy_,q fx(k;£) = 0o and limy_, fr(k;€) < 1.
The noise process {e;};>¢ consists of independent, identically distributed random vari-
ables defined on a common probability space (€2, F,P). Each ¢, is distributed according
to the probability measure v supported on & C [emin, Emaz] C Ryy. The process is
adapted to a suitable filtration {F;};>¢ of increasing sub o-algebras of F such that each
gr + Q@ —> & is Borel-measurable with respect to F;. Let E[-] := E[-|F;] denote the




expectations operator conditional on the information represented by F;. Throughout,
the notion of an adapted stochastic process {&:};>o taking values in some set = C RY
refers to the probability space and the filtration defined. It implies that each random
variable & : 0 — = is Borel-measurable with respect to F; and hence determined in
period t. All equalities or inequalities involving random variables are assumed to hold
P-almost surely without further notice.!

Let w{ > 0 be the gross wage and r; > 0 the capital return at time ¢ > 0. Given capital

ky = % > 0 and ¢, € &, profit maximizing behavior of the firm implies that market
clearing factor prices are determined by the respective marginal products, i.e.,
w{? = W(kt;gt) = f(kt;c‘?t) - ktfk(kt;5t) (2)
ry = R(kt;6t) = fk(kt;6t). (3)

Government. The infinitely-lived government taxes consumers and issues debt to finance
its deficit. For the purpose of this paper, debt may be thought of as a one-period lived
bond which pays a (possibly random) return 7}, > 0 in ¢+ 1 per unit invested at time
t > 0. In light of the empirical evidence reported in the introduction, negative debt will
not be considered. Let b; > 0 be the number of bonds per young consumer issued at
time ¢ and 77 and 77 be the lump sum taxes levied on the incomes of young and old
consumers, respectively. Negative taxes are interpreted as subsidies on the income of
the respective group. Abstracting from governmental consumption, debt evolves as

bt = T:bt,1 — Tty — Tto, t Z 0. (4)

Consumers. At time ¢ > 0 a young consumer earns net labor income w; := w{ — 77/ > 0
to be consumed and invested. Let s; and b; be the investments in capital and bonds at
time ¢t > 0. These choices define current consumption

ci/:wt—bt—st (5)
while next period’s consumption is given by the random variable
1 = beriy + Seren — T (6)

Here the randomness enters through the uncertain returns on both investments and
uncertain tax payments which are all treated as given random variables in the decision.
Young consumers evaluate the expected utility of different consumption plans (cf, ¢, )
defined by (5) and (6) according to the von-Neumann Morgenstern utility function

U(c?,c?) =u(c?) + v(c). (7)
Both functions u and v are C* with derivatives 2”(c) < 0 < 2'(c) for ¢ > 0 and satisfy
. / .
g%z (¢) =00 for ze€{u,v}. (8)

Each young consumer chooses investment to maximize her expected lifetime utility. The
decision problem reads:

max{u(wt —b—s5)+Eo(rf b+rgs—100)]|s>0b+s < wt}. (9)

b,s

L The underlying probability space may be constructed by defining € := £Y° which is endowed with the
product topology and the Borel-g-algebra F := B(£) on which the product measure P := ®;>qv is
defined. The sub-o-algebra F; is generated by the class of measurable rectangular sets A =[], 4,
where each A,, is a Borel-measurable subset of £ and A,, = € for n > t.




Note that no short-selling constraints on b are imposed at the individual level. The
investment in capital s; determines next period’s capital stock (per labor force)

kt+1 = S¢. (10)

Old consumers in period ¢ > 0 consume the proceeds of their investments in bonds and
capital made during the previous period - net of taxes - as defined by (6).

Equilibrium. Combining the assumptions of market clearing, individual optimality, and
rational expectations yields the following definition of equilibrium.

Definition 1.1 Given initial values by > 0, ko > 0, and g9 € &, an equilibrium s an
adapted process {w{,ry, 5, 7,77, by, 50, f, €, kt+1}t>0 which satisfies for each t > 0:

(i) Debt returns satisfy ry > 0 while w{ > 0 and r, > 0 are determined by (2), (3).
(ii) Tazes satisfy 7/ < w] and 77 < byrf + kyry while debt by > 0 evolves as in (4).

(iii) The pair (b, s;) solves the decision problem (9) at the given wage, returns, and
tazes while ¢, ¢, and kyy1 are determined by (5), (6), and (10).

Indeterminacy of fiscal policy. The following result shows that without further restric-
tions on taxes {77, 7/}, any debt process is consistent with equilibrium. This is a
straightforward generalization of the deterministic result in de la Croix & Michel (2002).

Lemma 1.1 Let an interior allocation {sy,cf, ¢y, kt+1}t>0 and prices {w],ry, 7} }i>0 sat-
isfy (2), (3), and (10), the feasibility condition ¢ + ¢ + kyyy = f(ky, 1) for all e, € €
and the intertemporal efficiency condition u'(c¢f) = Ey[ri 10" (¢f,)] = Berf v (¢fy,)] for
allt > 0. Then, for any non-negative debt process {b;},>o there is a feasible tax process
{7, 7 >0 such that {w], vy, v}, 7, 70, by, 50, ¢l ¢, kt+1}t>0 is an equilibrium.

Lemma 1.1 shows that the sustainability of debt becomes irrelevant if unbounded taxa-
tion is possible. The reason for this result is simple: The government can directly set-off
its payment obligations on outstanding debt by a corresponding tax on the incomes of
old consumers who receive these payments. Thus, any level of debt can be sustained.
Clearly, the previous result fails to hold if restrictions on 77 are imposed. For this rea-
son, and also to avoid time-consistency problems, the remainder confines attention to
the case where 77 = 0, i.e., there is no taxation of capital incomes.

2 Equilibria with Capital-Equivalent Debt

Capital-equivalent debt. The following two sections study existence and properties of
equilibria in the absence of taxation (77 = 0) under different assumptions on the return
on debt, i.e., on the process {7} };>o. As a first scenario, suppose the government commits
itself to paying the capital return on debt such that r; = r; for each ¢ > 0. This case
will be called capital-equivalent (CE) debt and the remainder of this section studies the
existence and properties of equilibria under this assumption.

Equilibrium structure. As a first step, we seek to unveil the recursive structure of
equilibria by considering the temporary situation in an arbitrary period ¢. Let current
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capital k; > 0 and the shock £; € £ be given which determine the net wage w; = w{ > 0
and the return on capital and debt r; > 0 according to (2) and (3). Current debt
by > 0 corresponding to the supply of bonds then follows from its previous value b;_;
and (4). The number of bonds traded is therefore predetermined by the supply side.
Since investments in debt and capital are perfect substitutes, the equilibrium problem for
period t reduces to determining next period’s capital stock 0 < k; 1 < w;—b;. The latter
must be chosen consistent with an optimal savings decision derived from (9) and rational,
self-confirming expectations. Clearly, this requires w; > b;. Let E, [-] denote the expected
value with respect to the distribution v of next period’s production shock. Combining
(3) and (10) with the first order condition from (9), define H(-;w,b) :]0,w —b[— R,

H(k;w,b) :=u'(w—b—k) —E, [R(k; )0 (R(k; ) (b+ k))]. (11)

Then, given w; > b, > 0, the expectations-consistent solution k;,; is determined by the
condition H (k;1;wy, b)) = 0. Before establishing existence and uniqueness of such a
zero in Lemma 2.1, we introduce a set of additional restrictions on f in (1) and v in
(7) which will be used frequently. Here and in the sequel, we denote the elasticity of a
differentiable function h : D — R\{0} as Ej(x) := zh/(z)/h(z), x € D C R.

(P1) Ey(c) > =1V¥e>0 (P2) limcv'(c) =00 (P3) Ey (k;e) > —1Vk > 0,2 € €.
c— 00
While (P1) and (P3) are standard, (cf. de la Croix & Michel (2002) and Wang (1993)),
(P2) is more restrictive as it excludes several popular parameterizations such as log
utility. Examples satisfying (P1) and (P2) are power utility v(c) =607, 0 < < 1, or
CES utility v(c) =[1 — 0+ 0P 0< 0 <1, 3> 0.

Lemma 2.1 Let v satisfy (P1). Then, each w > 0 defines an upper bound 0 <
b (w) < w such that H(-;w,b) has a zero in |0, w —b[ if and only if b < b™*(w). This
zero is unique and w — b™*(w) continuous. If, in addition, (P2) holds, b™*(w) = w.

In the sequel we assume that (P1) holds. Then, Lemma 2.1 permits to define the set
V= {(w,b) € R% |w > 0,b < b™*(w)} and a mapping K : V — R, ; which determines
k¢y1 as the unique zero of H(-; wy, by). The next result establishes properties of this map.

Lemma 2.2 Let v satisfy (P1). Then, K is C' on'V (cf. Remark A.1) and the deriva-
tives satisfy 0 < 0, K(w,b) < —0pK(w,b) < 1.

Equilibrium dynamics. Combining the previous results with equations (2)—(4) and (10)
defines a map ® = (®,,®,) : V x & — R% which determines the evolution of wages
and debt under the exogenous noise process as

Wiy = P (wy, by erq1) == WIK(wy, by); €641) (12a)
bt—l—l = (Db(wt, bta 8t+1) = R(K(wt, bt); 6t+1)bt- (]_2b)

Given initial values (wg,by) € V, the equilibrium process {wy, b;};>o is therefore gen-
erated by randomly mixing the family of mappings {®(-;¢)}.ce, i.e., the realization of
next period’s shock ’selects’ a map that determines the next state from the current one.
Structurally, this corresponds to a two-dimensional version of the one-dimensional dy-
namics in Wang (1993). The endogenous state variables {wy,b;}i>o together with the




exogenous noise process {;};>o completely determine the other equilibrium variables of
the model. Therefore, existence of a dynamic equilibrium is equivalent to determining
(wo, by) € V such that the process generated by (12a,b) satisfies (wy, b;) € V for all ¢ > 0
under P-almost all paths of the noise process. Since by = 0 implies b, = 0 for all ¢+ > 0,
it is clear that a trivial equilibrium with zero debt exists for all wy > 0. In this case, the
dynamics reduce to the evolution of wages defined by the map ¢y : R, x & — R

Wiyl = ¢0(wt; €t+1) = W(K(wt; 0); 5t+1)- (13)

Similar to Tirole (1985), the steady state properties of (13) will play a crucial for the
existence of non-trivial equilibria. The next assumption rules out multiplicity of steady
states of ¢y.

Assumption 2.1 For eache € &, the map ¢o(+; €) possesses a unique fized point w? > 0
which s stable.

