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Abstra
tThe paper analyzes the sustainability of governmental debt and its welfareproperties in an overlapping generations e
onomy with sto
hasti
 produ
tion and
apital a

umulation. In the absen
e of taxation, equilibria with positive debtgeneri
ally 
onverge to debtless equilibria whi
h are typi
ally ineÆ
ient. It isshown that this may be over
ome by a tax on labor in
ome whi
h stabilizes thelevel of debt against unfavorable sho
ks. A long-run welfare 
riterion is formulatedwhi
h measures 
onsumer utility at the stabilized equilibrium. Based on this 
ri-terion, the welfare e�e
ts of di�erent interest poli
ies and alternative stabilizationobje
tives are investigated. The results o�er a simple explanation why empiri
aldebt levels are high and typi
ally yield a riskless return despite both fails to beoptimal in the long run.Keywords: OLG, governmental debt, interest poli
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Introdu
tionMost industrialized 
ountries have large governmental debt. In the U.S., total outstand-ing debt amounted to a little less than 60% of GDP in 2002 and rose moderately to about66% in 2007. Largely due to the giganti
 �s
al stimuli in response to the re
ent e
onomi

risis, the past three years have seen a dramati
 in
rease of this ratio to more than 90%as of 2010. Similar �gures apply for other 
ountries suggesting that the sustainabilityof governmental debt is - or should be - a highly relevant issue for poli
y making.From a theoreti
al perspe
tive, it is well-known that an in
rease in governmental debtmay stimulate aggregate demand in the short run but 
rowds out 
apital investment inthe long run, 
f. Elmendorf & Mankiw (1999). The latter e�e
t is parti
ularly importantin overlapping generations (OLG) e
onomies where the �rst welfare theorem need nothold and 
ompetitive equilibria may be ineÆ
ient due to an overa

umulation of 
ap-ital. In su
h a situation, as �rst shown by Diamond (1965), introdu
ing governmentaldebt leads to a welfare improvement by implementing a dynami
ally eÆ
ient allo
ation.Subsequent studies to investigate governmental debt in deterministi
 OLG e
onomiesmay be found, e.g., in de la Croix & Mi
hel (2002, Ch.4), Farmer (1986), and in Bullard& Russell (1999) for 
onsumers with multiperiod lives.There is a 
lose relationship between the sustainability of governmental debt and theemergen
e of a bubble. The latter 
orresponds to an intrinsi
ally worthless asset thatis traded at a positive pri
e su
h as �at money or a private asset that does not paydividends. The di�eren
es between debt and a bubble are thoroughly exhibited in dela Croix & Mi
hel (2002, p.212). Starting with the work by Tirole (1985), a large bodyof the literature dis
usses the emergen
e of bubbles in deterministi
 OLG models. Forexamples see, e.g., in Berto

hi & Wang (1994), Kunieda (2008), or Mi
hel & Wigniolle(2003). Due to the stru
tural similarities between debt and a bubble, the results byTirole (1985) also 
hara
terize sustainable levels of governmental debt in deterministi
OLG models. In the absen
e of taxation, there exists a unique sustainable debt-to GDPratio for whi
h the e
onomy 
onverges to the golden-rule steady state with positive debt.Debt smaller than the 
riti
al level leads to an asymptoti
ally debtless (and ineÆ
ient)situation while larger values imply an unsustainable situation in whi
h debt grows with-out bound.Starting with the work of Wang (1993), the literature has in
reasingly fo
used on OLGe
onomies with aggregate risk due to random produ
tion sho
ks. It seems not yet known,however, how the previous deterministi
 �ndings 
arry over to a sto
hasti
 setting, i.e.,under what 
onditions equilibria with positive debt exist and whi
h debt levels are sus-tainable. A �rst approa
h in this dire
tion is put forward in Berto

hi (1994), whoanalyzes possible equilibrium s
enarios in an OLG model with riskless debt. If thereis aggregate risk, another fun
tion of governmental debt is to provide a possibility ofrisk-sharing between generations. While, e.g., Bohn (1998) and Kr�uger & K�ubler (2006)analyze the issue of intergenerational risk-sharing in the 
ontext of So
ial Se
urity, asimilar study for governmental debt seems not to have been 
ondu
ted in the literature.If payments on outstanding debt are �nan
ed by issuing new debt to the next genera-tion, the implied risk sharing is essentially determined by the extent to whi
h interestpayments on debt are indexed to risk. This motivates the question how di�erent interestpoli
ies a�e
t intergenerational risk-sharing and 
onsumer welfare.Following the previous motivation, the present paper studies the role of governmentaldebt in a sto
hasti
 OLG framework. Two issues are at the 
enter of interest: 1.Whi
h1



levels of debt are sustainable and whi
h level is optimal? 2.Whi
h interest poli
y is fa-vorable and indu
es optimal risk sharing between generations? The main 
ontributionsof the paper are as follows. Firstly, we unveil the forward-re
ursive stru
ture of equi-libria and derive ne
essary and suÆ
ient 
onditions for their existen
e together with anexpli
it 
hara
terization of sustainable levels of debt under arbitrary interest poli
ies.Se
ondly, we provide a 
omplete 
hara
terization of the long-run dynami
 behavior ofthe model with and without tax stabilization of debt. Furthermore, we develop a long-run welfare 
riterion on the basis of whi
h an optimal interest poli
y and an optimalstabilization obje
tive 
an be sele
ted. Based on this 
riterion we analyze the welfaree�e
ts of alternative debt poli
ies and use numeri
al simulations to 
hara
terize optimalpoli
ies. The results o�er a simple explanation why empiri
al debt levels are so high andtypi
ally yield a riskless return despite both fails to be optimal in the long run. Finally,our results shed light on the emergen
e of asset bubbles in sto
hasti
 OLG e
onomies.The paper is organized as follows. Se
tion 1 introdu
es the model. Se
tion 2 analyzesequilibria when the return on debt 
oin
ides with the 
apital return. This stru
ture isgeneralized in Se
tion 3 whi
h allows for general interest poli
ies. Se
tion 4 demonstrateshow the level of debt 
an be stabilized by a labor in
ome tax. The welfare properties ofstabilized equilibria under di�erent debt poli
ies are investigated in Se
tion 5. Se
tion6 
on
ludes, all proofs are pla
ed in the Mathemati
al Appendix.1 The ModelThe framework to be introdu
ed in this se
tion generalizes the sto
hasti
 overlappinggenerations model in Wang (1993) to in
lude governmental debt and a tax system.Population. The 
onsumption se
tor 
onsists of overlapping generations of homogeneous
onsumers who live for two periods. The index j 2 fy; og identi�es the young and oldgeneration in ea
h period. Abstra
ting from population growth, ea
h generation 
onsistsof N > 0 
onsumers. A young 
onsumer is endowed with one unit of labor time suppliedinelasti
ally to the labor market. Sin
e old 
onsumers are retired and do not supplylabor, Lt � N denotes aggregate labor for
e at time t � 0. The old generation in periodt owns the existing sto
k of 
apital Kt whi
h they supply to the produ
tion pro
ess.Produ
tion. A single representative �rm employs labor and 
apital as inputs to produ
ea homogeneous 
onsumption good. In addition, the produ
tion pro
ess in period t issubje
ted to an exogenous random produ
tion sho
k "t 2 E . The linear homogeneouste
hnology is represented by the intensive form produ
tion fun
tion f : R+ � E �! R+whi
h determines gross output Yt (in
luding depre
iated 
apital) produ
ed at time t asYt = Ltf(Kt=Lt; "t): (1)The fun
tion f is assumed to be 
ontinuous and twi
e di�erentiable with respe
t to its�rst argument with 
ontinuous derivatives satisfying fkk(k; ") < 0 < fk(k; ") for all k > 0and " 2 E as well as the Inada 
onditions limk!0 fk(k; ") =1 and limk!1 fk(k; ") < 1.The noise pro
ess f"tgt�0 
onsists of independent, identi
ally distributed random vari-ables de�ned on a 
ommon probability spa
e (
;F ;P). Ea
h "t is distributed a

ordingto the probability measure � supported on E � ["min; "max℄ � R++ . The pro
ess isadapted to a suitable �ltration fFtgt�0 of in
reasing sub �-algebras of F su
h that ea
h"t : 
 �! E is Borel-measurable with respe
t to Ft. Let E t [�℄ := E [�jFt ℄ denote the2



expe
tations operator 
onditional on the information represented by Ft. Throughout,the notion of an adapted sto
hasti
 pro
ess f�tgt�0 taking values in some set � � RMrefers to the probability spa
e and the �ltration de�ned. It implies that ea
h randomvariable �t : 
 �! � is Borel-measurable with respe
t to Ft and hen
e determined inperiod t. All equalities or inequalities involving random variables are assumed to holdP-almost surely without further noti
e.1Let wgt > 0 be the gross wage and rt > 0 the 
apital return at time t � 0. Given 
apitalkt := KtN > 0 and "t 2 E , pro�t maximizing behavior of the �rm implies that market
learing fa
tor pri
es are determined by the respe
tive marginal produ
ts, i.e.,wgt = W(kt; "t) := f(kt; "t)� ktfk(kt; "t) (2)rt = R(kt; "t) := fk(kt; "t): (3)Government. The in�nitely-lived government taxes 
onsumers and issues debt to �nan
eits de�
it. For the purpose of this paper, debt may be thought of as a one-period livedbond whi
h pays a (possibly random) return r?t+1 > 0 in t+ 1 per unit invested at timet � 0. In light of the empiri
al eviden
e reported in the introdu
tion, negative debt willnot be 
onsidered. Let bt � 0 be the number of bonds per young 
onsumer issued attime t and � yt and � ot be the lump sum taxes levied on the in
omes of young and old
onsumers, respe
tively. Negative taxes are interpreted as subsidies on the in
ome ofthe respe
tive group. Abstra
ting from governmental 
onsumption, debt evolves asbt = r?t bt�1 � � yt � � ot ; t � 0: (4)Consumers. At time t � 0 a young 
onsumer earns net labor in
ome wt := wgt � � yt > 0to be 
onsumed and invested. Let st and bt be the investments in 
apital and bonds attime t � 0. These 
hoi
es de�ne 
urrent 
onsumption
yt = wt � bt � st (5)while next period's 
onsumption is given by the random variable
ot+1 = bt r?t+1 + st rt+1 � � ot+1: (6)Here the randomness enters through the un
ertain returns on both investments andun
ertain tax payments whi
h are all treated as given random variables in the de
ision.Young 
onsumers evaluate the expe
ted utility of di�erent 
onsumption plans (
yt ; 
ot+1)de�ned by (5) and (6) a

ording to the von-Neumann Morgenstern utility fun
tionU(
y; 
o) = u(
y) + v(
o): (7)Both fun
tions u and v are C2 with derivatives z00(
) < 0 < z0(
) for 
 > 0 and satisfylim
!0 z0(
) =1 for z 2 fu; vg: (8)Ea
h young 
onsumer 
hooses investment to maximize her expe
ted lifetime utility. Thede
ision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s� � ot+1���� s � 0; b+ s � wto: (9)1 The underlying probability spa
e may be 
onstru
ted by de�ning 
 := EN0 whi
h is endowed with theprodu
t topology and the Borel-�-algebra F := B(
) on whi
h the produ
t measure P := 
t�0� isde�ned. The sub-�-algebra Ft is generated by the 
lass of measurable re
tangular sets A =Q1n=0Anwhere ea
h An is a Borel-measurable subset of E and An = E for n > t.3