Dynamic properties. From above’s structure, it stands to reason that the existence and
properties of equilibrium depend crucially on the dynamic properties of the mappings
(®(+;2))ece and whether these exhibit contractive or expansive behavior. We therefore
begin by fixing a value € € £ to study the dynamic properties of the single map ®(+; ¢).
In the sequel, define V; := VN R, and let ®'(:;¢) := ®(-;¢) o ... 0 ®(-;¢) denote
the t-fold composition of ®(-;¢) for t > 0 where ®°(-;¢) := idy. By Assumption 2.1,
®(-; ) possesses a unique trivial steady state (w°,0). The next result shows that the
associated ex-post return R(K(w?,0),¢) determines whether ®(-;¢) displays stable -
along a certain direction - or expansive behavior. In anticipation of this result, let
Es = {e € E|R(K(w?,0),e) < 1} and &, := {e € E|R(K(w?,0),¢) > 1}. Since the
case R(K(w?,0),) = 1 is non-generic, & = £\(E, U &,) is assumed to have measure
zero, i.e., V(&) = 0.2

Lemma 2.3 Let (P1) and Assumption 2.1 be satisfied. Then, the following holds true:

(i) Fore € £° the map ®(-;¢) possesses a unique non-trivial fived point (w.,b.) € V.

This fized point is saddle-path stable, i.e., the Eigenvalues of the Jacobian matriz
D®(1w., be;e) are real and satisfy 0 < [A\j] <1 < |Aq.

(i) For e € E* the map ®(-;¢) is expansive, i.e., for each (w,b) € V, there exists a
to € N such that (wy,, by,) = ' (w,b;e) ¢ V, that is, wy, < by,.

If e € £°, (i) implies that the dynamics generated by ®(-;) converge to the non-trivial
steady state only for certain initial values. These are defined by the stable manifold

M. = {(w,b) € V|0" (w,b;2) € VVn > 1A lim @"(w, bie) = (wg,bg)}, ce £ (14)
The sets M, will play a key-role in the sequel. Note that M., is self-supporting under
O(-;¢), ie., (M) C M.. Theorem A.l in the appendix establishes existence of
a Cl-map 9. : Ry, — R, which is strictly increasing such that M, = graph(s,),
e € £%. Based on this representation, the next result shows that M, separates initial
states which diverge from those which converge to the trivial steady state.

2 If € is infinite, continuity of & — R(K(w?,0),e) ensures (Borel-) measurability of &, &, and &.
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Lemma 2.4 Under (P1) and Assumption 2.1, let w > 0 be arbitrary. Then, for each
e € £° the following holds:

(i) b<t.(w) = P (w,be)eVVE>0 A limy o ®(w,b;e) = (02,0).
(i) b>.(w) = Tty >0 such that d"(w,b;e) ¢ V.

Geometrically, Lemma 2.4 implies that if (w,b) is below the curve M., the sequence
O (w, b; ) stays below M, for all + > 0 and converges to the trivial steady state with
zero debt. Conversely, any state above M, stays above and leaves V in finite time.

Existence of equilibrium. Based on the dynamic properties of the involved mappings
stated in Lemmata 2.3 and 2.4, we are now in a position to derive conditions for the
existence of non-trivial equilibria. For simplicity, the following arguments assume that
£ is a finite set. A generalization, e.g., to distributions v possessing a continuous density
d : [Emin, Emax] — Ry seems straightforward. Let wg := W(ko;20) > 0 be given. First
observe from Lemma 2.3(ii) that if (%) > 0, any initial value in V will leave this set
in finite time with positive probability. Hence, v(£¥) = 0 is a necessary condition for
non-trivial equilibria to exist. Note that this restriction typically implies that the trivial
equilibrium is dynamically inefficient. For w > 0, let 6*(w) := min.cgs {¢.(w)}. By
Lemma 2.4, by < b (wy) is also necessary for the existence of equilibrium. Sufficiency
requires the following additional assumption.

Assumption 2.2 b < 0" (w) implies ®y(w,b;e) < b (D, (w, b e)) Yw > 0, € € &;.

Under Assumption 2.2, the curve w — b (w), w > 0 defines the maximum sustainable
level of debt. Intuitively, in a stochastic setting sustainable levels must be chosen con-
servatively small to ensure that debt remains bounded under all possible shocks.
Combining Lemma 2.3 and 2.4 leads to the following theorem which includes the results
of Tirole (1985) as a special case in which v is degenerate and £ = & = {¢}.

Theorem 2.1 Under (P1) and Assumptions 2.1 and 2.2, let € be finite and v(E*) =0
Then, any by €]0, b (wy)] defines an equilibrium with debt by > 0 for all t > 0.

Non-persistence of debt. While equilibria exist under the hypotheses of Theorem 2.1,
the long-run level of debt generically converges to zero with probability one. Unlike the
case in Tirole (1985), this holds even if by = b := b (wy). Structurally, the reason is
that positive stable sets, i.e., compact subsets A C V, which are self-supporting for the
family (®(-;¢)).ce such that ®(A;e) C Afor all e € € typically fail to exist. To see this,
note from Lemma 2.4 that A C V, closed and self-supporting under ®(-;¢) requires
A C M,. Hence, positive stable sets are subsets of N.ce M, which is typically empty.
Figure 1 illustrates these and the findings from Theorem 2.1 for the case with two shocks
where €& = {e,¢'}. The dotted arrow represents the case excluded by Assumption 2.2.
A final example shows, however, that stable sets may exist in non-generic situations.

Let U(c¥,¢®) =Inc¥ + v¢°, v > 0 and f(k;e) =ek®, 0 < a < 1. Then, b"*(w) = ;Zw
such that V = {(w,b) € R%[b < 7 75 w}. Furthermore, ®,,(w, b; 5) = 5(1—04)(mw b)*,
Dy (w, b; &) = sa(zw — b)*~ 1p, and £% # () if and only if  := e >0

Lemma 2.5 For the previous parametrization, suppose ¢ > 0. Then £% = & and the
sets in (14) are independent of £ and of the form M. = M := {(w, b) e R%, ‘ b= Cw}.




b

crit,
bg™H

|
w

Figure 1: Equilibrium dynamics generated by mixing two saddle-path stable mappings.

The set M = N.ce M. is thus self-supporting for the family (®(-;¢)).ce. Moreover, for
any (wo,by) € M the dynamics converge to a compact subset of M defined by the

non-trivial fixed points ((i@, b.)).ce of the mappings (®(-;£)).ce which is a stable set.

3 Equilibria with General Debt

Interest policies. Maintaining the assumption of no taxation (77 = 0), the present section
extends the study of equilibria to arbitrary interest policies on debt. For simplicity, the
remainder of the paper assumes that shocks in (1) are multiplicative, i.e., f(k; ) = eg(k)
where g : Ry — R, inherits the properties of f(-;£). While under the previous scenario
the return on debt offered at time ¢ would be r},; = €411’ (ki11), the present section
generalizes this structure by supposing that

1 = Rz €041) = V(eps1) 21, > 0. (15)

The value z; > 0 is determined in period ¢ and 9 : £ — Ry is a time-invariant interest
policy that determines the risk to which debt investments are subjected. Specifically, if
Y =1, debt is riskless while ¥ = idg recovers the previous case with CE debt.?

Equilibrium structure. In the sequel we fix some interest policy ¢ and assume that in
each period the return on debt is of the form (15). To derive the recursive equilibrium

3 For each ¥, the induced equilibrium is equivalent to an equilibrium with (sequentially) complete mar-
kets where the government issues contingent claims to finance its debt b; in period ¢. To see this,
suppose £ = {e!,...,eN} and let p} be the price of an Arrow security traded at time # that pays one
unit in t+1iff ;49 =", n =1,..., N. The government issues a portfolio a; = (a}")p=1,... N € ]Rf of
these securities such that ZnN:1 appy = by. Specifically, suppose the government chooses the supply
of security n as a}' = b;zy9(e™) forn =1,..., N and some z; > 0. For young consumers to be willing
to buy these claims, prices must satisfy p = v({e"})v'(al + g (kty1)kerr) /v (we — by — kiy1).
Combining these conditions with the first order conditions for an expectations-consistent capital
investment derived from (9) yields precisely the conditions (16a, b) derived below to determine z;
and k;11. Hence, this modified setup implies the same equilibrium allocation. Under the previous
interpretation, the interest policy 1 therefore determines the — time-invariant — mix of Arrow secu-
rities that the government issues. The arguments also extend to an infinite set £. An interesting
generalization would be to consider dynamic interest policies with state-dependent mixing policy .




structure of the economy, we proceed as in the previous section and consider an arbitrary
period ¢ > 0. Let current capital k; > 0 and the shock ¢, € £ be given which determine
the net wage w; = w{ > 0 according to (2). Furthermore, given previous values b;_; > 0
and z,_; > 0, the current shock determines the realized debt return rf = z,_19(¢;) and
current debt corresponding to the supply of bonds b, > 0 follows from (4). Assuming
that w; > b;, the equilibrium problem for period ¢ is to determine an expectations-
consistent capital stock k;,, and a value z; > 0. The latter determines the ex-ante debt
return r;,, offered at time ¢ according to (15) and must be chosen such that young
consumers are willing to absorb the predetermined supply of bonds. To achieve this,
note that any solution s > 0 and b > 0 to (9) satisfies the corresponding first order
conditions since there are no short-selling restrictions on debt. Using this and equations
(3), (10), and (15), let H?(-, ;w,b) : R, x]0,w — b[— R, i € {1,2},

HY(z,k;w,b) = o' (w—b—k) —E, [R(k; )W (bRS(2-) + kR(k;"))] (16a)
HY(z,k;w,b) = u/(w—b—k) —E, [Ry(z)0 (bRy(2;+) + kR(k;+))].  (16b)

Then, given w; > b, > 0 the previous problem reduces to solving H? (z;, ky1; wy, by) =
HY (2, ki wy, b)) = 0. Existence and uniqueness of such a solution is established next.

Lemma 3.1 Let (P1)-(P3) hold and ¥ be continuous. Then, for each w > b > 0 there
exist unique z > 0 and 0 < k < w — b which solve HY (2, k; w,b) = HY (2, k;w,b) = 0.

In the sequel let V = {(w, b) € R? |w > b} denote the endogenous state space of feasible
wage-debt combinations. By Lemma 3.1, there exist mappings KV : V — R, and
Z% .V — Ry, which determine the values k;,; and 2, as zeros of (16a,b) for each
(wy, b)) € V. Before stating properties of these mappings in Lemma 3.2, we introduce
the following additional restrictions on the elasticities of the utility function (7) and the
production technology (1) which will be used subsequently.

(P4) |Ey(c)|=0Yc>0 (P5)|Ey(c)]<1Ve>0 (P6) E,(k)+ |Ey (k)] <1Vk>0.

Under (P4), second period utility v exhibits constant relative risk aversion. Property
(P5) is automatically satisfied if (P1) holds and v(c) = Bu(c), § > 0. Finally, (P6) is
necessary and sufficient for the elasticity E,(k) to be a non-decreasing function of £,
which holds, e.g., if g is Cobb-Douglas or CES with elasticity of substitution o > 1.