Note that no short-selling 
onstraints on b are imposed at the individual level. Theinvestment in 
apital st determines next period's 
apital sto
k (per labor for
e)kt+1 = st: (10)Old 
onsumers in period t � 0 
onsume the pro
eeds of their investments in bonds and
apital made during the previous period - net of taxes - as de�ned by (6).Equilibrium. Combining the assumptions of market 
learing, individual optimality, andrational expe
tations yields the following de�nition of equilibrium.De�nition 1.1 Given initial values b0 � 0, k0 > 0, and "0 2 E, an equilibrium is anadapted pro
ess �wgt ; rt; r?t ; � yt ; � ot ; bt; st; 
yt ; 
ot ; kt+1	t�0 whi
h satis�es for ea
h t � 0:(i) Debt returns satisfy r?t > 0 while wgt > 0 and rt > 0 are determined by (2), (3).(ii) Taxes satisfy � yt < wgt and � ot < btr?t + ktrt while debt bt � 0 evolves as in (4).(iii) The pair (bt; st) solves the de
ision problem (9) at the given wage, returns, andtaxes while 
yt , 
ot , and kt+1 are determined by (5), (6), and (10).Indetermina
y of �s
al poli
y. The following result shows that without further restri
-tions on taxes f� yt ; � ot gt�0, any debt pro
ess is 
onsistent with equilibrium. This is astraightforward generalization of the deterministi
 result in de la Croix & Mi
hel (2002).Lemma 1.1 Let an interior allo
ation fst; 
yt ; 
ot ; kt+1	t�0 and pri
es fwgt ; rt; r?t gt�0 sat-isfy (2), (3), and (10), the feasibility 
ondition 
yt + 
ot + kt+1 = f(kt; "t) for all "t 2 Eand the intertemporal eÆ
ien
y 
ondition u0(
yt ) = E t [rt+1v0(
ot+1)℄ = E t [r?t+1v0(
ot+1)℄ forall t � 0. Then, for any non-negative debt pro
ess fbtgt�0 there is a feasible tax pro
essf� yt ; � ot gt�0 su
h that �wgt ; rt; r?t ; � yt ; � ot ; bt; st; 
yt ; 
ot ; kt+1	t�0 is an equilibrium.Lemma 1.1 shows that the sustainability of debt be
omes irrelevant if unbounded taxa-tion is possible. The reason for this result is simple: The government 
an dire
tly set-o�its payment obligations on outstanding debt by a 
orresponding tax on the in
omes ofold 
onsumers who re
eive these payments. Thus, any level of debt 
an be sustained.Clearly, the previous result fails to hold if restri
tions on � ot are imposed. For this rea-son, and also to avoid time-
onsisten
y problems, the remainder 
on�nes attention tothe 
ase where � ot � 0, i.e., there is no taxation of 
apital in
omes.2 Equilibria with Capital-Equivalent DebtCapital-equivalent debt. The following two se
tions study existen
e and properties ofequilibria in the absen
e of taxation (� yt � 0) under di�erent assumptions on the returnon debt, i.e., on the pro
ess fr?t gt�0. As a �rst s
enario, suppose the government 
ommitsitself to paying the 
apital return on debt su
h that r?t � rt for ea
h t � 0. This 
asewill be 
alled 
apital-equivalent (CE) debt and the remainder of this se
tion studies theexisten
e and properties of equilibria under this assumption.Equilibrium stru
ture. As a �rst step, we seek to unveil the re
ursive stru
ture ofequilibria by 
onsidering the temporary situation in an arbitrary period t. Let 
urrent4




apital kt > 0 and the sho
k "t 2 E be given whi
h determine the net wage wt = wgt > 0and the return on 
apital and debt rt > 0 a

ording to (2) and (3). Current debtbt � 0 
orresponding to the supply of bonds then follows from its previous value bt�1and (4). The number of bonds traded is therefore predetermined by the supply side.Sin
e investments in debt and 
apital are perfe
t substitutes, the equilibrium problem forperiod t redu
es to determining next period's 
apital sto
k 0 < kt+1 < wt�bt. The lattermust be 
hosen 
onsistent with an optimal savings de
ision derived from (9) and rational,self-
on�rming expe
tations. Clearly, this requires wt > bt. Let E � [�℄ denote the expe
tedvalue with respe
t to the distribution � of next period's produ
tion sho
k. Combining(3) and (10) with the �rst order 
ondition from (9), de�ne H(�;w; b) : ℄ 0; w � b [�! R,H(k;w; b) := u0(w � b� k)� E � �R(k; �)v0�R(k; �)(b+ k)��: (11)Then, given wt > bt � 0, the expe
tations-
onsistent solution kt+1 is determined by the
ondition H(kt+1;wt; bt) = 0. Before establishing existen
e and uniqueness of su
h azero in Lemma 2.1, we introdu
e a set of additional restri
tions on f in (1) and v in(7) whi
h will be used frequently. Here and in the sequel, we denote the elasti
ity of adi�erentiable fun
tion h : D �! Rnf0g as Eh(x) := xh0(x)=h(x), x 2 D � R.(P1) Ev0(
) � �1 8
 > 0 (P2) lim
!1 
 v0(
) =1 (P3) Efk(k; ") � �1 8k > 0; " 2 E :While (P1) and (P3) are standard, (
f. de la Croix & Mi
hel (2002) and Wang (1993)),(P2) is more restri
tive as it ex
ludes several popular parameterizations su
h as logutility. Examples satisfying (P1) and (P2) are power utility v(
) = ��1
�, 0 < � < 1, orCES utility v(
) = [1� � + �
�℄1=�, 0 < � < 1, � > 0.Lemma 2.1 Let v satisfy (P1). Then, ea
h w > 0 de�nes an upper bound 0 <bmax(w) � w su
h that H(�;w; b) has a zero in ℄0; w� b[ if and only if b < bmax(w). Thiszero is unique and w 7�! bmax(w) 
ontinuous. If, in addition, (P2) holds, bmax(w) = w.In the sequel we assume that (P1) holds. Then, Lemma 2.1 permits to de�ne the setV := f(w; b) 2 R2+ jw > 0; b < bmax(w)g and a mappingK : V �! R++ whi
h determineskt+1 as the unique zero of H(�;wt; bt). The next result establishes properties of this map.Lemma 2.2 Let v satisfy (P1). Then, K is C1 on V (
f. Remark A.1) and the deriva-tives satisfy 0 < �wK(w; b) < ��bK(w; b) � 1.Equilibrium dynami
s. Combining the previous results with equations (2){(4) and (10)de�nes a map � = (�w;�b) : V � E �! R2+ whi
h determines the evolution of wagesand debt under the exogenous noise pro
ess aswt+1 = �w(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (12a)bt+1 = �b(wt; bt; "t+1) := R(K(wt; bt); "t+1)bt: (12b)Given initial values (w0; b0) 2 V, the equilibrium pro
ess fwt; btgt�0 is therefore gen-erated by randomly mixing the family of mappings f�(�; ")g"2E , i.e., the realization ofnext period's sho
k 'sele
ts' a map that determines the next state from the 
urrent one.Stru
turally, this 
orresponds to a two-dimensional version of the one-dimensional dy-nami
s in Wang (1993). The endogenous state variables fwt; btgt�0 together with the5



exogenous noise pro
ess f"tgt�0 
ompletely determine the other equilibrium variables ofthe model. Therefore, existen
e of a dynami
 equilibrium is equivalent to determining(w0; b0) 2 V su
h that the pro
ess generated by (12a,b) satis�es (wt; bt) 2 V for all t � 0under P-almost all paths of the noise pro
ess. Sin
e b0 = 0 implies bt = 0 for all t > 0,it is 
lear that a trivial equilibrium with zero debt exists for all w0 > 0. In this 
ase, thedynami
s redu
e to the evolution of wages de�ned by the map �0 : R++ � E �! R++wt+1 = �0(wt; "t+1) :=W(K(wt; 0); "t+1): (13)Similar to Tirole (1985), the steady state properties of (13) will play a 
ru
ial for theexisten
e of non-trivial equilibria. The next assumption rules out multipli
ity of steadystates of �0.Assumption 2.1 For ea
h " 2 E, the map �0(�; ") possesses a unique �xed point �w0" > 0whi
h is stable.Dynami
 properties. From above's stru
ture, it stands to reason that the existen
e andproperties of equilibrium depend 
ru
ially on the dynami
 properties of the mappings(�(�; "))"2E and whether these exhibit 
ontra
tive or expansive behavior. We thereforebegin by �xing a value " 2 E to study the dynami
 properties of the single map �(�; ").In the sequel, de�ne V+ := V \ R2++ and let �t(�; ") := �(�; ") Æ : : : Æ �(�; ") denotethe t-fold 
omposition of �(�; ") for t � 0 where �0(�; ") := idV. By Assumption 2.1,�(�; ") possesses a unique trivial steady state ( �w0" ; 0). The next result shows that theasso
iated ex-post return R(K( �w0" ; 0); ") determines whether �(�; ") displays stable -along a 
ertain dire
tion - or expansive behavior. In anti
ipation of this result, letEs := f" 2 E jR(K( �w0" ; 0); ") < 1g and Ex := f" 2 E jR(K( �w0" ; 0); ") > 1g. Sin
e the
ase R(K( �w0" ; 0); ") = 1 is non-generi
, E0 := En(Es [ Ex) is assumed to have measurezero, i.e., �(E0) = 0.2Lemma 2.3 Let (P1) and Assumption 2.1 be satis�ed. Then, the following holds true:(i) For " 2 Es the map �(�; ") possesses a unique non-trivial �xed point ( �w";�b") 2 V+ .This �xed point is saddle-path stable, i.e., the Eigenvalues of the Ja
obian matrixD�( �w";�b"; ") are real and satisfy 0 < j�1j < 1 < j�2j.(ii) For " 2 Ex the map �(�; ") is expansive, i.e., for ea
h (w; b) 2 V+ there exists at0 2 N su
h that (wt0 ; bt0) := �t0(w; b; ") =2 V, that is, wt0 � bt0 .If " 2 Es, (i) implies that the dynami
s generated by �(�; ") 
onverge to the non-trivialsteady state only for 
ertain initial values. These are de�ned by the stable manifoldM" := n(w; b) 2 V j�n(w; b; ") 2 V 8n � 1 ^ limn!1�n(w; b; ") = ( �w";�b")o; " 2 Es: (14)The sets M" will play a key-role in the sequel. Note that M" is self-supporting under�(�; "), i.e., �(M"; ") � M". Theorem A.1 in the appendix establishes existen
e ofa C1-map  " : R++ �! R++ whi
h is stri
tly in
reasing su
h that M" = graph( ")," 2 Es. Based on this representation, the next result shows that M" separates initialstates whi
h diverge from those whi
h 
onverge to the trivial steady state.2 If E is in�nite, 
ontinuity of " 7! R(K( �w0" ; 0); ") ensures (Borel-) measurability of Es, Ex, and E0.6



Lemma 2.4 Under (P1) and Assumption 2.1, let w > 0 be arbitrary. Then, for ea
h" 2 Es the following holds:(i) b <  "(w) ) �t(w; b; ") 2 V 8t > 0 ^ limt!1 �t(w; b; ") = ( �w0" ; 0):(ii) b >  "(w) ) 9t0 > 0 su
h that �t0(w; b; ") =2 V:Geometri
ally, Lemma 2.4 implies that if (w; b) is below the 
urve M", the sequen
e�t(w; b; ") stays below M" for all t � 0 and 
onverges to the trivial steady state withzero debt. Conversely, any state above M" stays above and leaves V in �nite time.Existen
e of equilibrium. Based on the dynami
 properties of the involved mappingsstated in Lemmata 2.3 and 2.4, we are now in a position to derive 
onditions for theexisten
e of non-trivial equilibria. For simpli
ity, the following arguments assume thatE is a �nite set. A generalization, e.g., to distributions � possessing a 
ontinuous densityd : ["min; "max℄ �! R++ seems straightforward. Let w0 :=W(k0; "0) > 0 be given. Firstobserve from Lemma 2.3(ii) that if �(Ex) > 0, any initial value in V+ will leave this setin �nite time with positive probability. Hen
e, �(Ex) = 0 is a ne
essary 
ondition fornon-trivial equilibria to exist. Note that this restri
tion typi
ally implies that the trivialequilibrium is dynami
ally ineÆ
ient. For w > 0, let b
rit(w) := min"2Esf "(w)g. ByLemma 2.4, b0 � b
rit(w0) is also ne
essary for the existen
e of equilibrium. SuÆ
ien
yrequires the following additional assumption.Assumption 2.2 b � b
rit(w) implies �b(w; b; ") � b
rit(�w(w; b; ")) 8w > 0, " 2 Es.Under Assumption 2.2, the 
urve w 7! b
rit(w), w > 0 de�nes the maximum sustainablelevel of debt. Intuitively, in a sto
hasti
 setting sustainable levels must be 
hosen 
on-servatively small to ensure that debt remains bounded under all possible sho
ks.Combining Lemma 2.3 and 2.4 leads to the following theorem whi
h in
ludes the resultsof Tirole (1985) as a spe
ial 
ase in whi
h � is degenerate and Es = E = f"g.Theorem 2.1 Under (P1) and Assumptions 2.1 and 2.2, let E be �nite and �(Ex) = 0.Then, any b0 2℄0; b
rit(w0)℄ de�nes an equilibrium with debt bt > 0 for all t > 0.Non-persisten
e of debt. While equilibria exist under the hypotheses of Theorem 2.1,the long-run level of debt generi
ally 
onverges to zero with probability one. Unlike the
ase in Tirole (1985), this holds even if b0 = b
rit0 := b
rit(w0). Stru
turally, the reason isthat positive stable sets, i.e., 
ompa
t subsets A � V+ whi
h are self-supporting for thefamily (�(�; "))"2E su
h that �(A ; ") � A for all " 2 E typi
ally fail to exist. To see this,note from Lemma 2.4 that A � V+ 
losed and self-supporting under �(�; ") requiresA � M". Hen
e, positive stable sets are subsets of \"2EM" whi
h is typi
ally empty.Figure 1 illustrates these and the �ndings from Theorem 2.1 for the 
ase with two sho
kswhere E = f"; "0g. The dotted arrow represents the 
ase ex
luded by Assumption 2.2.A �nal example shows, however, that stable sets may exist in non-generi
 situations.Let U(
y; 
o) = ln 
y + 