Lemma 3.2 Let (P1)-(P3) hold and 9 be continuous. Then, K and Z° are C* on V
(¢f. Remark A.1). Moreover, the following holds for all (w,b) € V:

(i) The derivatives of K satisfy 0 < 0,K°(w,b) < —0,K%(w,b).
(ii) If, in addition, (P4) holds, then 0 < —0,Z%(w,b) < 9,Z?(w, b).*

Equilibrium dynamics. Unless stated otherwise, the remainder of the paper assumes that
(P1)-(P4) hold. Then, by the previous results and (2), (4), and (15), the evolution of
wages and debt under the exogenous shocks are given by ®/ = (®2,®7) : Vx & — R

Wet1 = @Z(wtabtaé“tﬂ) = W(Kﬂ(wt,bt),gtﬂ) (17a)
bt+1 = @g(wt, bt;6t+1) = 19(5t+1)zﬂ(wt,bt)bt. (17b)

4 Numerical experiments with utility functions v not satisfying (P4) have throughout displayed the
same properties of Z? as in Lemma 3.2(ii) suggesting that this restriction could probably be relaxed.

9



Thus, equilibria are generated by randomly mixing the mappings (®?(+;€)).cs and exist
if and only if (wy, b;) € V P-a.s. for all ¢ > 0. Note that for b = 0, the dynamics (17a,b)
are independent of 1 and governed by the map ¢° in (13). In the sequel, the following
slightly stronger version of Assumption 2.1 will be employed. The additional restriction
is sufficient but far from necessary to obtain the uniqueness assertion in Lemma 3.3(i).

Assumption 3.1 For each ¢ € &€, the map ¢o(-;¢) from (13) possesses a unique fized
point w? > 0 which is stable. Moreover, the corresponding steady state capital stock
kY = K(w?,0) satisfies Ey(k?) < 3.

Dynamic properties. Proceeding as above, we fix a value £ € £ to study the dynamic
properties of a single map ®”(-;¢). Under Assumption 2.1, ®’(-;¢) possesses a unique
trivial steady state (w?,0) which is stable and independent of 9. Similar to the previous
section, the dynamic behavior of ®7(-;¢) is determined by the ex-post debt return at
the associated trivial steady state. By (16a,b), this return is given by 9(¢)z° where

B, [R(K2; v (kR (KL )]
E, [9()v' (ROR(K2; )]
Using (18), let &Y := {e¢ € £]2%9(c) < 1} and &Y = {e € £|2%(s) > 1} assuming

again that &) = £\ (EY U EY) satisfies v(EY) = 0. The next result extends Lemma 2.3 to
the case with general interest policies. The proof draws on ideas from Galor (1992).

7 = 2% (w!,0) = (18)

Lemma 3.3 Under Assumption 3.1 and (P1)-(P6), the following holds for any 9:

(i) For e € £V the map ®(-;¢) has a unique non-trivial steady state (w?,b’) € V.
This steady state is saddle-path stable.

(ii) For e € Y the mapping ®°(-;¢) is expansive.
Lemma 3.3(i) permits to define for each £ € £” the associated stable manifold

M? = {(w,b) € V() (w,b;c) € V¥n > 1 A lim (&) (w, b;¢) = (mg,ég)}. (19)
n—oo

By Theorem A.1, there exists a C'-map ¢? : R, — R, such that M? = graph(:?).

Moreover, Lemma 2.4 is shown in the appendix to extend to the present setup as well.

Properties of equilibria. Assuming that the hypotheses of Lemma 3.3 hold, it follows
that all findings from the previous section including the existence result from Theorem
2.1 and the non-persistence of debt carry over to the present case with general interest
policies. Specifically, under the restriction imposed in Assumption 2.2 (which is shown
in Lemma 3.4 to automatically hold under riskless debt), equilibria exist iff v(£7) = 0
and by < bt = mingegg{wg(wg)} but are generically asymptotically debtless with
probability one. Again, the reason is that positive stable sets A C V. fail to exist.

Lemma 3.3 also provides important insights concerning the discussion in Bertocchi
(1994) about stable sets under safe debt. Referring to the cases discussed there, it
shows that steady states which are asymptotically stable and would give rise to stable
sets with positive debt do not exist. In fact, using the arguments of the previous section,
the following lemma implies that positive stable sets can never exist under riskless debt.

Lemma 3.4 Under the hypotheses of Lemma 3.3, suppose U = Y > 0. Then, for all
e, g' € EY it holds that £ # &' implies MY N MY, = 0. Moreover, Assumption 2.2 holds.

e T
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4 Tax-Stabilization of Debt

Stabilization objective. In the deterministic case where & = {¢} and £ = (), the results
by Tirole (1985) uniquely determine the long-run optimal level of debt by the condition
(wg, by) € M? for which the dynamics converge to the golden rule steady state (w.,b.) €
M?. To analyze the long-run welfare effects of debt with non-degenerate shocks, it
seems natural to extend the golden rule concept by measuring consumer welfare at
some stationary solution of the state dynamics. The latter corresponds to an invariant
probability distribution on V which extends the deterministic concept of a steady state.
As argued above, however, even if £7 = (), stable subsets of V, — which can be associated
with invariant distributions, c¢f. Wang (1993) — generically fail to exist and equilibria are
asymptotically debtless and hence independent of 9. Therefore, neither the optimum
quantity of debt nor the risk-sharing effects of different interest policies can be analyzed.
The present section investigates whether this may be overcome by a tax on labor income
which stabilizes debt against unfavorable shocks. Using the scenario from Section 3, the
idea is to choose a subset A C V and design a tax policy which keeps the state in A for
all times and under all shocks. The set A will be referred to as a stabilization objective.
Note that we permit £? # (), i.e., some — or all- mappings ®’(-;£) may be expansive.

Assumption 4.1 The stabilization objective A C 'V satisfies the following:

(i) There is a map xp : Ry — Ry with continuous derivative 0 < x, < 1 and an
open interval Wy =Jw,,o0[C Ry, such that A = {(w, xa(w)) |w € Wy }.

(ii) The family (B?(-;¢)).ce maps A into the set Vy := {(w,b) € V|w —b > dy} CV
where dy := inf{w — xp(w) |w € Wy} > 0. That is, ®’(A;e) C Vy for alle € .

Assumption 4.1(i) restricts the stabilization objective to smooth, one-dimensional sets.
This will allow us to obtain a unique stabilization policy. The value d, in (ii) represents
the minimal distance between A and the boundary of V which increases with w,, cf.
Figure 2. Assumption 4.1(ii) therefore embodies a sustainability constraint on A by
requiring successors of states in A to retain the safeguard distance d, to the boundary
under all shocks. Note that a minimal choice such as w, = b in Case 1 and w, = 0 in
Cases 2 and 3 studied below — each implying dy = 0 and V, =V — will typically violate
this condition if, as in Case 3, x, is too close to the boundary of V for w close to w,.

The general structure from Assumption 4.1(i) covers the following three special cases:

Case 1: xp(w) = b. This objective stabilizes debt at a constant level b > 0. It is
the case is studied, e.g., in Diamond (1965). Note that A C V requires w, > b.

Case 2: xa(w) = fw. This policy chooses a value 3 € [0,1] to keep the debt-to
net wage ratio constant. The objective is studied, e.g., in Bohn (1998, p.11) and
is similar to a constant debt-to output ratio as in de la Croix & Michel (2002).

Case 3: xa(w) = ?(w). Assuming £ # (), this policy chooses a reference shock
e € £7 to stabilize the state along the stable manifold M7, from (19). Since
M? is self-supporting under ®7(-; ™), i.e., B (M7, ; ™) C MY, stabilization
taxes are zero whenever the reference shock occurs and, by a continuity argument,
small for shocks close to this value. Thus, the objective seems particularly promis-
ing to keep stabilization taxes small. In particular, taxes are uniformly zero if
£Y = () and the sets MY are independent of ¢, as in the example of Section 2.
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By Theorem A.1(iii) and Lemma 3.2, for £ € £Y the map ? defining MY is strictly
increasing with derivative ¢?' (w) < —8,K”(w, )K" (w,b) < 1, w > 0, b = ¥ (w).
Hence, the restrictions on x/, from Assumption 4.1 are indeed satisfied in all three cases.

Tax policy. In the sequel, let a debt policy m = (¥,A) consisting of some interest
policy ¢ and a stabilization objective A C V satisfying Assumption 4.1 be given. As
a first step, we seek to establish existence of a tax policy such that (wy, b;) € A for all
t with probability one. Consider an arbitrary period ¢ > 0. Let w] > 0 be the gross
wage defined by (2) and denote by bf := r7b, ; > 0 the given outstanding payments
on previous debt. Assume that (w{,b{) € V4. By Assumption 4.1(ii), this holds if
(wi_1,b_1) € A. Let 7, := 77 be the tax on labor income to be determined. Each choice
7, < b} defines net labor income w; = w{ —7; and current debt b; = b} —7; corresponding
to the number of bonds issued in period ¢. If 7; > 0, the tax revenues are used to pay
down part of the outstanding debt. If 7, < 0, young consumers receive a subsidy on
their wage income financed by issuing additional debt. The following result permits to
uniquely determine the value 7; such that (wy, b)) = (wf — 7,,b) — 1) € A

Lemma 4.1 In addition to Assumption 4.1, suppose lim,, oo Xy (w) # 1. Then, for all
(w,b) € Vy there is a unique T such that (w —7,b— 1) € A.

Stabilized dynamics. Under the hypotheses of Lemma 4.1 there is a map 7, : Vo, — R
which determines 7 = Ty (w,b) for each (w,b) € Vy such that (w — 7,0 —7) € A
Specifically, Ta(w,b) = b — b in Case 1 and Ty(w,b) = ﬁ(b — fw) in Case 2. In
particular, any initial state in V, can be tax-adjusted to lie in A. Thus, for (wq, by) € A,
the stabilized dynamics derived from (17a,b) are given by W™ = (U7 U7) : Ax E — A

wipr = Vo (we, by epp) 1= q’i(wt, bi; €41) — R(@ﬂ(wt, bi; €141)) (20a)

byt = Uf(wy, by ergn) = @) (we, by err) — Ta(D7 (wy, by £441)). (20b)
Figure 2 illustrates Assumption 4.1 and the stabilized dynamics. Since by = x4 (w;) for

b

=Y

Wy

Figure 2: Stabilized dynamics on the set A.

all ¢, the system (20a,b) is equivalent to the one-dimensional system ¢™ : Wy x& — W,

Wiy = @ (We; E441) 1= @Z(wt, Xa(we);ergn) — ﬂ(¢ﬁ(wt, Xa(wi); e41))- (21)
To characterize the stabilized dynamics, Lemma 4.2 establishes properties of the map ¢™

using the following additional restrictions. In (P8) we let (y: & — Ry, (y(e) := LGN

D ®? (w, b; ) — 0y ®Y (w, b €)
P7 ! < w w 9 ) w b )
(D) X0 (0) < 5 50, br2) = 00 (w, b:2)

V(w,b,e) € AXE (P8) (y is non-increasing.
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Lemma 4.2 Under (P1)-(P4) and the hypotheses of Lemma 4.1, the following holds:
(i) &™(;¢) : Wy — Wy is weakly increasing for all € € € if (U, A) satisfies (P7).
(ii) ¢"(w;-) : E — Wy is strictly increasing for all w € Wy if 9 satisfies (P8).