o, 
 > 0 and f(k; ") = "k�, 0 < � < 1. Then, bmax(w) = 
1+
wsu
h that V = f(w; b) 2 R2+ jb < 
1+
wg. Furthermore, �w(w; b; ") = "(1��)( 
1+
w�b)�,�b(w; b; ") = "�( 
1+
w � b)��1b, and Es 6= ; if and only if �� := 
1+
 � �1�� > 0.Lemma 2.5 For the previous parametrization, suppose �� > 0. Then Es = E and thesets in (14) are independent of " and of the form M" �M := �(w; b) 2 R2++ �� b = ��w	.7
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Figure 1: Equilibrium dynami
s generated by mixing two saddle-path stable mappings.The set M = \"2EM" is thus self-supporting for the family (�(�; "))"2E . Moreover, forany (w0; b0) 2 M the dynami
s 
onverge to a 
ompa
t subset of M de�ned by thenon-trivial �xed points (( �w";�b"))"2E of the mappings (�(�; "))"2E whi
h is a stable set.3 Equilibria with General DebtInterest poli
ies. Maintaining the assumption of no taxation (� yt � 0), the present se
tionextends the study of equilibria to arbitrary interest poli
ies on debt. For simpli
ity, theremainder of the paper assumes that sho
ks in (1) are multipli
ative, i.e., f(k; ") = "g(k)where g : R+ �! R+ inherits the properties of f(�; "). While under the previous s
enariothe return on debt o�ered at time t would be r?t+1 = "t+1g0(kt+1), the present se
tiongeneralizes this stru
ture by supposing thatr?t+1 = R?#(zt; "t+1) := #("t+1) zt; t � 0: (15)The value zt > 0 is determined in period t and # : E �! R++ is a time-invariant interestpoli
y that determines the risk to whi
h debt investments are subje
ted. Spe
i�
ally, if# � �#, debt is riskless while # = idE re
overs the previous 
ase with CE debt.3Equilibrium stru
ture. In the sequel we �x some interest poli
y # and assume that inea
h period the return on debt is of the form (15). To derive the re
ursive equilibrium3 For ea
h #, the indu
ed equilibrium is equivalent to an equilibrium with (sequentially) 
omplete mar-kets where the government issues 
ontingent 
laims to �nan
e its debt bt in period t. To see this,suppose E = f"1; : : : ; "Ng and let pnt be the pri
e of an Arrow se
urity traded at time t that pays oneunit in t+1 i� "t+1 = "n, n = 1; : : : ; N . The government issues a portfolio at = (ant )n=1;:::;N 2 RN+ ofthese se
urities su
h thatPNn=1 ant pnt = bt. Spe
i�
ally, suppose the government 
hooses the supplyof se
urity n as ant = btzt#("n) for n = 1; : : : ; N and some zt > 0. For young 
onsumers to be willingto buy these 
laims, pri
es must satisfy pnt = �(f"ng)v0(ant + "ng0(kt+1)kt+1)=u0(wt � bt � kt+1).Combining these 
onditions with the �rst order 
onditions for an expe
tations-
onsistent 
apitalinvestment derived from (9) yields pre
isely the 
onditions (16a, b) derived below to determine ztand kt+1. Hen
e, this modi�ed setup implies the same equilibrium allo
ation. Under the previousinterpretation, the interest poli
y # therefore determines the { time-invariant { mix of Arrow se
u-rities that the government issues. The arguments also extend to an in�nite set E . An interestinggeneralization would be to 
onsider dynami
 interest poli
ies with state-dependent mixing poli
y #.8



stru
ture of the e
onomy, we pro
eed as in the previous se
tion and 
onsider an arbitraryperiod t � 0. Let 
urrent 
apital kt > 0 and the sho
k "t 2 E be given whi
h determinethe net wage wt = wgt > 0 a

ording to (2). Furthermore, given previous values bt�1 � 0and zt�1 > 0, the 
urrent sho
k determines the realized debt return r?t = zt�1#("t) and
urrent debt 
orresponding to the supply of bonds bt � 0 follows from (4). Assumingthat wt > bt, the equilibrium problem for period t is to determine an expe
tations-
onsistent 
apital sto
k kt+1 and a value zt > 0. The latter determines the ex-ante debtreturn r?t+1 o�ered at time t a

ording to (15) and must be 
hosen su
h that young
onsumers are willing to absorb the predetermined supply of bonds. To a
hieve this,note that any solution s > 0 and b � 0 to (9) satis�es the 
orresponding �rst order
onditions sin
e there are no short-selling restri
tions on debt. Using this and equations(3), (10), and (15), let H#i (�; �;w; b) : R++�℄0; w � b[�! R, i 2 f1; 2g,H#1 (z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?#(z; �) + kR(k; �)�� (16a)H#2 (z; k;w; b) := u0(w � b� k)� E � �R?#(z; �)v0�bR?#(z; �) + kR(k; �)��: (16b)Then, given wt > bt � 0 the previous problem redu
es to solving H#1 (zt; kt+1;wt; bt) =H#2 (zt; kt+1;wt; bt) = 0. Existen
e and uniqueness of su
h a solution is established next.Lemma 3.1 Let (P1){(P3) hold and # be 
ontinuous. Then, for ea
h w > b � 0 thereexist unique z > 0 and 0 < k < w � b whi
h solve H#1 (z; k;w; b) = H#2 (z; k;w; b) = 0.In the sequel let V = f(w; b) 2 R2+ jw > bg denote the endogenous state spa
e of feasiblewage-debt 
ombinations. By Lemma 3.1, there exist mappings K# : V �! R++ andZ# : V �! R++ whi
h determine the values kt+1 and zt as zeros of (16a,b) for ea
h(wt; bt) 2 V. Before stating properties of these mappings in Lemma 3.2, we introdu
ethe following additional restri
tions on the elasti
ities of the utility fun
tion (7) and theprodu
tion te
hnology (1) whi
h will be used subsequently.(P4) jEv0(
)j = � 8
 > 0 (P5) jEu0(
)j � 1 8
 > 0 (P6) Eg(k) + jEg0(k)j � 1 8k > 0:Under (P4), se
ond period utility v exhibits 
onstant relative risk aversion. Property(P5) is automati
ally satis�ed if (P1) holds and v(
) = �u(
), � > 0. Finally, (P6) isne
essary and suÆ
ient for the elasti
ity Eg(k) to be a non-de
reasing fun
tion of k,whi
h holds, e.g., if g is Cobb-Douglas or CES with elasti
ity of substitution � � 1.Lemma 3.2 Let (P1){(P3) hold and # be 
ontinuous. Then, K# and Z# are C1 on V(
f. Remark A.1). Moreover, the following holds for all (w; b) 2 V:(i) The derivatives of K# satisfy 0 < �wK#(w; b) < ��bK#(w; b).(ii) If, in addition, (P4) holds, then 0 < ��wZ#(w; b) < �bZ#(w; b).4Equilibrium dynami
s. Unless stated otherwise, the remainder of the paper assumes that(P1){(P4) hold. Then, by the previous results and (2), (4), and (15), the evolution ofwages and debt under the exogenous sho
ks are given by �# = (�#w;�#b ) : V�E �! R2+wt+1 = �#w(wt; bt; "t+1) :=W(K#(wt; bt); "t+1) (17a)bt+1 = �#b (wt; bt; "t+1) := #("t+1)Z#(wt; bt)bt: (17b)4 Numeri
al experiments with utility fun
tions v not satisfying (P4) have throughout displayed thesame properties of Z# as in Lemma 3.2(ii) suggesting that this restri
tion 
ould probably be relaxed.9



Thus, equilibria are generated by randomly mixing the mappings (�#(�; "))"2E and existif and only if (wt; bt) 2 V P-a.s. for all t � 0. Note that for b = 0, the dynami
s (17a,b)are independent of # and governed by the map �0 in (13). In the sequel, the followingslightly stronger version of Assumption 2.1 will be employed. The additional restri
tionis suÆ
ient but far from ne
essary to obtain the uniqueness assertion in Lemma 3.3(i).Assumption 3.1 For ea
h " 2 E, the map �0(�; ") from (13) possesses a unique �xedpoint �w0" > 0 whi
h is stable. Moreover, the 
orresponding steady state 
apital sto
k�k0" := K( �w0" ; 0) satis�es Eg(�k0") � 12 .Dynami
 properties. Pro
eeding as above, we �x a value " 2 E to study the dynami
properties of a single map �#(�; "). Under Assumption 2.1, �#(�; ") possesses a uniquetrivial steady state ( �w0" ; 0) whi
h is stable and independent of #. Similar to the previousse
tion, the dynami
 behavior of �#(�; ") is determined by the ex-post debt return atthe asso
iated trivial steady state. By (16a,b), this return is given by #(")�z0" where�z0" := Z#( �w0" ; 0) = E � [R(�k0" ; �)v0(�k0"R(�k0" ; �))℄E � [#(�)v0(�k0"R(�k0" ; �))℄ : (18)Using (18), let E#s := f" 2 E j �z0"#(") < 1g and E#x := f" 2 E j �z0"#(") > 1g assumingagain that E#0 = En(E#s [ E#x ) satis�es �(E#0 ) = 0. The next result extends Lemma 2.3 tothe 
ase with general interest poli
ies. The proof draws on ideas from Galor (1992).Lemma 3.3 Under Assumption 3.1 and (P1){(P6), the following holds for any #:(i) For " 2 E#s the map �#(�; ") has a unique non-trivial steady state ( �w#" ;�b#" ) 2 V+ .This steady state is saddle-path stable.(ii) For " 2 E#x the mapping �#(�; ") is expansive.Lemma 3.3(i) permits to de�ne for ea
h " 2 E#s the asso
iated stable manifoldM#" := n(w; b) 2 V j(�#)n(w; b; ") 2 V 8n � 1 ^ limn!1(�#)n(w; b; ") = ( �w#" ;�b#" )o: (19)By Theorem A.1, there exists a C1-map  #" : R++ �! R++ su
h thatM#" = graph( #" ).Moreover, Lemma 2.4 is shown in the appendix to extend to the present setup as well.Properties of equilibria. Assuming that the hypotheses of Lemma 3.3 hold, it followsthat all �ndings from the previous se
tion in
luding the existen
e result from Theorem2.1 and the non-persisten
e of debt 
arry over to the present 
ase with general interestpoli
ies. Spe
i�
ally, under the restri
tion imposed in Assumption 2.2 (whi
h is shownin Lemma 3.4 to automati
ally hold under riskless debt), equilibria exist i� �(E#x ) = 0and b0 � b
rit0 := min"2E#s f #" (w0)g but are generi
ally asymptoti
ally debtless withprobability one. Again, the reason is that positive stable sets A � V+ fail to exist.Lemma 3.3 also provides important insights 
on
erning the dis
ussion in Berto

hi(1994) about stable sets under safe debt. Referring to the 
ases dis
ussed there, itshows that steady states whi
h are asymptoti
ally stable and would give rise to stablesets with positive debt do not exist. In fa
t, using the arguments of the previous se
tion,the following lemma implies that positive stable sets 
an never exist under riskless debt.Lemma 3.4 Under the hypotheses of Lemma 3.3, suppose # � �# > 0. Then, for all"; "0 2 E �#s it holds that " 6= "0 implies M#" \M#"0 = ;. Moreover, Assumption 2.2 holds.10