Since 0 < 9,P? (w,b;e) < —9®? (w,b;e) and 0 < —9,®Y (w, b;e) < Fp®Y (w,b;e) by
Lemma 3.2, (P7) strengthens the restriction x} < 1. It ensures that debt does not
increase too fast along A in the sense that w — @2 (w, xa(w),e) — @Y (w, xa(w),e) is
increasing for all w € Wy and £ € £. It is clear that (P7) always holds in Case 1 and in
Case 2 if 3 is not too large. A sufficient condition for Case 3 is stated next.

Lemma 4.3 Let xp = ¢?  for ewes € EY. If X}y (w) < % for all (w,g) € Wy x &,

then (P7) holds.

The class U5 () = Ade+(1=A)&, e € £, A € [0, 1], £ := E, [g4] studied in Section 5 satisfies
the condition in Lemma 4.3 directly for A =1 (CE) and for all A € [0, 1] if x}, (w) < =i
for all w € Wy, i.e., if [Emin, £max] 18 NOt too large. Clearly, (P8) holds for all A < 1.

The following final result of this section establishes conditions under which a unique
invariant distribution of the dynamics (21) exists. This provides the basis for studying
the long-run welfare effects of debt as motivated above. For a formal definition of the

employed concepts, the reader is referred to Brock & Mirman (1972) and Wang (1993).

Theorem 4.1 Let ¢™ satisfy the monotonicity properties stated in Lemma 4.2. Suppose
(a) there exists g € € such that ¢™(-;eq) possesses a unique fived point which is stable
(b) limy 00 O™ (W} Emag) /w < 1 < limy sy, " (W; Ein) /w. Then, the following holds:

(i) There ezists a unique stable set W' C W, for the family ¢™ = (07 (+;€))ecs-

(ii) There exists a unique invariant distribution p™ of the dynamical system (21) which
is supported on W' and which is stable in the weak convergence sense.

Condition (a) holds directly in Case 3 (for ey = erf). If xa = 0, (a) holds under
Assumption 3.1 (as ¢™ = ¢°) which also ensures that (a) holds in Cases 1 and 2 for b and
G sufficiently small by the implicit function theorem. As (a) implies lim,, o, ¢™ (w;gp)/w
< 1 < limyyy, ¢ (w; o) /w, (b) generally holds if the range of shocks is not too large.

5 Optimal Debt Policies

The present section studies the welfare effects of alternative debt policies and uses the
result from Theorem 4.1 to develop a long-run welfare criterion. For simplicity, consider
the class of interest policies 9, (g) := A\e+(1—A)&, ¢ € € permitting to gradually increase
the risk on debt investments by increasing A. For A = 0, debt is riskless while A =1
implies capital-equivalent debt. By abuse of notation, write KC(w, b, \) := K" (w, b), etc.

Interim welfare. Consider first the lifetime utility of a generation conditional on their net
income w > 0, current debt b > 0 and the interest policy ¥y, A € [0, 1]. Let ¢¥(w, b, \) :=
w—b— K(w,b,\) and ®(w,b, \,&") = bI\(e") Z(w, b, \) + K(w, b, \)R(IK(w, b, \), ")
denote first and planned second period consumption. These define interim utility

V(w, b, A) := u(c?(w,b,\) + E,[v(c’(w, b, A, )] (22)
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Theorem 5.1 Under (P1)-(P4), the following holds for each w > 0:

(i) The map b — V(w,b, \) is strictly increasing on [0,w[ for all A € [0, 1].

(ii)) The map A +— V(w,b, \) is strictly decreasing on [0,1] for all b > 0.

Theorem 5.1 shows two key properties. Firstly, at the interim stage, young consumers
benefit from any additional increase in current debt not exceeding their net income. The
intuition is that higher debt investment could one-for one replace capital investment
leaving current consumption invariant while increasing second-period consumption due
to increased returns on both investments. Secondly, consumers dislike debt indexed to
risk since any increase in A decreases the possibility to diversify risk. Thus, a policy
involving low and risky debt would never be supported by current generations.

Long-run welfare. The interim perspective clearly fails to take into account the capital
accumulation process and the debt burden that future generations will have to bear.
To develop a criterion which incorporates these effects, let A € [0, 1] and a stabilization
objective A C V be given. Assuming that the hypotheses of Theorem 4.1 are satisfied,
the choice of policy T = (9, A) yields a random variable (w™, ™) whose distribution on
V is defined by p™. The associated long-run expected utility then takes the form

U\ A) = /W Y (w, xa(w), A (duw). (23)
The value U(m) can be interpreted as the interim utility that generations attain on
average under policy . Note that the interest policy affects utility directly at the interim
stage and, in combination with A, through its impact on the long-run distribution. The
latter incorporates the trade-off between higher current debt and lower future incomes.
Note that for x4 =0, (23) yields the long-run utility at the trivial equilibrium which is
independent of A\ and provides a natural reference point for any welfare analysis of debt.

Stmulation results. Unlike the interim welfare effects in Theorem 5.1, a theoretical
characterization of the invariant distribution x™ depending on policy 7™ seems not possi-
ble. For this reason, the remainder presents results from a numerical simulation study
which quantifies the long-run welfare effects and further properties of alternative poli-
cies. Consider the scenario from Section 3 with CRRA utilities u(c) = ¢, v(c) = yu(c),
CES technology g(k) = [1 — A + Ak®]=, and three shocks & = {e™n gmed cmax} qragwy
with probabilities p™®, p™ed and p™@. For the values listed in Table 1, £ = £ im-
plying that the trivial equilibrium is dynamically inefficient. All of the following results

were found to be robust against parameter changes for which this continues to hold.?

| Parameter | Value || Parameter | Value || Parameter | Value |

gmin 9 gmax 1.1 A a, D
Emed 1 pmm, pmed 1/3 v 1

Table 1: Parameter set used in the simulations.

5 All simulations iterate the system for T' = 35 periods. For this length, convergence of expected
utilities and other variables computed as averages of N = 5000 different noise paths is established.
To verify the numerical results, the reader is invited to download the simulation data and the C'+ +
simulation files from my website http://www.marten-hillebrand.de/research/TC/TC.htm.
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The study compares the three stabilization objectives from Section 4 under different val-
ues for . For each scenario, Theorem 4.1 is verified to hold and an optimal stabilization
policy is computed. This amounts to determining an optimal debt level b*(\) > 0 in
Case 1, an optimal debt-to wage ratio 5*(\) € [0, 1] in Case 2, and an optimal reference
shock g%;(\) € £ in Case 3. These values turn out to be uniquely determined and
imply a similar debt-to net income ratio of ~ 16.5% on average in each case. Table 2

reports the associated increases in utility (23) relative to the trivial equilibrium.

| A= [O0(safedebt) [ 025 | 0.5 | 0.75 [ 1 (CE debt) |
Case 1: .820% .823% | .826% | .827% .828%
Case 2: .805% .809% | -812% | .815% 815%
Case 3: .816% .820% | .823% | .825% .826%

Table 2: Long-run welfare increase under different debt policies.

Each policy yields a positive welfare gain which is throughout highest in Case 1, closely
followed by Case 3 and least under Case 2. Interestingly, welfare increases monotonically
with A in each case which shows that the negative effect of risk indexation at the interim
stage is overcompensated by the corresponding impact on the long-run distribution.
Intuitively, a riskless debt return shifts risk from old to young (cf. Bohn (1998)) while
CE debt is essentially risk-neutral which seems favorable according to the previous result.
Observe, however, that the associated welfare gain is rather small (< .01% in each case)
compared to the overall increase. Thus, determining the optimal stabilization objective
seems more important than the interest policy. With reference to the introduction, this
indicates that the crowding-out effect of debt dominates the risk-sharing effect. Kriiger
& Kiibler (2006) note a similar observation in the context of Social Security.

The interest policy, however, crucially affects the size of stabilization taxes. This is
shown in Table 3 which displays absolute taxes |r;| relative to gross income wy.

| A= | O(safedebt) | 025 | 05 | 0.75 | 1 (CE debt) ]
Case 1: .534% B58% | 2% | 1.00% 1.27%
Case 2: 1.65% 1.31% | 1.12% | .97% 82%
Case 3: .532% .22% .08% .38% .68%

Table 3: Average absolute stabilization taxes as percentages of gross income.

In Case 1, taxes are least for A = 0 and increase monotonically with A while the converse
holds in Case 2. This seems intuitive because under safe debt, the level b{ becomes inde-
pendent of production risk £; while under CE debt this is true of the gross-debt to wage
ratio b /w{. Moreover, taxes are least in Case 3 confirming our earlier suspicion that
taxes are small if the inherent stabilizing forces of the dynamical system are exploited.
Under this stabilization objective, a unique A\* €]0, 1] can be determined for which taxes
become minimal (& .08% if A* = .5 and even .04% if \* = .4).

To provide some intuition for this last result, Figure 3 portrays the location of the stable
manifolds (19) in the state space along which stabilization takes place in Case 3. The
bold sections represent the support of the invariant distribution which is bordered by
the (smallest and largest) fixed points of ¥™(-;¢) respectively ¢™(-;¢) which are also
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(a) A =0 (riskless)

Figure 3: Stable manifolds M, := M | Mipeq 1= M

€min €med’

M nax := MP>

Emax "

depicted. Intuitively, if the shock ¢, = & occurs at time ¢, taxes 7; are large (in abso-
lute value) if the previous state (w;_1,b,_;) is far away from the set M? and small for
(w; 1,b; 1) close to M?. As a consequence, taxes are least in Figure 3(b) where the
stable manifolds are close together. Ideally, they would coincide as in the example of
Section 2 and there would be no need for stabilization. Albeit this can not be achieved
in the present case, the interest policy can be chosen as in Figure 3(b) such that taxes
become negligible and debt is 'nearly’ persistent resembling the bubble in Tirole (1985).

6 Conclusions

The results of this paper suggest that any sustainable debt policy must be accompa-
nied by a tax policy which stabilizes debt against unfavorable random shocks. Based
on this insight, a welfare criterion was suggested which measures long-run consumer
welfare at the stabilized equilibrium permitting to simultaneously determine an optimal
stabilization objective and an optimal interest policy. For a situation where the debtless
equilibrium is inefficient, numerical findings indicate that the long-run optimal policy
involves moderate levels of debt with returns fully indexed to production risk. The
analysis also revealed that such a policy is never in the interest of current generations
who prefer large and riskless debt. This conflict might explain why many countries have
large debt and offer a riskless return despite both fails to be optimal in the long run.

Since unstabilized equilibria were shown to be asymptotically debtless, the findings of
this paper also suggest that persistent asset bubbles as studied in Tirole (1985) can
generically not occur in stochastic OLG models even if the trivial equilibrium is ineffi-
cient. In this regard, several deterministic studies (e.g., Kunieda (2008)) have introduced
credit market frictions to explain the emergence of bubbles in OLG models where the
bubbleless equilibrium is dynamically efficient. Such imperfections could also explain
existence of equilibria with debt in situations where the trivial equilibrium is efficient.

A Mathematical Appendix

A.1 Proof of Lemma 1.1

For t > 0, define taxes 77 := w{ — ¢ — kyo1 — by and 77 := by_1rf + kyry — ¢ which
are feasible in the sense of Definition 1.1(ii). Using the corresponding expressions for ¢/
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and ¢} together with (2) and (3) in the aggregate feasibility condition shows that debt
evolves according to equation (4). Since Definition 1.1(i) is satisfied by assumption,
it remains to show that (b;,s;) solves (9). Since s, > 0 and there are no short-sale
constraints, it suffices to show that the first-order conditions are satisfied. This follows
from the intertemporal efficiency condition and (10) by direct substitution. |

A.2 Proof of Lemma 2.1
Given w > b > 0, let °(k,b,e) := R(k;e)(b+ k). By (P1), the derivative® satisfies
OuH (kyw,b) = —u"(w—b—k) — B, [R(k; )" (c*(k, b, ))]
B, | Sk ) (v (0, b)) + (k. b, 0" (¢ (ks ,)) )| > 0. (A1)

Thus, H(-;w,b) is strictly increasing and can have at most one zero in |0, w — b[. The
arguments of Wang (1993) imply existence of a zero for b = 0 which is unique by (A.1).
Since OpH (k;w,0) > 0, a zero exists also for b > 0 sufficiently small by the implicit
function theorem (IFT). Let

b (1) = sup{b €10, wl| H(k;w,b) = 0 for some k €]0,w — b[}. (A.2)

Note that b™**(w) being the supremum of a non-empty set bounded by w is well-defined
for all w > 0 and the map w — b™*(w) is continuous since H is continuous. We claim
that H has a zero for each b €]0,0™*(w)[. By contradiction, suppose this fails to hold
for some 0 < 0 < b™*(w). As limg_yy—py H(k;w,b’) = oo by (8), H(k;w,b") > 0 for all
0 <k <w—"b. The derivative with respect to b satisfies

OH (kyw,b) = —u"(w — b— k) — E, [R(k;-)*0" ((k,b,-))] > 0. (A.3)

Let 0" > /. By (A.3), H(k;w,b") > H(k;w,b') >0forall0 < k <w -0 <w-1V.
Hence, H(-;w,b") has no zero for any " > ¢'. But then v™*(w) < ¥/, a contradiction.
Finally, note that limg_,o c°(k, b,e) > limy_,o bR(k;£) = oo for each e € £ which implies

lim H (k;w,b) = u'(w — b) — lim (H%E,, [ (k, b, )" (¢ (K, b, ))]) =—o00 (A4)

k—0 k—0

if (P3) holds. In this case, a zero exists for all b < w, i.e., ™ (w) = w. |

A.3 Proof of Lemma 2.2

Using (A.1) and (A.3), the partial derivatives of H defined in (11) satisfy
0 < —0pH(k;w,b) = —u"(w—b—k) < 0pH(k;w,b) < 0H(k;w,b)
where the last inequality holds due to (P1). Thus, by the implicit function theorem,

— 0 H (k; w, b) Oy H (k; w, b)
e i i LA m
O H (I3 w, b) O H (I3 w, b)

0 < 0,K(w,b) = < —0pK(w, b)

6 Recall that interchanging differentiation with the expectations operator E, H is legitimate whenever
the integrand is continuously differentiable and integration is over a compact set.
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A.4 Proof of Lemma 2.3

Let ¢ € € be fixed. For brevity, we omit the subscript € such that @w® > 0 denotes the
trivial steady state. In addition, define k° := KC(w°,0) and w := W(0;¢) > 0.

(i) Let & € &. We determine unique values k > 0 and (@, b) € V, solving k = K(w,b),
w = W(k,e), and R(k,e) = 1. Since limy_,oR(k,2) = oo and R(k%,¢) < 1, the last
condition has a solution k €]0,%°[ which is unique by strict concavity of f ( ) and
determines w := W(k,e) < w". Finally, we determine the value b as a solution to
w = W(K(w,b),e). By Lemma 2.2, there can be at most one such solution. Using (13),
uniqueness and stability of @w° imply ¢o(w;e) > w for all w €|w, w°[. Hence, w < "
implies lim,_,o W(K(w,b),c) = W(K(w,0),e) > . Since limy_,pmaxg) (W, 0) = 0,
limy_ pmax () W(K(0,0),) = w < w proving that a unique non-trivial steady state
exists. The Jacobian at the steady state computes

7o _ 7 kfkk(k 8)8 IC(U_),b) —kfkk(k 8)8#(:( b)

T= DB = |y s 2)0uK(0,b) 1+ bfis (ks )0 (0, )
By Lemma 2.2, the determinant and trace satisfy det.J = —k fiu.(k;£)0,/K(w,b) > 0
and trJ = 1+ detJ + bfy(k; )9 (w,b) > 1 + det.J. The latter inequality implies
0<(1—trJ/2)?2 =1~ trJ + (trJ)?/4 < —det J + (trJ)?/4 ensuring real and distinct
Eigenvalues of J. By Galor (2007, p.88), these properties imply saddle-path stability.
(ii) Let £ € &,. By contradiction, suppose there exists (i, b) € V, such that (i, b;) ==
(b, b;e) € V for all t > 0. Use (13) to define wy := ¢} (w;¢), t > 0. Lemma 2.2
implies w; > Wy > b™*(wy) > b, > 0 for all ¢. Since lim,_,. ; = @° by Assumption 2.1,
continuity of R(-;¢) and K imply existence of 7" > 0 such that R(K(w;,0);¢) > 1 for
all ¢ > T implying b1 /by = R(K(wy, by);e) > R(K(wy,0);¢) > 1. Hence, limy_, by =:
B exists where by < B < co. Suppose B < oo. Then, limy_ oo R(K(wy, by);€)
1, contradicting limy_,e R(K(1y, by);€) > limy_a R(]C(wt,gt);e) = R(K(w°, B);¢)
R(K(w°,0);e) > 1. Thus, B = oo which contradicts b; < 0, for all ¢.

HV I

A.5 Properties of the Stable Manifold

This section establishes properties of the stable manifold M? in (19). Especially the
first part draws heavily on results by Tirole (1985). A somewhat related analysis may be
found in Galor (1992) from which several ideas are used. For a definition of manifolds,
etc. the reader is referred to Villanacci et al. (2002). While the formal arguments adopt
the setup and notation of Section 3, neither the multiplicative structure of f nor the
additional assumptions (P2)—(P6) are used. Therefore, Theorem A.1 also applies for the
scenario of Section 2 under the hypotheses of Lemma 2.3 where the stable manifold M. is
defined as in (14) and the state space is the open set V, = {(w,b) € RZ, [b < b™*(w)}.

Theorem A.1 Given 1, let the hypotheses of Lemma 3.3 be satisfied. In addition,
suppose (P9) lim,_,o t/(c) = 0. Then, for each e € Y the following holds:

(i) The set M? defined in (19) is the graph of a map ¥° : R, — R, .
(i) The map ? is Ct, strictly increasing, and satisfies lim,, o ¥? (w) = 0.

(iii) The derivative satisfies ¥°' (w) < q(w) = —W <1 for all w > 0.
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Proof: Fix ¥ and £ € £ and suppress these parameters writing ® = ®’(-;¢), M = M?,
etc. Thus, (w°,0) and (w0, b) denote the unique trivial and non-trivial steady state of ®,
respectively. The following arguments employ Lemmata 3 to 11 in Tirole (1985).” Note
that our setup corresponds to his no-rent case where R = 0 and ay = by.

(i) For wy > 0, let B := {b|®"(wy,b) € VVn > 1}, By := {b € B| lim,, 00 D" (wp, b) =
(w°,0)}, B, := {b € B]| lim,_, ®"(wy,b) = (w,b)}. By Tirole (1985), B is a convex
set (Lemma 6) and right-closed (Lemma 10). Combined with his Lemma 4 implies that
B =10, by] for some by > 0. Moreover, By is right open (Lemma 9), B, is at most single-
valued (Lemma 5) and B = By UB, (Lemma 3). Hence, By = {b}. Since wy was
arbitrary, this implies existence of a map ¢ : R,y — R, such that M = graph(v)).
(ii) Tirole’s Lemma 11 implies that 1 is strictly increasing. To establish smoothness of
P, let w :=W(0;¢) > 0, 0™ := limg_,oo W(k;e) < 00 and G :=|w, 0®°[xR, .

The remainder draws on the following auxiliary result.

Lemma A.1 Under (P9), the map ® defined in (17a,b) is a C-diffeomorphism between
the sets V. and G.

Proof of Lemma A.1.

Given some (w',b') € G we determine a unique (w,b) € V, such that ®(w,b) =
(w',0'). The condition w' = ®,,(w,b) determines a unique k' = K(w,b) such that
w' = W(k';e). The value 2/ = Z(w,b) then follows from the first order conditions
E, [2/9(-)v"(0'9(-)/9(e) + E'R(K';-))] = E, [R(K'; -)v"(b'0(-) /0(g) + K'R(K'; -))] from which
b=10/(2"9(¢)) can be inferred. Using (P9), w is the unique solution to u'(w —b— k') =
E,[2'9(-)v" (0'9(-)/I(e) + K"R(K';+))]. Hence, @' is a well-defined function. @ is clearly
C' by the IFT. To see that ® ' is C*, it is straightforward to show from (17a,b) that
the Jacobian D®(w,b) satisfies det D®(w,b) > 0 for each (w,b) € V,. By the inverse
function theorem, D®~'(w',0') = [D®(w,b)]~" which is a continuous function. O

We first show that M is a one-dimensional C''-manifold. By the Stable Manifold Theo-
rem (cf. Nitecki (1971)), the locally stable set M"°¢ := {(w,b) € V, |®"(w,b) € UVn >
1 A lim, o ®"(w,b) = (w,b)} is a one-dimensional manifold as smooth as ®. Here
U C V, NG is an open neighborhood of (w, b). By Nitecki (1971, p.89) or Galor (1992,
Definition 4, p.1371), the globally stable manifold obtains as M = U,,5o®"(M¢). Ex-
ploiting Lemma A.1, M inherits the smoothness of M!°¢ and is thus a one-dimensional
Cl-manifold. The same arguments are used in Galor (1992, Corollary 3, p.1371).