4 Tax-Stabilization of DebtStabilization obje
tive. In the deterministi
 
ase where E = f"g and E#x = ;, the resultsby Tirole (1985) uniquely determine the long-run optimal level of debt by the 
ondition(w0; b0) 2 M#" for whi
h the dynami
s 
onverge to the golden rule steady state ( �w";�b") 2M#" . To analyze the long-run welfare e�e
ts of debt with non-degenerate sho
ks, itseems natural to extend the golden rule 
on
ept by measuring 
onsumer welfare atsome stationary solution of the state dynami
s. The latter 
orresponds to an invariantprobability distribution on V whi
h extends the deterministi
 
on
ept of a steady state.As argued above, however, even if E#x = ;, stable subsets of V+ { whi
h 
an be asso
iatedwith invariant distributions, 
f. Wang (1993) { generi
ally fail to exist and equilibria areasymptoti
ally debtless and hen
e independent of #. Therefore, neither the optimumquantity of debt nor the risk-sharing e�e
ts of di�erent interest poli
ies 
an be analyzed.The present se
tion investigates whether this may be over
ome by a tax on labor in
omewhi
h stabilizes debt against unfavorable sho
ks. Using the s
enario from Se
tion 3, theidea is to 
hoose a subset A � V and design a tax poli
y whi
h keeps the state in A forall times and under all sho
ks. The set A will be referred to as a stabilization obje
tive.Note that we permit E#x 6= ;, i.e., some { or all{ mappings �#(�; ") may be expansive.Assumption 4.1 The stabilization obje
tive A � V satis�es the following:(i) There is a map �A : R++ �! R+ with 
ontinuous derivative 0 � �0A < 1 and anopen interval W A =℄wA ;1[� R++ su
h that A = f(w; �A (w)) jw 2 W A g.(ii) The family (�#(�; "))"2E maps A into the set VA := f(w; b) 2 V jw � b > dA g � Vwhere dA := inffw � �A (w) jw 2 W A g � 0. That is, �#(A ; ") � VA for all " 2 E .Assumption 4.1(i) restri
ts the stabilization obje
tive to smooth, one-dimensional sets.This will allow us to obtain a unique stabilization poli
y. The value dA in (ii) representsthe minimal distan
e between A and the boundary of V whi
h in
reases with wA , 
f.Figure 2. Assumption 4.1(ii) therefore embodies a sustainability 
onstraint on A byrequiring su

essors of states in A to retain the safeguard distan
e dA to the boundaryunder all sho
ks. Note that a minimal 
hoi
e su
h as wA = �b in Case 1 and wA = 0 inCases 2 and 3 studied below { ea
h implying dA = 0 and VA = V { will typi
ally violatethis 
ondition if, as in Case 3, �A is too 
lose to the boundary of V for w 
lose to wA .The general stru
ture from Assumption 4.1(i) 
overs the following three spe
ial 
ases:Case 1: �A (w) � �b. This obje
tive stabilizes debt at a 
onstant level �b � 0. It isthe 
ase is studied, e.g., in Diamond (1965). Note that A � V requires wA � �b.Case 2: �A (w) = �w. This poli
y 
hooses a value � 2 [0; 1[ to keep the debt-tonet wage ratio 
onstant. The obje
tive is studied, e.g., in Bohn (1998, p.11) andis similar to a 
onstant debt-to output ratio as in de la Croix & Mi
hel (2002).Case 3: �A (w) =  #" (w). Assuming E#s 6= ;, this poli
y 
hooses a referen
e sho
k"ref 2 E#s to stabilize the state along the stable manifold M#"ref from (19). Sin
eM#"ref is self-supporting under �#(�; "ref), i.e., �#(M#"ref ; "ref) �M#"ref , stabilizationtaxes are zero whenever the referen
e sho
k o

urs and, by a 
ontinuity argument,small for sho
ks 
lose to this value. Thus, the obje
tive seems parti
ularly promis-ing to keep stabilization taxes small. In parti
ular, taxes are uniformly zero ifE#x = ; and the sets M#" are independent of ", as in the example of Se
tion 2.11



By Theorem A.1(iii) and Lemma 3.2, for " 2 E#s the map  #" de�ning M#" is stri
tlyin
reasing with derivative  #" 0(w) � ��wK#(w; b)=�bK#(w; b) < 1, w > 0, b =  #" (w).Hen
e, the restri
tions on �0A from Assumption 4.1 are indeed satis�ed in all three 
ases.Tax poli
y. In the sequel, let a debt poli
y � = (#; A ) 
onsisting of some interestpoli
y # and a stabilization obje
tive A � V satisfying Assumption 4.1 be given. Asa �rst step, we seek to establish existen
e of a tax poli
y su
h that (wt; bt) 2 A for allt with probability one. Consider an arbitrary period t � 0. Let wgt > 0 be the grosswage de�ned by (2) and denote by bgt := r?t bt�1 � 0 the given outstanding paymentson previous debt. Assume that (wgt ; bgt ) 2 VA . By Assumption 4.1(ii), this holds if(wt�1; bt�1) 2 A . Let �t := � yt be the tax on labor in
ome to be determined. Ea
h 
hoi
e�t � bgt de�nes net labor in
ome wt = wgt ��t and 
urrent debt bt = bgt ��t 
orrespondingto the number of bonds issued in period t. If �t > 0, the tax revenues are used to paydown part of the outstanding debt. If �t < 0, young 
onsumers re
eive a subsidy ontheir wage in
ome �nan
ed by issuing additional debt. The following result permits touniquely determine the value �t su
h that (wt; bt) = (wgt � �t; bgt � �t) 2 A .Lemma 4.1 In addition to Assumption 4.1, suppose limw!1 �0A (w) 6= 1. Then, for all(w; b) 2 VA there is a unique � su
h that (w � �; b� �) 2 A .Stabilized dynami
s. Under the hypotheses of Lemma 4.1 there is a map TA : VA �! Rwhi
h determines � = TA (w; b) for ea
h (w; b) 2 VA su
h that (w � �; b � �) 2 A .Spe
i�
ally, TA (w; b) = b � �b in Case 1 and TA (w; b) = 11�� (b � �w) in Case 2. Inparti
ular, any initial state in VA 
an be tax-adjusted to lie in A . Thus, for (w0; b0) 2 A ,the stabilized dynami
s derived from (17a,b) are given by 	� = (	�w;	�b ) : A �E �! Awt+1 = 	�w(wt; bt; "t+1) := �#w(wt; bt; "t+1)� TA (�#(wt; bt; "t+1)) (20a)bt+1 = 	�b (wt; bt; "t+1) := �#b (wt; bt; "t+1)� TA (�#(wt; bt; "t+1)): (20b)Figure 2 illustrates Assumption 4.1 and the stabilized dynami
s. Sin
e bt = �A (wt) for
b
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Figure 2: Stabilized dynami
s on the set A .all t, the system (20a,b) is equivalent to the one-dimensional system �� : W A �E �! W Awt+1 = ��(wt; "t+1) := �#w(wt; �A (wt); "t+1)� TA (�#(wt; �A (wt); "t+1)): (21)To 
hara
terize the stabilized dynami
s, Lemma 4.2 establishes properties of the map ��using the following additional restri
tions. In (P8) we let �# : E �! R++ , �#(") := #(")" .(P7) �0A (w) � �w�#w(w; b; ")� �w�#b (w; b; ")�b�#b (w; b; ")� �b�#w(w; b; ") 8(w; b; ") 2 A�E (P8) �# is non-in
reasing:12



Lemma 4.2 Under (P1){(P4) and the hypotheses of Lemma 4.1, the following holds:(i) ��(�; ") : W A �! W A is weakly in
reasing for all " 2 E if (#; A ) satis�es (P7).(ii) ��(w; �) : E �! W A is stri
tly in
reasing for all w 2 W A if # satis�es (P8).Sin
e 0 < �w�#w(w; b; ") < ��b�#w(w; b; ") and 0 < ��w�#b (w; b; ") < �b�#b (w; b; ") byLemma 3.2, (P7) strengthens the restri
tion �0A < 1. It ensures that debt does notin
rease too fast along A in the sense that w 7! �#w(w; �A (w); ") � �#b (w; �A (w); ") isin
reasing for all w 2 W A and " 2 E . It is 
lear that (P7) always holds in Case 1 and inCase 2 if � is not too large. A suÆ
ient 
ondition for Case 3 is stated next.Lemma 4.3 Let �A =  #"ref for "ref 2 E#s . If �0A (w) � "#("ref )#(") "ref for all (w; ") 2 W A � E,then (P7) holds.The 
lass #�(") = �"+(1��)�", " 2 E , � 2 [0; 1℄, �" := E � ["t℄ studied in Se
tion 5 satis�esthe 
ondition in Lemma 4.3 dire
tly for � = 1 (CE) and for all � 2 [0; 1℄ if �0A (w) � "min"maxfor all w 2 W A , i.e., if ["min; "max℄ is not too large. Clearly, (P8) holds for all � � 1.The following �nal result of this se
tion establishes 
onditions under whi
h a uniqueinvariant distribution of the dynami
s (21) exists. This provides the basis for studyingthe long-run welfare e�e
ts of debt as motivated above. For a formal de�nition of theemployed 
on
epts, the reader is referred to Bro
k & Mirman (1972) and Wang (1993).Theorem 4.1 Let �� satisfy the monotoni
ity properties stated in Lemma 4.2. Suppose(a) there exists "0 2 E su
h that ��(�; "0) possesses a unique �xed point whi
h is stable(b) limw!1 ��(w; "max)=w < 1 < limw!wA ��(w; "min)=w. Then, the following holds:(i) There exists a unique stable set W � � W A for the family �� = (��(�; "))"2E.(ii) There exists a unique invariant distribution �� of the dynami
al system (21) whi
his supported on W � and whi
h is stable in the weak 
onvergen
e sense.Condition (a) holds dire
tly in Case 3 (for "0 = "ref). If �A � 0, (a) holds underAssumption 3.1 (as �� = �0) whi
h also ensures that (a) holds in Cases 1 and 2 for �b and� suÆ
iently small by the impli
it fun
tion theorem. As (a) implies limw!1 ��(w; "0)=w< 1 < limw!wA ��(w; "0)=w, (b) generally holds if the range of sho
ks is not too large.5 Optimal Debt Poli
iesThe present se
tion studies the welfare e�e
ts of alternative debt poli
ies and uses theresult from Theorem 4.1 to develop a long-run welfare 
riterion. For simpli
ity, 
onsiderthe 
lass of interest poli
ies #�(") := �"+(1��)�", " 2 E permitting to gradually in
reasethe risk on debt investments by in
reasing �. For � = 0, debt is riskless while � = 1implies 
apital-equivalent debt. By abuse of notation, write K(w; b; �) := K#�(w; b), et
.Interim welfare. Consider �rst the lifetime utility of a generation 
onditional on their netin
ome w > 0, 
urrent debt b � 0 and the interest poli
y #�, � 2 [0; 1℄. Let 
y(w; b; �) :=w � b � K(w; b; �) and 
o(w; b; �; "0) := b #�("0)Z(w; b; �) + K(w; b; �)R(K(w; b; �); "0)denote �rst and planned se
ond period 
onsumption. These de�ne interim utilityV (w; b; �) := u(
y(w; b; �)) + E � [v(
o(w; b; �; �))℄: (22)13