We show that 1 is continuous. Since M is C!, there exists an open neighborhood
N C M of Z := (w,b), an open subset Y C R and a C'-diffeomorphism ¢ : N' — U.
W.lLo.g., suppose U is an interval and N C M (otherwise, choose an open interval

U C U containing o(Z) small enough such that =1 (U) C M'¢ and switch to @ := L7
where N := ¢~ 1(U)). By Theorem I.4 in Dugundji (1970, p.108), N = ¢ 1(U) being the
image of an open and connected set under a homeomorphism is an open and connected
subset of M containing Z. Let x = (w,b) € M be arbitrary. By (19), lim,,_,,, ®"(z) = Z
implying ®"(z) € N for n large enough, i.e., v € ® "(N). Thus, since z was arbitrary
and N' C M we obtain M = U,>¢® "(N). Continuity of ® " and Theorem [.4 in
Dugundji (1970) imply that each ®"(A) is a connected set containing Z. By Theorem
.5 in Dugundji (1970, p.108), M is a connected set implying continuity of .

We show that 1 is C'*. Let wy > 0 be arbitrary. Since M is C, there exist an open neigh-
borhood Vy C M of zy := (wp, 1 (wy)), an open set Uy C R and a C'-diffeomorphism

7 Previous versions of this paper contained alternative proofs which are available upon request.
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['=(Ty,Ty) : Uy — Vo. Define F := (idg,,¥) : Ryy — M, w+— (w,4(w)) which
is a homeomorphism with inverse F'~! equal to the projection onto the first component
which is C®. Thus, I'y = F~' o' : Uy — Wy := F~'(V,) is a C'-homeomorphism
(since both F~! and T" are, cf. Proposition 12 in Villanacci et al.(2002)). The strategy
is to show that I'; is even a C'-diffeomorphism, i.e., ['7' is C'. Suppose I} (@) = 0 for
some @ € Uy. Let w :=T(a). Since I'y, =1po Ty and % takes values in the unit
interval for all w > 0%, Th(a) = T} (@) limy, (¢ (w) — (u?))/(w — w) = 0. Following
Villanacci et al.(2002, p.39), let ¥ be a C'-extension of I'"! to an open set in R? con-
taining Vy, i.e., Uy, = ['L. Then, (W o T (i) = 0y (I'(i) )T (i) + 0o (I'(i) ) [ (i) = 0.
On the other hand, ¥ o ' = idy, implying (¥ o T")’(@) = 1 which is a contradiction.

Conclude that TV (u) # 0 for all w € Uy. Then, by the inverse function theorem
(T Y (w) = 1/T(T;  (w)) for all w € Wj. Since 'y is C* and T'; ' continuous, (T';!)" is
a continuous function. Thus, I'; is a C'-diffeomorphism which implies that FF =T oT';*
restricted to Wy is a C! diffeomorphism. Thus, ¢ is C* on W), and, in particular, at wy.
Observing that M C V implies 0 < ¢(w) < w for all w > 0 completes the proof of (ii).
(iii) Suppose ¢'(w) > g(w) for w > 0. Then, ¥’ () > —0, Z (W, (w)) /0 Z (w0, (W)) by
(A.15). By continuity, ®,,(w) := W(K(w,¥(w));e) is locally strictly decreasing while
w — Z(w,Y(w)) and, using (i) ®y(w) := ¥(w)2Z(w ,h(w))d(e) are strictly increasing,
respectively around w. Let w > @ be close to w. Set b= Y(w) > b := (). Then,
(w, b), (w,b) € M and w, := D, (i ) D, (0,0) < Dy (,0) = Dy () =: 10y while
by = @b( ) = By (1, ) > By(w ~) ®, (1) =: by;. But M being self-supporting under
® implies (wy, ;) € M and (wl, b)) € M. Therefore, by = 1h(1;) and by = 1)(ib;) which
contradicts that ¢ is strictly increasing, proving the claim. [ |

A.6 Proof of Lemma 2.4

Again we show the claim for the more general scenario of Section 3 under the hypotheses
of Lemma 3.3. The claim of Lemma 2.4 follows from the preface in Section A.5.

Let 9 be given and ¢ € £” be fixed. Dependence on these parameters will be suppressed.
(i) Given wy > 0, let by := 1h(w,) and define the sets B, By and B, as in the proof of
Theorem A.1(i). As shown there, By =]0, by[ which proves (i).

(i) Given wy > 0, let by > 1[)(w0) by and suppose by way of contradiction that
(g, by) = B (wo,bo) € V for all t+ > 0. Note that (iy,b,) = @ (wo,by) € M for
all t > 0 and hmHoo(wt,bt) = (w, By Lemma 3.2 and an induction argument,
Wy > Wy > by > b, > 0 for all t > 0. Define B = bt/bt to observe that G, > 1
and B4 = B2 (wt,bt)/Z(wt,bt) > [ for all t > 0. Hence, lim; o, f; = f > 1 and
limy_, o by = Bb =: by > b exist. Since w; remains bounded, (wt, b,) € V for all ¢ only if
boo < 00 which requires limy_,oo Z (i, by) = 1/9(g). But, by the previous properties and
Lemma 3.2, limy_,o0 Z (1, by) > limy_,o0 Z (0, by) = Z(10,bsg) > Z(w,0) = 1/9(s). W

L

A.7 Proof of Lemma 2.5

For ¢t > 0, let ¢; = by/wy. Using ®,,, @y gives (11 = () = —[1+7 GG, t> 0.
The map ¢ has ( as its unique non-trivial fixed point which is unstable. Moreover,

8 This follows from monotonicity of ¢» and a slight modification of the contradiction argument in the
proof of (iii) where ¢’ (1) needs to be replaced by the difference quotient ﬁ—f; = VW) —¥(@)

w—u
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Co < ¢ implies lim;_, o, ¢; = 0 and ( > ¢ implies that ¢ ((y) > % for finite ¢y. Hence,
by = Cwy is necessary for (wp, by) € M.. Sufficiency follows from Theorem A.1(i). M

A.8 Proof of Lemma 3.1

Given (w,b) € V, let k := w — b > 0. The argument ¢°(z, k,b, &) := b2 9(c) + kR(k;¢)
will be suppressed when convenient. Suppose b = 0. Then, H! is independent of z and
¥ and HY(z, k;w,0) = H(k;w,0) for all & €]0,k[ with H defined as in (11). Hence,
existence of k' €]0, k[ to satisfy HY(z,k';w,0) = 0 is due to Lemma 2.1. Using &’
condition HY(z,k';w,0) = 0 can be solved explicitly for z > 0 proving the case b = 0.

Suppose b > 0. The strategy is to use (16b) to eliminate z reducing (16a) to a one-
dimensional problem. Let & €]0, k[ be arbitrary. We prove existence of a unique 2 > 0
to satisfy H? (%, k;w,b) = 0. Since lim,_, (2, k, b, €) = oo for each ¢ € £, (P2) implies

. /_:71' (] 7. ’__71/\ I 1 ,—:
zll)rgo z9(e)v' (=) =10 le)r?oc(z,k,b,e)v( )—b kR(k,e)Zlggov( ) = 0.

This being true for all ¢ € £ implies HY(z, ks w, b) < 0 for z sufficiently large. Since
H2(0, k;w,b) = u'(w — b — k) > 0 this proves existence of 2. To show uniqueness, we
prove that z — HY(z, k;w,b) is strictly decreasing for all k& €]0, k[. By (P1),

0, HY (z,k;w,b) = —E, [19() v'(co(z, k, b, )) +bz9(-)* 0" (co(z, k, b, ))] (A.5)
< —E, [9()(v"(¢’(2,k,b,-)) + (2, k, b, )v" (¢*(2, k,b,-)) )] <O0.

These results ensure the existence of a map Z(-;w,b) :]0, k[— Ry, which determines
2 for each k €]0, k[ such that HY(2, k;w,b) = 0. By equation (3) and (P3),

ang(z, kyw,b) = —u"(w—b—k) — (1 + ng(k))IE,, [R(k, ) 219(-)2)"(—)] >0. (A.6)

Thus, by the implicit function theorem, Z(-; w,b) is C'' and strictly increasing since for
cach k €]0, k[, OpZ (k;w,b) = =0, HY (2, k:w, b) /0, HY (2, k;w,b) > 0, 2 = Z(k;w, b).
As a second step, let fII(-;w,b) 0, k[— R, fIl(k;w,b) = Hf’l(Z(k;w,b),k;w,b). We
determine a unique k' €]0, k[ that solves ﬁl(k’; w,b) = 0. Since v’ is strictly decreasing,
R(k;)v' (b Z(k;w, b) 9(e) + kR (k; £)) < R(k;e)v' (kR(k;e)) for all e € £ and, therefore,
Hy(k;w,b) > u'(w—b— k) —E, [R(k;)v' (kR (k;-))] for all k €]0, k[. Thus, by (8)

lim H, (k;w,b) > lim (u'(w —b—k) = E, [R(k; )" (kR (k; ))]) = 0.

k—k k—k
Let (k,)n>1 be a sequence in |0, w — b[ with lim,_,o &k, = 0. Since k — z(k;w,b) and,
by (P3), k — kR(k;e) are increasing, ¢, (¢) := b Z(kn; w, b) 9(¢) + kR (kn, €) is bounded
from above for all £ € £ which implies lim,, o, R(kp,e) v (cn(s)) = oo. This being true
for all £ € & gives lim,,_, o E, [R(ky, - )v'(cn(+))] = oo and lim, ﬁl(kn;w,b) = —00.
Since (k,)n>1 was arbitrary, limy_,q fIl(k;w,b) = —oo. Combining both limits yields
existence of a zero of ﬁl(-; w, b). Finally, using (P2) the partial derivatives satisfy

OcH? (2,k;w,b) = —u"(-) —E, [fen(k; ) 0'(=) + (L4 Ey (k)R(k;-)*v"(=)] > 0(A.7)

O.H (z,k;w,b) = —E,[R(k,-) bI(-)v"(—)] > 0. (A.8)
Combining (A.7) and (A.8) with the monotonicity of 2(-;wlb) yields 8, H (k;w,b) =
0. HY (2, k;w, b)Ok Z (k5 w, b) +8k{-I{9(z, k;w,b) > 0 where z = Z(k;w,b). Hence, k' is the
unique zero of Hy(-;w,b) on ]0,k[. Setting z = Z(k';w, b) completes the proof. [ |
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A.9 Proof of Lemma 3.2

As in the previous proof, the argument ¢°(z, k, b, ) defined as before is omitted when
convenient. We preface the proof by the following technical result.