Theorem 5.1 Under (P1){(P4), the following holds for ea
h w > 0:(i) The map b 7! V (w; b; �) is stri
tly in
reasing on [0; w[ for all � 2 [0; 1℄.(ii) The map � 7! V (w; b; �) is stri
tly de
reasing on [0; 1℄ for all b > 0.Theorem 5.1 shows two key properties. Firstly, at the interim stage, young 
onsumersbene�t from any additional in
rease in 
urrent debt not ex
eeding their net in
ome. Theintuition is that higher debt investment 
ould one-for one repla
e 
apital investmentleaving 
urrent 
onsumption invariant while in
reasing se
ond-period 
onsumption dueto in
reased returns on both investments. Se
ondly, 
onsumers dislike debt indexed torisk sin
e any in
rease in � de
reases the possibility to diversify risk. Thus, a poli
yinvolving low and risky debt would never be supported by 
urrent generations.Long-run welfare. The interim perspe
tive 
learly fails to take into a

ount the 
apitala

umulation pro
ess and the debt burden that future generations will have to bear.To develop a 
riterion whi
h in
orporates these e�e
ts, let � 2 [0; 1℄ and a stabilizationobje
tive A � V be given. Assuming that the hypotheses of Theorem 4.1 are satis�ed,the 
hoi
e of poli
y � = (#�; A ) yields a random variable (w�; b�) whose distribution onV is de�ned by ��. The asso
iated long-run expe
ted utility then takes the formU(�; A ) := ZW � V (w; �A (w); �)��(dw): (23)The value U(�) 
an be interpreted as the interim utility that generations attain onaverage under poli
y �. Note that the interest poli
y a�e
ts utility dire
tly at the interimstage and, in 
ombination with A , through its impa
t on the long-run distribution. Thelatter in
orporates the trade-o� between higher 
urrent debt and lower future in
omes.Note that for �A � 0, (23) yields the long-run utility at the trivial equilibrium whi
h isindependent of � and provides a natural referen
e point for any welfare analysis of debt.Simulation results. Unlike the interim welfare e�e
ts in Theorem 5.1, a theoreti
al
hara
terization of the invariant distribution �� depending on poli
y � seems not possi-ble. For this reason, the remainder presents results from a numeri
al simulation studywhi
h quanti�es the long-run welfare e�e
ts and further properties of alternative poli-
ies. Consider the s
enario from Se
tion 3 with CRRA utilities u(
) = 
�, v(
) = 
u(
),CES te
hnology g(k) = [1� A + Ak�℄ 1� , and three sho
ks E = f"min; "med; "maxg drawnwith probabilities pmin, pmed, and pmax. For the values listed in Table 1, E#�s � E im-plying that the trivial equilibrium is dynami
ally ineÆ
ient. All of the following resultswere found to be robust against parameter 
hanges for whi
h this 
ontinues to hold.5Parameter Value Parameter Value Parameter Value"min .9 "max 1.1 A, �, � .5"med 1 pmin, pmed 1/3 
 1Table 1: Parameter set used in the simulations.5 All simulations iterate the system for T = 35 periods. For this length, 
onvergen
e of expe
tedutilities and other variables 
omputed as averages of N = 5000 di�erent noise paths is established.To verify the numeri
al results, the reader is invited to download the simulation data and the C++simulation �les from my website http://www.marten-hillebrand.de/resear
h/TC/TC.htm.14



The study 
ompares the three stabilization obje
tives from Se
tion 4 under di�erent val-ues for �. For ea
h s
enario, Theorem 4.1 is veri�ed to hold and an optimal stabilizationpoli
y is 
omputed. This amounts to determining an optimal debt level �b?(�) � 0 inCase 1, an optimal debt-to wage ratio �?(�) 2 [0; 1[ in Case 2, and an optimal referen
esho
k "?ref(�) 2 E#�s in Case 3. These values turn out to be uniquely determined andimply a similar debt-to net in
ome ratio of � 16:5% on average in ea
h 
ase. Table 2reports the asso
iated in
reases in utility (23) relative to the trivial equilibrium.� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)Case 1: .820% .823% .826% .827% .828%Case 2: .805% .809% .812% .815% .815%Case 3: .816% .820% .823% .825% .826%Table 2: Long-run welfare in
rease under di�erent debt poli
ies.Ea
h poli
y yields a positive welfare gain whi
h is throughout highest in Case 1, 
loselyfollowed by Case 3 and least under Case 2. Interestingly, welfare in
reases monotoni
allywith � in ea
h 
ase whi
h shows that the negative e�e
t of risk indexation at the interimstage is over
ompensated by the 
orresponding impa
t on the long-run distribution.Intuitively, a riskless debt return shifts risk from old to young (
f. Bohn (1998)) whileCE debt is essentially risk-neutral whi
h seems favorable a

ording to the previous result.Observe, however, that the asso
iated welfare gain is rather small (� :01% in ea
h 
ase)
ompared to the overall in
rease. Thus, determining the optimal stabilization obje
tiveseems more important than the interest poli
y. With referen
e to the introdu
tion, thisindi
ates that the 
rowding-out e�e
t of debt dominates the risk-sharing e�e
t. Kr�uger& K�ubler (2006) note a similar observation in the 
ontext of So
ial Se
urity.The interest poli
y, however, 
ru
ially a�e
ts the size of stabilization taxes. This isshown in Table 3 whi
h displays absolute taxes j�tj relative to gross in
ome wgt .� = 0 (safe debt) 0.25 0.5 0.75 1 (CE debt)Case 1: .534% .58% .72% 1.00% 1.27%Case 2: 1.65% 1.31% 1.12% .97% .82%Case 3: .532% .22% .08% .38% .68%Table 3: Average absolute stabilization taxes as per
entages of gross in
ome.In Case 1, taxes are least for � = 0 and in
rease monotoni
ally with � while the 
onverseholds in Case 2. This seems intuitive be
ause under safe debt, the level bgt be
omes inde-pendent of produ
tion risk "t while under CE debt this is true of the gross-debt to wageratio bgt =wgt . Moreover, taxes are least in Case 3 
on�rming our earlier suspi
ion thattaxes are small if the inherent stabilizing for
es of the dynami
al system are exploited.Under this stabilization obje
tive, a unique �? 2℄0; 1[ 
an be determined for whi
h taxesbe
ome minimal (� :08% if �? = :5 and even :04% if �? = :4).To provide some intuition for this last result, Figure 3 portrays the lo
ation of the stablemanifolds (19) in the state spa
e along whi
h stabilization takes pla
e in Case 3. Thebold se
tions represent the support of the invariant distribution whi
h is bordered bythe (smallest and largest) �xed points of 	�(�; ") respe
tively ��(�; ") whi
h are also15
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) � = 1 (CE)Figure 3: Stable manifoldsMmin :=M#�"min, Mmed :=M#�"med, Mmax :=M#�"max.depi
ted. Intuitively, if the sho
k "t = " o

urs at time t, taxes �t are large (in abso-lute value) if the previous state (wt�1; bt�1) is far away from the set M#" and small for(wt�1; bt�1) 
lose to M#" . As a 
onsequen
e, taxes are least in Figure 3(b) where thestable manifolds are 
lose together. Ideally, they would 
oin
ide as in the example ofSe
tion 2 and there would be no need for stabilization. Albeit this 
an not be a
hievedin the present 
ase, the interest poli
y 
an be 
hosen as in Figure 3(b) su
h that taxesbe
ome negligible and debt is 'nearly' persistent resembling the bubble in Tirole (1985).6 Con
lusionsThe results of this paper suggest that any sustainable debt poli
y must be a

ompa-nied by a tax poli
y whi
h stabilizes debt against unfavorable random sho
ks. Basedon this insight, a welfare 
riterion was suggested whi
h measures long-run 
onsumerwelfare at the stabilized equilibrium permitting to simultaneously determine an optimalstabilization obje
tive and an optimal interest poli
y. For a situation where the debtlessequilibrium is ineÆ
ient, numeri
al �ndings indi
ate that the long-run optimal poli
yinvolves moderate levels of debt with returns fully indexed to produ
tion risk. Theanalysis also revealed that su
h a poli
y is never in the interest of 
urrent generationswho prefer large and riskless debt. This 
on
i
t might explain why many 
ountries havelarge debt and o�er a riskless return despite both fails to be optimal in the long run.Sin
e unstabilized equilibria were shown to be asymptoti
ally debtless, the �ndings ofthis paper also suggest that persistent asset bubbles as studied in Tirole (1985) 
angeneri
ally not o

ur in sto
hasti
 OLG models even if the trivial equilibrium is ineÆ-
ient. In this regard, several deterministi
 studies (e.g., Kunieda (2008)) have introdu
ed
redit market fri
tions to explain the emergen
e of bubbles in OLG models where thebubbleless equilibrium is dynami
ally eÆ
ient. Su
h imperfe
tions 
ould also explainexisten
e of equilibria with debt in situations where the trivial equilibrium is eÆ
ient.A Mathemati
al AppendixA.1 Proof of Lemma 1.1For t � 0, de�ne taxes � yt := wgt � 
yt � kt+1 � bt and � ot := bt�1r?t + ktrt � 
ot whi
hare feasible in the sense of De�nition 1.1(ii). Using the 
orresponding expressions for 
yt16



and 
ot together with (2) and (3) in the aggregate feasibility 
ondition shows that debtevolves a

ording to equation (4). Sin
e De�nition 1.1(i) is satis�ed by assumption,it remains to show that (bt; st) solves (9). Sin
e st > 0 and there are no short-sale
onstraints, it suÆ
es to show that the �rst-order 
onditions are satis�ed. This followsfrom the intertemporal eÆ
ien
y 
ondition and (10) by dire
t substitution. �A.2 Proof of Lemma 2.1Given w > b � 0, let 
o(k; b; ") := R(k; ")(b+ k). By (P1), the derivative6 satis�es�kH(k;w; b) = �u00(w � b� k)� E � �R(k; ")2v00�
o(k; b; �)���E �hfkk(k; �)�v0�
o(k; b; �)�+ 
o(k; b; �)v00�
o(k; b; �)��i > 0: (A.1)Thus, H(�;w; b) is stri
tly in
reasing and 
an have at most one zero in ℄0; w � b[. Thearguments of Wang (1993) imply existen
e of a zero for b = 0 whi
h is unique by (A.1).Sin
e �kH(k;w; 0) > 0, a zero exists also for b > 0 suÆ
iently small by the impli
itfun
tion theorem (IFT). Letbmax(w) := supnb 2℄0; w[ jH(k;w; b) = 0 for some k 2℄0; w � b[o: (A.2)Note that bmax(w) being the supremum of a non-empty set bounded by w is well-de�nedfor all w > 0 and the map w 7! bmax(w) is 
ontinuous sin
e H is 
ontinuous. We 
laimthat H has a zero for ea
h b 2℄0; bmax(w)[. By 
ontradi
tion, suppose this fails to holdfor some 0 < b0 < bmax(w). As limk!w�b0H(k;w; b0) =1 by (8), H(k;w; b0) > 0 for all0 < k < w � b0. The derivative with respe
t to b satis�es�bH(k;w; b) = �u00(w � b� k)� E � �R(k; �)2v00�
o(k; b; �)�� > 0: (A.3)Let b00 > b0. By (A.3), H(k;w; b00) > H(k;w; b0) > 0 for all 0 < k < w � b00 < w � b0.Hen
e, H(�;w; b00) has no zero for any b00 > b0. But then bmax(w) � b0, a 
ontradi
tion.Finally, note that limk!0 
o(k; b; ") � limk!0 bR(k; ") =1 for ea
h " 2 E whi
h implieslimk!0H(k;w; b) = u0(w � b)� limk!0� 1b+ kE � �
o(k; b; �)v0�
o(k; b; �)��� = �1 (A.4)if (P3) holds. In this 
ase, a zero exists for all b < w, i.e., bmax(w) = w. �A.3 Proof of Lemma 2.2Using (A.1) and (A.3), the partial derivatives of H de�ned in (11) satisfy0 < ��wH(k;w; b) = �u00(w � b� k) < �bH(k;w; b) � �kH(k;w; b)where the last inequality holds due to (P1). Thus, by the impli
it fun
tion theorem,0 < �wK(w; b) = ��wH(k;w; b)�kH(k;w; b) < ��bK(w; b) = �bH(k;w; b)�kH(k;w; b) � 1: �6 Re
all that inter
hanging di�erentiation with the expe
tations operator E� ��� is legitimate wheneverthe integrand is 
ontinuously di�erentiable and integration is over a 
ompa
t set.17