Lemma A.2 For the scenario of Section 3, let (P1)-(P4) hold and ¥ be continuous.
Then, for all (w,b) €V, z := Z%(w,b) and k := K?(w, b) the following holds:

() KBy [(R(K; ) — 20(-))R(K; ) [v" (=) [] = —bE, [(R(; ) — 20(-))20(-)[v" (=)]]-
(b) By [(R(K; ) = 20(:))R(k; -)|0"(=)[] = 0 = B, [(R(k; ) — 20(:))z0(-) |v" (=) ).

Proof of Lemma A.2.

(a) By (16a,b), 0 = HY(z, k;w,b) — Hy (2, k;w,b) = B, [(R(k;-) — 29(-))v'(-)]. Using
that v'(c) = 0 'c|v"(c)| for all ¢ = bzd(e) + ( ,€) > 0 by (P4) yields (a).

(b) We have E, [(R(k;-) — 29(:))?|v" ( )|] > 0 which can equivalently be written as
E, [R(E;-)(R(k;-) = 200))[0"(=)]] = [Zﬁ(')(R(k;') —20(-))[v"(=)]]. Since, by (a),
the two sides are either both zero or have opposite signs, the claim follows. O
Let (w,b) € V be arbitrary and set z := Z?(w,b) and k := K?(w, b) noting that z > 0
and 0 <k <w —b. Write H? = (H?, HY) and £ = (2,k). The signs of the derivatives

in (A.5), (A.6), (A.7), and (A.8) imply that the Jacobian matrix

O,HY (2, k;w,b) OLHY (2, k;w,b)
O,HY (2, k;w,b) O .HY (2, k;w,b) |-

v

DeH? (2, k;w, b) = [

has determinant det D¢ H? (2, k;w,b) > 0 and is hence invertible. The inverse computes

_ 1 OHY (2, k;w,b)  —OHY (2, k;w,b)
9 . 1 _ kLlg \<, hy W, kil \<, vy, W,
(A.9)
The partial derivatives with respect to w and b take the form
OwHY (2, k;w,b) = 0pHY (2, k;w,b) =u"(w—b—Fk) <0 (A.10)
OH (z,k;w,b) = —u"(w—b—k)—E,[R(k;-)z9(-)"(=)] >0  (A.11)
OHHY (2, k;w,b) = —u"(w—b—k)—E,[(29(:))%"(-)] > 0. (A.12)

By the implicit function theorem, omitting the arguments for notational convenience

—0,HY [0, HY — 0, HY] OLHYOyHY — 0, HY O, HY

9 _ 1 9 _
QZ(w,b) = det DeH? » BZT(w,b) = det DeH?
—0,HY|[0, H‘9 0, HY 0,HYO,HY — a H?0,HY
9 [ _
Ouk"(w,0) det D H? Ok (w,b) = det D H? '

(i) As det D:H? = 0,HY O HY — O, HY 0,HY > 0, 0,HY < 0 < 0,HY by (A.5) and (A.8),
and 0 < —0,HY < 9,H?, i = 1,2, it follows that

0, H{0.H —0.H]] _ 0.H}0,H} — 0.H{0,H]
det DeH? det D¢ H?

0 < 9,K" (w,b) = = —0,K”(w, b).
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(ii) If, in addition, (P4) holds, straightforward calculations and Lemma A.2 imply

OHy — OxHy = B, [(R(k;+) — 20(-))R (ks )[0" (=) (1 + Ey (k)
— E, [fkk(k, )UI(—)] >0 (A13)
OHY — pHy = E,[(R(k;-) — 20(-))20() " (=)]] < 0. (A.14)

By (A.10) and (A.13), 3, 2% (w,b) < 0. By (A.13) and (A.14), 3,Z%(w,b) > 0. Finally,

—0,HY

9 9 v v Tet D.H?
Ol (1w, B)9Z"(w, b) = K (w, b)0w 2" (w,b) = G2 5

(OpHy — ,HY) >0 (A.15)

—0w 27 (w,b) < 0w KC? (w,b) <1 u

which follows from direct calculations and shows that HETwD) = —o,K (wp)

Remark A.1 Since Z° and K° are well-defined and the matriz D¢H? (z, k; w, b) is non-
singular also at any boundary point (w,0) € V, the implicit function theorem implies
that the mappings Z° and K can locally be extended to an open neighborhood around
(w,0). Hence, their derivatives are well-defined and continuous also on the boundary of
V where b =0 and Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.

A.10 Proof of Lemma 3.3

(i) Let ¥ be given. For notational convenience, the shock ¢ € £ will subsequently be
suppressed. With this convention, denote the trivial steady state as w® > 0 and let
wy, == W(0;¢) > 0. By the monotonicity of K? (cf. Lemma 3.2) and W(+; ¢), any steady
state (w,b) € V, satisfies w, < w < @°. Further results are collected in the next lemma.

Lemma A.3 Assumption 3.1 and the hypotheses of Lemma 3.3 imply the following:

(a) w > W(K?(w,0);¢) for all w €]wy, 0°[.
(b) W(k;e) > kR(k;¢) for all 0 < k < k° := K?(w°,0).

(¢) For any sequence (wy, by)p>o in 'V, ILTO(w —byp) = 0 implies nlggo Z%(wy, by) = 0.
Proof of Lemma A.3
(a) By uniqueness of @°, w # W(K?(w,0); ) Vw E]wk, 0. Stability implies the claim.
(b) By (2) and (3), the claim is equivalent to B, (k) < 1 for all k €]0, k°]. By Assumption
3.1, By(k") < 3. The derivative computes E} (k ) = ( )/ g(k)[1—E,(k)—|Ey(k)|] and is
non-negative by (P6) implying that E, is non- decreasmg from which the claim follows.
(c) Given (w,b) €V, let z := Z?(w, b), k= K’(w,b), and c°(z, k, b; £) as in the previous
proofs. By (16a,b), E, [R(k;-)v'(c°(z, k,b;-))] = E, [29(-) v'(c°(z, k, b; -))]. This requires
20(8) > R(k;€) = £g'(k) for some £ € €. Setting ¢ := min{e/J(e) |e € £} > 0 (which
is well-defined by continuity of ¥ and compactness of £) gives Z7(w,b) > (g'(K”(w, b))
for all (w,b) € V. Since lim,_,o K(wy,b,) = 0 for any sequence (wy, by)n>o in V with
lim,, 0 (wy, — by) = 0, this implies lim, o, Z%(wy, by) > Cg'(K? (w,, by)) = 0. O

(i) Erzistence. Define Hy,, : V— R, Hy(w,b) :== w — W(IC‘?(w, b),e) and the so-called
w-isocline H,, := {(w,b) € V[H,(w,b) = 0,w €]w,,w°’[}. Any interior steady state
satisfies (w,b) € H,. Given any 0 €|w,, w [ we claim there exists a unique b €0, @]
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such that H,(w,b) = 0. By Lemma A.3(a), lim,_,q H, (1, b) = i — W(K?(,0),e) < 0
and limy_,, K% (0, b) = 0 gives lim,_, 4 H, (,b) = w — w,, > 0 implying existence of b.
Uniqueness follows from Lemma 3.2(i) due to which H,(w;-) is strictly increasing.
This result permits to define a map h,, :Jw,, w°[— R, such that H, = graph(h,).
By the implicit function theorem, h,, is C! with derivative

OwHy(w,b)  1+4¢ckg"(k)0,K”(w,b)

li _ — _ — — 9
") = D ) T ekg o,y 0 = R

(A.16)
Finally, since H, (w0’ 0) = 0 and limy\ w, Huw(w,w,) = 0, continuity of I, implies the
boundary behavior limy,_,z0 by (w) = 0 and limy~ 4, how(w) = wy, > 0.
Analogously, let Hy : V— R, Hy(w,b) := Z%(w,b) — 1/9(g). For b =0, ¢ € £? implies
lim,,_, g0 Hy(w,0) = Z?(w°, 0) — 1/9(¢) < 0. By Lemma A.3(c), lim,_,o Hy(w,0) = co.
As w — Z%(w, 0) is strictly decreasing by Lemma 3.2(ii), a unique w, €0, w°[ satisfying
Hy(w,,0) = 0 exists. Define the b-isocline H, := {(w,b) € V|Hy(w,b) = 0,w €|w,, 0°[}.
Any interior steady state satisfies (w,b) € H,. Given & €Jw,,@°[ we again claim there
exists a unique b €]0,w[ such that Hy(w,b) = 0. By Lemma 3.2(ii), limy,_,o Hy (1, b) =
Z%(w,0)=1/9(e) < 2°(w,,0) —1/9(e) = 0. Lemma A.3(c) yields limy_,4 Hy (1, b) =
implying existence of b. Uniqueness follows from monotonicity of Hb( -) due to Lemma
3.2(ii). Analogously, this result permits to define a map h;, :Jw,, w [—> Ry, such that
H, = graph(h;). By the implicit function theorem, hy is C'' with derivative

, OwHpy(w, b) 0w Z(w, b)
hy(w) = ") 8,Zw.b) >0, b=h(w). (A.17)
Recall that H,(w° 0) < 0. By Lemma A.3(c), there exists a unique value b° €]0,@°[
satisfying Hj(w° bo) = 0. Hence, Hy(w,,0) = H,(w°,b°) = 0. By continuity of H,, this
implies the boundary behavior lim,,_,gzo hy(w) = b° > 0 and limy, sy, hy(w) = 0.

Set w := max{w,,w,} > 0 and define A :Jw, w’[— R, A(w) := hy,(w) — hy(w). Since
(w,b) € V is an interior steady state iff (w,b) € H, N H,, steady state values w are
zeros of A while b = h,,(w). By the boundary behavior derived above, limy,_,g0 A(w) =
—b° < 0. Let w, > w,. Then, lim, ,, A(w) = w, — hy(w,,) > 0 since hy(w) < w
for w > w,. If w, = w,, then lim,_,, A(w) = w, > 0. Finally, let w, > w,. Then
limy, . A(w) = hy(w,) > 0. In either case, limy, ., A(w) > 0 and a zero exists.
Uniqueness. Let (w,b) > 0 be an interior steady state. We show that A'(w) < 0
implying uniqueness by continuity of A’. Let k := K”(w,b) < k° and z := ZV(w,b) > 0.
By (A.16) and (A.17),

W2 (w,b) + ckg" (k) [0,K" (w0, b)0,2° (0, b) — 0K (0, ),y 27 (w0, b)]
ekg"(k)0,K? (w, b)0y 27 (w, b) '

A'(w) = —

(A.18)
Since the denominator is strictly positive by Lemma 3.2, it suffices to show that the
numerator is strictly positive as well. Using (A.15) and the definition of 9,Z?(w, b)
from Lemma 3.2 and recalling that det D H ¥ > 0, this is equivalent to showing that

M := O, H,0,Hy — 0, Hy0,H, — ckg" (k)0 H, (0yHy — Oy Hy) > 0 (A.19)

where the respective arguments have been omitted for convenience. In what follows,
let My =B, [20(:) [v'(=)] = B, [R(k;-) [v'(=)]] > 0, Mz == E,[R(k;-)* [v"(=)]] > 0,
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M = E,[(29(-)*|v"(=)]] > 0 and My := E,[R(k;-) 20(-) [v"(—)]] > 0. Using the
functional forms of the derivatives from (A.5)—(A.8), and (A.10)—(A.12), tedious but
straightforward calculations reveal that M can be written as M = A + B + C where