A.4 Proof of Lemma 2.3Let " 2 E be �xed. For brevity, we omit the subs
ript " su
h that �w0 > 0 denotes thetrivial steady state. In addition, de�ne �k0 := K( �w0; 0) and w :=W(0; ") � 0.(i) Let " 2 Es. We determine unique values �k > 0 and ( �w;�b) 2 V+ solving k = K(w; b),w = W(k; "), and R(k; ") = 1. Sin
e limk!0R(k; ") = 1 and R(�k0; ") < 1, the last
ondition has a solution �k 2℄0; �k0[ whi
h is unique by stri
t 
on
avity of f(�; ") anddetermines �w := W(�k; ") < �w0. Finally, we determine the value �b as a solution to�w =W(K( �w; b); "). By Lemma 2.2, there 
an be at most one su
h solution. Using (13),uniqueness and stability of �w0 imply �0(w; ") > w for all w 2℄w; �w0[. Hen
e, �w < �w0implies limb!0W(K( �w; b); ") = W(K( �w; 0); ") > �w. Sin
e limb!bmax( �w)K( �w; b) = 0,limb!bmax( �w)W(K( �w; b); ") = w < �w proving that a unique non-trivial steady stateexists. The Ja
obian at the steady state 
omputes�J := D�( �w;�b; ") = � ��kfkk(�k; ")�wK( �w;�b) ��kfkk(�k; ")�bK( �w;�b)bfkk(�k; ")�wK( �w;�b) 1 + bfkk(�k; ")�bK( �w;�b) � :By Lemma 2.2, the determinant and tra
e satisfy det �J = ��kfkk(�k; ")�wK( �w;�b) > 0and tr �J = 1 + det �J + bfkk(�k; ")�bK( �w;�b) > 1 + det �J . The latter inequality implies0 � (1 � tr �J=2)2 = 1 � tr �J + (tr �J)2=4 < � det �J + (tr �J)2=4 ensuring real and distin
tEigenvalues of �J . By Galor (2007, p.88), these properties imply saddle-path stability.(ii) Let " 2 Ex. By 
ontradi
tion, suppose there exists ( ~w;~b) 2 V+ su
h that ( ~wt;~bt) :=�t( ~w;~b; ") 2 V for all t � 0. Use (13) to de�ne ŵt := �t0( ~w; "), t � 0. Lemma 2.2implies ŵt > ~wt � bmax( ~wt) > ~bt > 0 for all t. Sin
e limt!1 ŵt = �w0 by Assumption 2.1,
ontinuity of R(�; ") and K imply existen
e of T > 0 su
h that R(K(ŵt; 0); ") > 1 forall t � T implying ~bt+1=~bt = R(K( ~wt;~bt); ") > R(K(ŵt; 0); ") > 1. Hen
e, limt!1 ~bt =:B exists where ~bT < B � 1. Suppose B < 1. Then, limt!1R(K( ~wt;~bt); ") =1, 
ontradi
ting limt!1R(K( ~wt;~bt); ") � limt!1R(K(ŵt;~bt); ") = R(K( �w0; B); ") >R(K( �w0; 0); ") > 1. Thus, B =1 whi
h 
ontradi
ts ~bt < ŵt for all t. �A.5 Properties of the Stable ManifoldThis se
tion establishes properties of the stable manifold M#" in (19). Espe
ially the�rst part draws heavily on results by Tirole (1985). A somewhat related analysis may befound in Galor (1992) from whi
h several ideas are used. For a de�nition of manifolds,et
. the reader is referred to Villana

i et al. (2002). While the formal arguments adoptthe setup and notation of Se
tion 3, neither the multipli
ative stru
ture of f nor theadditional assumptions (P2){(P6) are used. Therefore, Theorem A.1 also applies for thes
enario of Se
tion 2 under the hypotheses of Lemma 2.3 where the stable manifoldM" isde�ned as in (14) and the state spa
e is the open set V+ = f(w; b) 2 R2++ jb < bmax(w)g.Theorem A.1 Given #, let the hypotheses of Lemma 3.3 be satis�ed. In addition,suppose (P9) lim
!1 u0(
) = 0. Then, for ea
h " 2 E#s the following holds:(i) The set M#" de�ned in (19) is the graph of a map  #" : R++ �! R++ .(ii) The map  #" is C1, stri
tly in
reasing, and satis�es limw!0  #" (w) = 0.(iii) The derivative satis�es  #" 0(w) � q(w) := ��wK#(w; #" (w))�bK#(w; #" (w)) < 1 for all w > 0.18



Proof: Fix # and " 2 E#s and suppress these parameters writing � = �#(�; "),M =M#" ,et
. Thus, ( �w0; 0) and ( �w;�b) denote the unique trivial and non-trivial steady state of �,respe
tively. The following arguments employ Lemmata 3 to 11 in Tirole (1985).7 Notethat our setup 
orresponds to his no-rent 
ase where R = 0 and a0 = b0.(i) For w0 > 0, let B := fb j�n(w0; b) 2 V 8n � 1 g, B 0 := fb 2 B j limn!1�n(w0; b) =( �w0; 0)g, B+ := fb 2 B j limn!1�n(w0; b) = ( �w;�b)g. By Tirole (1985), B is a 
onvexset (Lemma 6) and right-
losed (Lemma 10). Combined with his Lemma 4 implies thatB =℄0; b̂0℄ for some b̂0 > 0. Moreover, B 0 is right open (Lemma 9), B+ is at most single-valued (Lemma 5) and B = B 0 [ B+ (Lemma 3). Hen
e, B+ = fb̂0g. Sin
e w0 wasarbitrary, this implies existen
e of a map  : R++ �! R++ su
h that M = graph( ).(ii) Tirole's Lemma 11 implies that  is stri
tly in
reasing. To establish smoothness of , let w :=W(0; ") � 0, �w1 := limk!1W(k; ") � 1 and G :=℄w; �w1[�R++ .The remainder draws on the following auxiliary result.Lemma A.1 Under (P9), the map � de�ned in (17a,b) is a C1-di�eomorphism betweenthe sets V+ and G .Proof of Lemma A.1.Given some (w0; b0) 2 G we determine a unique (w; b) 2 V+ su
h that �(w; b) =(w0; b0). The 
ondition w0 = �w(w; b) determines a unique k0 = K(w; b) su
h thatw0 = W(k0; "). The value z0 = Z(w; b) then follows from the �rst order 
onditionsE � [z0#(�)v0(b0#(�)=#(")+ k0R(k0; �))℄ = E � [R(k0; �)v0(b0#(�)=#(") + k0R(k0; �))℄ from whi
hb = b0=(z0#(")) 
an be inferred. Using (P9), w is the unique solution to u0(w� b� k0) =E � [z0#(�)v0(b0#(�)=#(") + k0R(k0; �))℄. Hen
e, ��1 is a well-de�ned fun
tion. � is 
learlyC1 by the IFT. To see that ��1 is C1, it is straightforward to show from (17a,b) thatthe Ja
obian D�(w; b) satis�es detD�(w; b) > 0 for ea
h (w; b) 2 V+ . By the inversefun
tion theorem, D��1(w0; b0) = [D�(w; b)℄�1 whi
h is a 
ontinuous fun
tion. �We �rst show thatM is a one-dimensional C1-manifold. By the Stable Manifold Theo-rem (
f. Nite
ki (1971)), the lo
ally stable setMlo
 := f(w; b) 2 V+ j�n(w; b) 2 U 8n �1 ^ limn!1�n(w; b) = ( �w;�b)g is a one-dimensional manifold as smooth as �. HereU � V+ \ G is an open neighborhood of ( �w;�b). By Nite
ki (1971, p.89) or Galor (1992,De�nition 4, p.1371), the globally stable manifold obtains asM = [n�0��n(Mlo
). Ex-ploiting Lemma A.1,M inherits the smoothness ofMlo
 and is thus a one-dimensionalC1-manifold. The same arguments are used in Galor (1992, Corollary 3, p.1371).We show that  is 
ontinuous. Sin
e M is C1, there exists an open neighborhoodN � M of �x := ( �w;�b), an open subset U � R and a C1-di�eomorphism ' : N �! U .W.l.o.g., suppose U is an interval and N � Mlo
 (otherwise, 
hoose an open interval~U � U 
ontaining '(�x) small enough su
h that '�1( ~U) �Mlo
 and swit
h to ~' := 'j ~Nwhere ~N := '�1( ~U)). By Theorem I.4 in Dugundji (1970, p.108), N = '�1(U) being theimage of an open and 
onne
ted set under a homeomorphism is an open and 
onne
tedsubset ofM 
ontaining �x. Let x = (w; b) 2 M be arbitrary. By (19), limn!1�n(x) = �ximplying �n(x) 2 N for n large enough, i.e., x 2 ��n(N ). Thus, sin
e x was arbitraryand N � Mlo
 we obtain M = [n�0��n(N ). Continuity of ��n and Theorem I.4 inDugundji (1970) imply that ea
h ��n(N ) is a 
onne
ted set 
ontaining �x. By TheoremI.5 in Dugundji (1970, p.108), M is a 
onne
ted set implying 
ontinuity of  .We show that  is C1. Let w0 > 0 be arbitrary. Sin
eM is C1, there exist an open neigh-borhood V0 � M of x0 := (w0;  (w0)), an open set U0 � R and a C1-di�eomorphism7 Previous versions of this paper 
ontained alternative proofs whi
h are available upon request.19



� = (�1;�2) : U0 �! V0. De�ne F := (idR++;  ) : R++ �! M, w 7! (w;  (w)) whi
his a homeomorphism with inverse F�1 equal to the proje
tion onto the �rst 
omponentwhi
h is C1. Thus, �1 = F�1 Æ � : U0 �! W0 := F�1(V0) is a C1-homeomorphism(sin
e both F�1 and � are, 
f. Proposition 12 in Villana

i et al.(2002)). The strategyis to show that �1 is even a C1-di�eomorphism, i.e., ��11 is C1. Suppose �01(~u) = 0 forsome ~u 2 U0. Let ~w := �1(~u). Sin
e �2 =  Æ �1 and  (w)� ( ~w)w� ~w takes values in the unitinterval for all w > 08, �02(~u) = �01(~u) limw! ~w( (w) �  ( ~w))=(w � ~w) = 0. FollowingVillana

i et al.(2002, p.39), let 	 be a C1-extension of ��1 to an open set in R2 
on-taining V0, i.e., 	jV0 = ��1. Then, (	 Æ�)0(~u) = �1	(�(~u))�01(~u)+ �2	(�(~u))�02(~u) = 0.On the other hand, 	 Æ � = idU0 implying (	 Æ �)0(~u) = 1 whi
h is a 
ontradi
tion.Con
lude that �01(u) 6= 0 for all u 2 U0. Then, by the inverse fun
tion theorem(��11 )0(w) = 1=�01(��11 (w)) for all w 2 W0. Sin
e �1 is C1 and ��11 
ontinuous, (��11 )0 isa 
ontinuous fun
tion. Thus, �1 is a C1-di�eomorphism whi
h implies that F = � Æ��11restri
ted toW0 is a C1 di�eomorphism. Thus,  is C1 onW0 and, in parti
ular, at w0.Observing thatM� V+ implies 0 <  (w) < w for all w > 0 
ompletes the proof of (ii).(iii) Suppose  0( ~w) > q( ~w) for ~w > 0. Then,  0( ~w) > ��wZ( ~w;  ( ~w))=�bZ( ~w;  ( ~w)) by(A.15). By 
ontinuity, ~�w(w) := W(K(w;  (w)); ") is lo
ally stri
tly de
reasing whilew 7! Z(w;  (w)) and, using (ii) ~�b(w) :=  (w)Z(w;  (w))#(") are stri
tly in
reasing,respe
tively around ~w. Let ŵ > ~w be 
lose to ~w. Set b̂ :=  (ŵ) > ~b :=  ( ~w). Then,(ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := ~�w(ŵ) = �w(ŵ; b̂) < �w( ~w;~b) = ~�w( ~w) =: ~w1 whileb̂1 := ~�b(ŵ) = �b(ŵ; b̂) > �b( ~w;~b) = ~�b( ~w) =: ~b1. But M being self-supporting under� implies ( ~w1;~b1) 2 M and (ŵ1; b̂1) 2 M. Therefore, ~b1 =  ( ~w1) and b̂1 =  (ŵ1) whi
h
ontradi
ts that  is stri
tly in
reasing, proving the 
laim. �A.6 Proof of Lemma 2.4Again we show the 
laim for the more general s
enario of Se
tion 3 under the hypothesesof Lemma 3.3. The 
laim of Lemma 2.4 follows from the prefa
e in Se
tion A.5.Let # be given and " 2 E#s be �xed. Dependen
e on these parameters will be suppressed.(i) Given w0 > 0, let b̂0 :=  (w0) and de�ne the sets B , B 0 and B+ as in the proof ofTheorem A.1(i). As shown there, B 0 =℄0; b̂0[ whi
h proves (i).(ii) Given w0 > 0, let ~b0 >  (w0) =: b̂0 and suppose by way of 
ontradi
tion that( ~wt;~bt) := �t(w0;~b0) 2 V for all t � 0. Note that (ŵt; b̂t) := �t(w0; b̂0) 2 M forall t � 0 and limt!1( ~wt;~bt) = ( �w;�b). By Lemma 3.2 and an indu
tion argument,ŵt > ~wt > ~bt > b̂t > 0 for all t > 0. De�ne �t := ~bt=b̂t to observe that �0 > 1and �t+1 = �tZ( ~wt;~bt)=Z(ŵt; b̂t) > �t for all t � 0. Hen
e, limt!1 �t = �� > 1 andlimt!1 ~bt = ���b =: ~b1 > �b exist. Sin
e ~wt remains bounded, ( ~wt;~bt) 2 V for all t only if~b1 <1 whi
h requires limt!1Z( ~wt;~bt) = 1=#("). But, by the previous properties andLemma 3.2, limt!1Z( ~wt;~bt) � limt!1Z(ŵt;~bt) = Z( �w;~b1) > Z( �w;�b) = 1=#("). �A.7 Proof of Lemma 2.5For t � 0, let �t := bt=wt. Using �w, �b gives �t+1 = �(�t) := �1�� [ 
1+
 � �t℄�1�t, t � 0.The map � has �� as its unique non-trivial �xed point whi
h is unstable. Moreover,8 This follows from monotoni
ity of  and a slight modi�
ation of the 
ontradi
tion argument in theproof of (iii) where  0( ~w) needs to be repla
ed by the di�eren
e quotient �b�w :=  (w)� ( ~w)w� ~w .20



�0 < �� implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) > 
1+
 for �nite t0. Hen
e,b0 = ��w0 is ne
essary for (w0; b0) 2 M". SuÆ
ien
y follows from Theorem A.1(i). �A.8 Proof of Lemma 3.1Given (w; b) 2 V, let �k := w � b > 0. The argument 
o(z; k; b; ") := b z #(") + kR(k; ")will be suppressed when 
onvenient. Suppose b = 0. Then, H#1 is independent of z and# and H#1 (z; k;w; 0) = H(k;w; 0) for all k 2℄0; �k[ with H de�ned as in (11). Hen
e,existen
e of k0 2℄0; �k[ to satisfy H#1 (z; k0;w; 0) = 0 is due to Lemma 2.1. Using k0
ondition H#2 (z; k0;w; 0) = 0 
an be solved expli
itly for z > 0 proving the 
ase b = 0.Suppose b > 0. The strategy is to use (16b) to eliminate z redu
ing (16a) to a one-dimensional problem. Let k̂ 2℄0; �k[ be arbitrary. We prove existen
e of a unique ẑ > 0to satisfy H#2 (ẑ; k̂;w; b) = 0. Sin
e limz!1 
o(z; k; b; ") =1 for ea
h " 2 E , (P2) implieslimz!1 z #(") v0(�) = b�1 limz!1 
o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H#2 (z; k̂;w; b) < 0 for z suÆ
iently large. Sin
eH#2 (0; k̂;w; b) = u0(w � b � k̂) > 0 this proves existen
e of ẑ. To show uniqueness, weprove that z 7! H#2 (z; k;w; b) is stri
tly de
reasing for all k 2℄0; �k[. By (P1),�zH#2 (z; k;w; b) = �E � �#(�) v0�
o(z; k; b; �)�+ b z #(�)2 v00�
o(z; k; b; �)�� (A.5)< �E � �#(�)�v0�
o(z; k; b; �)�+ 
o(z; k; b; �)v00�
o(z; k; b; �)��� � 0:These results ensure the existen
e of a map Ẑ(�;w; b) :℄0; �k[�! R++ whi
h determinesẑ for ea
h k̂ 2℄0; �k[ su
h that H#2 (ẑ; k̂;w; b) = 0. By equation (3) and (P3),�kH#2 (z; k;w; b) = �u00(w � b� k)� �1 + Eg0(k)�E � �R(k; �) z #(�)v00(�)� > 0: (A.6)Thus, by the impli
it fun
tion theorem, Ẑ(�;w; b) is C1 and stri
tly in
reasing sin
e forea
h k 2℄0; �k[, �kẐ(k;w; b) = ��kH#2 (ẑ; k;w; b)=�zH#2 (ẑ; k;w; b) > 0, ẑ = Ẑ(k;w; b).As a se
ond step, let Ĥ1(�;w; b) :℄0; �k[�! R, Ĥ1(k;w; b) := H#1 (Ẑ(k;w; b); k;w; b). Wedetermine a unique k0 2℄0; �k[ that solves Ĥ1(k0;w; b) = 0. Sin
e v0 is stri
tly de
reasing,R(k; ")v0�b Ẑ(k;w; b)#(")+kR(k; ")� < R(k; ")v0�kR(k; ")� for all " 2 E and, therefore,Ĥ1(k;w; b) > u0(w � b� k)� E � �R(k; �)v0�kR(k; �)�� for all k 2℄0; �k[. Thus, by (8)limk!�k Ĥ1(k;w; b) � limk!�k�u0(w � b� k)� E � �R(k; �)v0�kR(k; �)��� =1:Let (kn)n�1 be a sequen
e in ℄0; w � b[ with limn!1 kn = 0. Sin
e k 7! Ẑ(k;w; b) and,by (P3), k 7! kR(k; ") are in
reasing, 
n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is boundedfrom above for all " 2 E whi
h implies limn!1R(kn; ") v0�
n(")� =1. This being truefor all " 2 E gives limn!1 E � [R(kn; �)v0(
n(�))℄ = 1 and limn!1 Ĥ1(kn;w; b) = �1.Sin
e (kn)n�1 was arbitrary, limk!0 Ĥ1(k;w; b) = �1. Combining both limits yieldsexisten
e of a zero of Ĥ1(�;w; b). Finally, using (P2) the partial derivatives satisfy�kH#1 (z; k;w; b) = �u00(�)� E � �fkk(k; �) v0(�) + (1 + Eg0(k))R(k; �)2 v00(�)� > 0(A.7)�zH#1 (z; k;w; b) = �E � �R(k; �) b #(�) v00(�)� > 0: (A.8)Combining (A.7) and (A.8) with the monotoni
ity of Ẑ(�;w; b) yields �kĤ1(k;w; b) =�zH#1 (z; k;w; b)�kẐ(k;w; b)+ �kH#1 (z; k;w; b) > 0 where z = Ẑ(k;w; b). Hen
e, k0 is theunique zero of Ĥ1(�;w; b) on ℄0; �k[. Setting z = Ẑ(k0;w; b) 
ompletes the proof. �21



A.9 Proof of Lemma 3.2As in the previous proof, the argument 
o(z; k; b; ") de�ned as before is omitted when
onvenient. We prefa
e the proof by the following te
hni
al result.Lemma A.2 For the s
enario of Se
tion 3, let (P1){(P4) hold and # be 
ontinuous.Then, for all (w; b) 2 V, z := Z#(w; b) and k := K#(w; b) the following holds:(a) kE � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.(b) E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄.Proof of Lemma A.2.(a) By (16a,b), 0 = H#1 (z; k;w; b) � H#2 (z; k;w; b) = E � [(R(k; �)� z#(�))v0(�)℄. Usingthat v0(
) = ��1
jv00(
)j for all 
 = bz#(") + kR(k; ") > 0 by (P4) yields (a).(b) We have E � [(R(k; �)� z#(�))2jv00(�)j℄ � 0 whi
h 
an equivalently be written asE � [R(k; �)(R(k; �)� z#(�))jv00(�)j℄ � E � [z#(�)(R(k; �)� z#(�))jv00(�)j℄. Sin
e, by (a),the two sides are either both zero or have opposite signs, the 
laim follows. 2Let (w; b) 2 V be arbitrary and set z := Z#(w; b) and k := K#(w; b) noting that z > 0and 0 < k < w � b. Write H# = (H#1 ; H#2 ) and � = (z; k). The signs of the derivativesin (A.5), (A.6), (A.7), and (A.8) imply that the Ja
obian matrixD�H#(z; k;w; b) = � �zH#1 (z; k;w; b) �kH#1 (z; k;w; b)�zH#2 (z; k;w; b) �kH#2 (z; k;w; b) � :has determinant detD�H#(z; k;w; b) > 0 and is hen
e invertible. The inverse 
omputes[D�H#(z; k;w; b)℄�1 = 1detD�H#(z; k;w; b) � �kH#2 (z; k;w; b) ��kH#1 (z; k;w; b)��zH#2 (z; k;w; b) �zH#1 (z; k;w; b) � :(A.9)The partial derivatives with respe
t to w and b take the form�wH#1 (z; k;w; b) = �wH#2 (z; k;w; b) = u00(w � b� k) < 0 (A.10)�bH#1 (z; k;w; b) = �u00(w � b� k)� E � �R(k; �) z #(�)v00���� > 0 (A.11)�bH#2 (z; k;w; b) = �u00(w � b� k)� E � �(z #(�))2v00���� > 0: (A.12)By the impli
it fun
tion theorem, omitting the arguments for notational 
onvenien
e�wZ#(w; b) = ��wH#1 [�kH#2 � �kH#1 ℄detD�H# ; �bZ#(w; b) = �kH#1 �bH#2 � �kH#2 �bH#1detD�H#�wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# ; �bK#(w; b) = �zH#2 �bH#1 � �zH#1 �bH#2detD�H# :(i) As detD�H# = �zH#1 �kH#2 ��kH#1 �zH#2 > 0, �zH#2 < 0 � �zH#1 by (A.5) and (A.8),and 0 < ��wH#1 < �bH#i , i = 1; 2, it follows that0 < �wK#(w; b) = ��wH#1 [�zH#1 � �zH#2 ℄detD�H# < �zH#1 �bH#2 � �zH#2 �bH#1detD�H# = ��bK#(w; b):22



(ii) If, in addition, (P4) holds, straightforward 
al
ulations and Lemma A.2 imply�kH#1 � �kH#2 = E � [(R(k; �)� z#(�))R(k; �)jv00(�)j℄ (1 + Eg0(k))� E � [fkk(k; �)v0(�)℄ > 0 (A.13)�bH#1 � �bH#2 = E � [(R(k; �)� z#(�))z#(�)jv00(�)j℄ � 0: (A.14)By (A.10) and (A.13), �wZ#(w; b) < 0. By (A.13) and (A.14), �bZ#(w; b) > 0. Finally,�wK#(w; b)�bZ#(w; b)� �bK#(w; b)�wZ#(w; b) = ��wH#1detD�H# (�bH#2 � �bH#1 ) � 0 (A.15)whi
h follows from dire
t 
al
ulations and shows that ��wZ#(w;b)�bZ#(w;b) � �wK#(w;b)��bK#(w;b) < 1. �Remark A.1 Sin
e Z# and K# are well-de�ned and the matrix D�H#(z; k;w; b) is non-singular also at any boundary point (w; 0) 2 V, the impli
it fun
tion theorem impliesthat the mappings Z# and K# 
an lo
ally be extended to an open neighborhood around(w; 0). Hen
e, their derivatives are well-de�ned and 
ontinuous also on the boundary ofV where b = 0 and Lemma 3.2 and also Lemma 2.2 indeed hold on the entire set V.A.10 Proof of Lemma 3.3(i) Let # be given. For notational 
onvenien
e, the sho
k " 2 E will subsequently besuppressed. With this 
onvention, denote the trivial steady state as �w0 > 0 and letwk :=W(0; ") � 0. By the monotoni
ity of K# (
f. Lemma 3.2) andW(�; "), any steadystate ( �w;�b) 2 V+ satis�es wk < �w < �w0. Further results are 
olle
ted in the next lemma.Lemma A.3 Assumption 3.1 and the hypotheses of Lemma 3.3 imply the following:(a) w >W(K#(w; 0); ") for all w 2℄wk; �w0[.(b) W(k; ") � kR(k; ") for all 0 < k � �k0 := K#( �w0; 0).(
) For any sequen
e (wn; bn)n�0 in V, limn!1(wn�bn) = 0 implies limn!1Z#(wn; bn) =1.Proof of Lemma A.3(a) By uniqueness of �w0, w 6=W(K#(w; 0); ") 8w 2℄wk; �w0[. Stability implies the 
laim.(b) By (2) and (3), the 
laim is equivalent to Eg(k) � 12 for all k 2℄0; �k0℄. By Assumption3.1, Eg(�k0) � 12 . The derivative 
omputes E 0g(k) = g0(k)=g(k)[1�Eg(k)�jEg0(k)j℄ and isnon-negative by (P6) implying that Eg is non-de
reasing from whi
h the 
laim follows.(
) Given (w; b) 2 V, let z := Z#(w; b), k := K#(w; b), and 
o(z; k; b; ") as in the previousproofs. By (16a,b), E � [R(k; �)v0(
o(z; k; b; �))℄ = E � [z#(�) v0(
o(z; k; b; �))℄. This requiresz#(~") � R(k; ~") = ~"g0(k) for some ~" 2 E . Setting � := min"f"=#(") j " 2 Eg > 0 (whi
his well-de�ned by 
ontinuity of # and 
ompa
tness of E) gives Z#(w; b) � �g0(K#(w; b))for all (w; b) 2 V. Sin
e limn!1K(wn; bn) = 0 for any sequen
e (wn; bn)n�0 in V withlimn!1(wn � bn) = 0, this implies limn!1Z#(wn; bn) � �g0(K#(wn; bn)) =1. 2(i) Existen
e. De�ne Hw : V �! R, Hw(w; b) := w �W(K#(w; b); ") and the so-
alledw-iso
line H w := f(w; b) 2 V jHw(w; b) = 0; w 2℄wk; �w0[g. Any interior steady statesatis�es ( �w;�b) 2 H w . Given any ŵ 2℄wk; �w0[ we 
laim there exists a unique b̂ 2℄0; ŵ[23