A= ()| [~ GE M+ m(My = M) + (1+ By (B)) (Mz = My)|

mo= 1+ ckg"(k), B = —S MM, C = (1+ Ey(k) [1\421\43 - (M4)2].
By Lemma A.2(b), My > M, and M3 > My which implies C' > 0 by (P3). Obviously,
B > 0. Suppose m > 0. Then, A > 0 by (P3) which implies M > 0. Conversely, suppose
m < 0. Then —mAMy > 0. By (P5), My = v'(w —b—k) > (w —b—k)[u"(w — b — k)|
which implies B > =L (w0 — b — k)|u"(=)|Ms. By (P3), (1+ Ey ())(Ms — My) > 0.
Finally M; = 6~ '(kM, + bM3) by (P4) implying M; > bM;z by (P1). Combining the
four inequalities derived gives finally the result

A+ B> [u"(=)|Ms|(1+ Ey (k) —

Q

//(E) B B

—(w — ekg'(k))|.
g'(k)
Both terms in brackets are non-negative due to (P3) and Lemma A.3(b), respectively.
Hence, M > 0 also in this case, proving uniqueness of the steady state.
Stability. The argument is similar to the one in Lemma 2.3. Computing the determinant
and trace of the Jacobian J at the steady state gives, using Lemma 3.2 and (A.15)

det J = —ckg" (k) [8wlC‘9(w, b) + g <8wIC’9(1I), b)3Z? (@, b) — 0K (1, b) Dy Z° (1D, 13))] >0

] = Lidet 4+ [0, 2(8, B)-reka' (F) (9,7 (0, 00,27 (0,5) — 9K (5,5)2, 2" (5.)) .

As shown before, the numerator in (A.18) is positive which implies tr.J > 1+det .J. The
same reasoning as in the proof of Lemma 2.3 gives the claim.

(ii) Replacing R(K(w, b); ) by 9() Z?(w, b) and using Lemma 3.2 the proof is identical
to the one of Lemma 2.3(ii). |

A.11 Proof of Lemma 3.4

Let 9(c) =0 > 0. We claim that for all w > 0 and ¢, &’ € 7: ¢ < &' = 7 (w) < ¢7(w).
By contradiction, suppose € < & but by := ¢?(w) > ¢ (w) =: b, for some w > 0.
By Lemma 3.2 and (17a,b), it is straightforward to show that the sequences {w, b;}i>0
and {w}, b, };>0 defined as (wy,b;) = ®%(w; 1,b,1;€) and (w}, b) := & (w}_4,b, ;¢')
(where wy = wj = w) satisfy w, < wj and b, > b for all ¢ > 0. Thus, the steady states
(0?,07) = limy_00 (wy, by) and (w7, %) = limy_,e0 (w}, b}) satisfy w? < @7 and b7 > b7,

e Ve el Vel = _ i
By Lemma 3.2(ii), however, the steady state property Z%(w?,b?) = Z”(w?,b) = § can
only be satisfied if (w?,b?) = (@2, b?) implying K?(w?,b?) = K” (w2, b)) =: k. But this

contradicts @7 = W(k,e) < W(k,&') = @7, proving the claim. Thus, M? (MY = 0.
To see that the restriction from Assumption 2.2 is satisfied, suppose w.l.o.g. that EV =€.
Then, by the previous result b” " (w) = min e {¢)? (w)} = ¢?  (w) for all w > 0. Using
this, ¥ = 0, and the properties of ®’ and @bfmin respectively M’;’min, b < p?crit (w) implies

) (w,b;) = B (w, by emin) < O (w, b’ (w); Emin) = VL, (P (w, b (w); i) <
V(P (w, by Emin)) < WY (B (w,bye)) = 07D (w, bye)) for all e € E. |
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A.12 Proof of Lemma 4.1
Given (w,b) € V, we determine a unique 7 < w — w, such that H(7;w,b) = 0 where
H(t;w,b) :==b—17 — xa(w — 7). (A.20)

Let 7" :=w—w, <w. As (w,b) € V, and dy = lim,,_,,, (w — xa(w)) from Assumption
4.1, lim, ,» H(t;w,b) = b — w + dy < 0. Furthermore, lim, , . H(r;w,b) = b +
lim; oo 7[1 — xa(w + 7)/7]. If lim, o xa(w + 7) < 00, then lim, , o H(7;w,b) = co.
If lim, o xa(w + 7) = 00, then lim, o[l — xa(w+7)/7] =1 = lim, 00 Xy (w+7) >0
by hypothesis and I'Hopital’s rule. Again, lim,, ., H(7;w,b) = oo, which implies
existence. Uniqueness follows from 0, H (7;w,b) = =1+ xj(w—7) <O forall 7 < w. W

A.13 Proof of Lemma 4.2

Using (A.20), the implicit function theorem implies that for all (w,b) € V,

0uTa(w,h) = —= fi((z(; i)T) —1-0Ta(w,b) <0, 7=Ta(w,b).  (A21)

(i) Let w € Wy and e € € be arbitrary. Using (A.21) the derivative of (21) computes
Owd™ (w;e) = (1 — 0y Ta(w, b)) |0p®? 4 X (0)0®Y — 0y @Y — y (w)0®Y|.  (A.22)

Using Lemma 3.2, the bracketed term is non-negative under (P7) proving (i) by (A.21).

(ii) Let w € Wy be given and ¢ > ¢’. We show that ¢ (w;e) > ¢"(w;e’). Set (w', V') :=

”(w, xa(w); ') € Vi and let ¢(v,d) == yw' — Ta(yw’, v6b') which is well-defined for all
(v,0) € R2, such that (yw’,y0b') € V,. Using (A.21), the partial derivatives satisfy

0,6(7,6) = [1 = 0, Ta(=)](w' = ') > 02 ~[1 = 8, Ta ()]0 = 856(7,0)  (A.23)

for all v >0 and 6 < 1. Set 7' := 5 > 1 and ¢' := (y(¢)/Cy(e’). By (P8) &' < 1. Then,
(A.23) implies ¢ (w;e’) = ¢(1,1) < ¢(1,8") < ¢(',0") = ¢™(w; &) proving the claim. W

A.14 Proof of Lemma 4.3

Since shocks in (17a,b) are multiplicative and M;{ef is self-supporting under ®”(+; £.f),

&) (w, xa (1);£) = ﬁfifei)x (0l w0 v w):9)) (A.24)

which holds for all w € Wy and ¢ € £. Differentiating (A.24) with respect to w gives

, , V(E) Erer ,
0} + X (w0 = |21, + X ()34 ﬁé )f) X (@0 (0 xa (w); ) (A.25)
Since 9, % + x/ (w)9®? > 0 by Theorem A.1(iii), (A.25) implies (P7). n
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A.15 Proof of Theorem 4.1

First note that both limits in (b) are well-defined since ¢™ is continuous and monotonic.
By (a), ¢"(+;€0) has a unique fixed point w] € Wy. By stability, ¢™ (w; &g) % w iff w §
w§. Since £ — @™ (w; ) is strictly increasing, this implies ¢™ (w; emin) < w for all w > @f
and ¢™(w; emax) > w for all w < w7. Hence, non-trivial fixed points of ¢"(+;emin) can
only exist in |w,, w{] and do exist if lim,,_,y, ¢™(w;Emin)/w > 1 while non-trivial fixed
points of @ (+; Emax) can only exist in [wd, o[ and do exist if limy, o O™ (W; Epas) /w0 < 1.
In the terminology of Brock & Mirman (1972, p.500), ¢™ possesses a stable fized-point
configuration. Defining w™ := max{w € Wy | ¢™ (w;emin) = w} < 0§ < @0" := min{w €
Wy | ¢™(w; Emax) = w}, the set W™ := [w™, w™] is the unique stable set of ¢™ (defined as
in Wang (1993, p.428)). The claim (ii) then follows from the results in Wang (1993). B

A.16 Proof of Theorem 5.1

(i) Fix A € [0,1]. Using Lemma 3.2 and (16a,b), the partial derivative of (22) satisfies
BV (w,b,\) = u'(w—b—k) |0y Z(w,b,\)b/z + Ey(k)OK(w,b,\)| > 0.

(ii) Fix (w,b) € V, and write k) := K(w, b, \) and zy := Z(w,b, \). Given \ € [0, 1],
let My = By [R(kx, )v'(=)], Mo = By [R(ky,-)?[v"(=)[], Ms = B, [(2x05())*[v" (=],
and My = E,[R(ky, )2x0\(-)|v"(=)|]. Write the map H’*(z, k;w,b) from (16a,b) as
Hi(z,k,\), i =1,2. The derivatives with respect to \ exist and satisfy

(1 — )\)a)\Hl = b[Z/gl(k)MQ — M4] and (1 — )\)8/\H2 = —(Z/gl(l{?)[Ml — bM4] + M1 — bM3
(A.26)

By Lemma 3.1 and the IFT, A — (Z()\), K()\)) := (29 (w, b), K (w, b)) is a C'-map.

Using (A.9) and the notation from the proof of Lemma 3.2, the derivatives compute

MKZN) Y _ D OHy | _ 1 Oy H, 05 Hy — 8, Hy0) H,
MWK (N) ¢ O\H det DeH \ 0.Hy0\Hy — 0.H,0\H, (' |
A.27

Using that 9y = A\J; + (1 — A\)dy implies dy0J) = 11 — Uy, the derivative of (22) computes
WOV (w,b,\) =E,[(Ax91(-) — Bxdo(-))v'(—)] (A.28)

where Ay := bzy + ¢'(k\)[0\Z2b/ 2\ + Ey(kx)0\K] and By := bz), > 0. Let A € [0,1] be
arbitrary. We show that 0,V < 0. If Ay < 0, this follows immediately from (A.28), so
suppose Ay > 0. By (16a,b), E,[(R(kx;-) — z2a9x(+))v'(—)] = 0 which can be written as
E, [(01(-)Cy — 0o(-))v'(=)] = 0 where Cy := L£E/AZ2 5 o Exploiting (A.28), we show
that M := C,B) — A\ > 0. Solving this condition by using (A.26) and (A.5)— (A.8) in
(A.27), tedious but straightforward calculations show that M > 0 if and only if

g”(k‘A)
g (kx)

Using Lemma A.2(b) and the fact that by (P4) and (16a,b) b(M;s — My) —k(My— M,) =
bM3 + kM, — (bMy + kM,) = 0, all bracketed terms are positive, proving the claim. H

blu"|[Ms — My~+ Mz — My] +b[MyMs — M| — M [b(M;z — My) —k(Ms— My)] > 0.
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