su
h that Hw(ŵ; b̂) = 0. By Lemma A.3(a), limb!0Hw(ŵ; b) = ŵ �W(K#(ŵ; 0); ") < 0and limb!ŵK#(ŵ; b) = 0 gives limb!ŵHw(ŵ; b) = ŵ � wk > 0 implying existen
e of b̂.Uniqueness follows from Lemma 3.2(i) due to whi
h Hw(w; �) is stri
tly in
reasing.This result permits to de�ne a map hw :℄wk; �w0[�! R++ su
h that H w = graph(hw).By the impli
it fun
tion theorem, hw is C1 with derivativeh0w(w) = ��wHw(w; b)�bHw(w; b) = �1 + "kg00(k)�wK#(w; b)"kg00(k)�bK#(w; b) ; b = hw(w); k = K#(w; b): (A.16)Finally, sin
e Hw( �w0; 0) = 0 and limw&wk Hw(w;wk) = 0, 
ontinuity of Hw implies theboundary behavior limw! �w0 hw(w) = 0 and limw&wk hw(w) = wk � 0.Analogously, let Hb : V �! R, Hb(w; b) := Z#(w; b)� 1=#("). For b = 0, " 2 E#s implieslimw! �w0Hb(w; 0) = Z#( �w0; 0)� 1=#(") < 0. By Lemma A.3(
), limw!0Hb(w; 0) = 1.As w 7! Z#(w; 0) is stri
tly de
reasing by Lemma 3.2(ii), a unique wz 2℄0; �w0[ satisfyingHb(wz; 0) = 0 exists. De�ne the b-iso
line H b := f(w; b) 2 V jHb(w; b) = 0; w 2℄wz; �w0[g.Any interior steady state satis�es ( �w;�b) 2 H b . Given ŵ 2℄wz; �w0[ we again 
laim thereexists a unique b̂ 2℄0; ŵ[ su
h that Hb(ŵ; b̂) = 0. By Lemma 3.2(ii), limb!0Hb(ŵ; b) =Z#(ŵ; 0)�1=#(") < Z#(wz; 0)�1=#(") = 0. Lemma A.3(
) yields limb!ŵHb(ŵ; b) =1implying existen
e of b̂. Uniqueness follows from monotoni
ity of Hb(w; �) due to Lemma3.2(ii). Analogously, this result permits to de�ne a map hb :℄wz; �w0[�! R++ su
h thatH b = graph(hb). By the impli
it fun
tion theorem, hb is C1 with derivativeh0b(w) = ��wHb(w; b)�bHb(w; b) = ��wZ(w; b)�bZ(w; b) > 0; b = hb(w): (A.17)Re
all that Hb( �w0; 0) < 0. By Lemma A.3(
), there exists a unique value �b0 2℄0; �w0[satisfying Hb( �w0;�b0) = 0. Hen
e, Hb(wz; 0) = Hb( �w0;�b0) = 0. By 
ontinuity of Hb, thisimplies the boundary behavior limw! �w0 hb(w) = �b0 > 0 and limw!wz hb(w) = 0.Set w := maxfwk; wzg > 0 and de�ne � :℄w; �w0[�! R, �(w) := hw(w)� hb(w). Sin
e( �w;�b) 2 V is an interior steady state i� ( �w;�b) 2 H w \ H b , steady state values �w arezeros of � while �b = hw( �w). By the boundary behavior derived above, limw! �w0 �(w) =��b0 < 0. Let wk > wz. Then, limw!w�(w) = wk � hb(wk) > 0 sin
e hb(w) < wfor w > wz. If wk = wz, then limw!w�(w) = wk > 0. Finally, let wz > wk. Thenlimw!w�(w) = hw(wz) > 0. In either 
ase, limw!w�(w) > 0 and a zero exists.Uniqueness. Let ( �w;�b) � 0 be an interior steady state. We show that �0( �w) < 0implying uniqueness by 
ontinuity of �0. Let �k := K#( �w;�b) < �k0 and �z := Z#( �w;�b) > 0.By (A.16) and (A.17),�0( �w) = ��bZ#( �w;�b) + "�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�"�kg00(�k)�bK#( �w;�b)�bZ#( �w;�b) :(A.18)Sin
e the denominator is stri
tly positive by Lemma 3.2, it suÆ
es to show that thenumerator is stri
tly positive as well. Using (A.15) and the de�nition of �bZ#( �w;�b)from Lemma 3.2 and re
alling that detD�H# > 0, this is equivalent to showing thatM := �kH1�bH2 � �kH2�bH1 � "�kg00(�k)�wH1(�bH2 � �bH1) > 0 (A.19)where the respe
tive arguments have been omitted for 
onvenien
e. In what follows,let M1 := E � [�z#(�) jv0(�)j℄ = E � [R(�k; �) jv0(�)j℄ > 0, M2 := E � [R(�k; �)2 jv00(�)j℄ > 0,24



M3 := E � [(�z#(�))2 jv00(�)j℄ > 0 and M4 := E � [R(�k; �) �z#(�) jv00(�)j℄ > 0. Using thefun
tional forms of the derivatives from (A.5){(A.8), and (A.10){(A.12), tedious butstraightforward 
al
ulations reveal that M 
an be written as M = A+B + C whereA := ju00(�)jh�g00(�k)g0(�k)M1 +m(M3 �M4) + (1 + Eg0(�k))(M2 �M4)im := 1 + "�kg00(�k); B := �g00(�k)g0(�k)M1M3; C := (1 + Eg0(�k))hM2M3 � �M4�2i:By Lemma A.2(b), M2 � M4 and M3 � M4 whi
h implies C � 0 by (P3). Obviously,B > 0. Supposem � 0. Then, A > 0 by (P3) whi
h impliesM > 0. Conversely, supposem < 0. Then �mM4 > 0. By (P5), M1 = u0( �w � �b � �k) � ( �w � �b � �k)ju00( �w � �b � �k)jwhi
h implies B � �g00(�k)g0(�k) ( �w � �b � �k)ju00(�)jM3. By (P3), (1 + Eg0(�k))(M2 �M4) � 0.Finally M1 = ��1(�kM2 + �bM3) by (P4) implying M1 > �bM3 by (P1). Combining thefour inequalities derived gives �nally the resultA+B > ju00(�)jM3h(1 + Eg0(�k))� g00(�k)g0(�k) ( �w � "�kg0(�k))i:Both terms in bra
kets are non-negative due to (P3) and Lemma A.3(b), respe
tively.Hen
e, M > 0 also in this 
ase, proving uniqueness of the steady state.Stability. The argument is similar to the one in Lemma 2.3. Computing the determinantand tra
e of the Ja
obian �J at the steady state gives, using Lemma 3.2 and (A.15)det �J = �"�kg00(�k)h�wK#( �w;�b)+ �b�z��wK#( �w;�b)�bZ#( �w;�b)��bK#( �w;�b)�wZ#( �w;�b)�i > 0tr �J = 1+det �J+�b�z h�bZ#( �w;�b)+"�kg00(�k) ��wK#( �w;�b)�bZ#( �w;�b)� �bK#( �w;�b)�wZ#( �w;�b)�i:As shown before, the numerator in (A.18) is positive whi
h implies tr �J > 1+det �J . Thesame reasoning as in the proof of Lemma 2.3 gives the 
laim.(ii) Repla
ing R(K(w; b); ") by #(")Z#(w; b) and using Lemma 3.2 the proof is identi
alto the one of Lemma 2.3(ii). �A.11 Proof of Lemma 3.4Let #(") � �# > 0. We 
laim that for all w > 0 and ", "0 2 E �#s : " < "0 )  �#" (w) <  �#"0(w).By 
ontradi
tion, suppose " < "0 but b0 :=  �#" (w) �  �#"0(w) =: b00 for some w > 0.By Lemma 3.2 and (17a,b), it is straightforward to show that the sequen
es fwt; btgt�0and fw0t; b0tgt�0 de�ned as (wt; bt) := ��#(wt�1; bt�1; ") and (w0t; b0t) := ��#(w0t�1; b0t�1; "0)(where w0 = w00 = w) satisfy wt < w0t and bt � b0t for all t > 0. Thus, the steady states( �w �#" ;�b�#" ) = limt!1(wt; bt) and ( �w �#"0;�b�#"0) = limt!1(w0t; b0t) satisfy �w �#" � �w �#"0 and �b�#" � �b�#"0.By Lemma 3.2(ii), however, the steady state property Z �#( �w �#" ;�b�#" ) = Z �#( �w �#"0;�b�#"0) = 1�# 
anonly be satis�ed if ( �w �#" ;�b�#" ) = ( �w �#"0;�b�#"0) implying K �#( �w �#" ;�b�#" ) = K �#( �w �#"0;�b�#"0) =: �k. But this
ontradi
ts �w �#" = W(�k; ") < W(�k; "0) = �w �#"0, proving the 
laim. Thus, M�#" TM�#"0 = ;.To see that the restri
tion from Assumption 2.2 is satis�ed, suppose w.l.o.g. that E �#s = E .Then, by the previous result b�# 
rit(w) = min"2Ef �#" (w)g =  �#"min(w) for all w > 0. Usingthis, # � �#, and the properties of �# and  �#"min respe
tivelyM�#"min, b � b�# 
rit(w) implies��#b (w; b; ") = ��#b (w; b; "min) � ��#b (w; b�# 
rit(w); "min) =  �#"min(��#w(w; b�# 
rit(w); "min)) � �#"min(��#w(w; b; "min)) �  �#"min(��#w(w; b; ")) = b�# 
rit(��#w(w; b; ")) for all " 2 E . �25



A.12 Proof of Lemma 4.1Given (w; b) 2 VA we determine a unique � < w � wA su
h that H(� ;w; b) = 0 whereH(� ;w; b) := b� � � �A (w � �): (A.20)Let � 0 := w�wA � w. As (w; b) 2 VA and dA = limw!wA (w� �A (w)) from Assumption4.1, lim�!� 0 H(� ;w; b) = b � w + dA < 0. Furthermore, lim�!�1H(� ;w; b) = b +lim�!1 � [1 � �A (w + �)=� ℄. If lim�!1 �A (w + �) < 1, then lim�!�1H(� ;w; b) = 1.If lim�!1 �A (w + �) =1, then lim�!1[1� �A (w + �)=� ℄ = 1� lim�!1 �0A (w + �) > 0by hypothesis and l'Hopital's rule. Again, lim�!�1H(� ;w; b) = 1, whi
h impliesexisten
e. Uniqueness follows from ��H(� ;w; b) = �1+�0A (w� �) < 0 for all � < w. �A.13 Proof of Lemma 4.2Using (A.20), the impli
it fun
tion theorem implies that for all (w; b) 2 VA�wTA (w; b) = � �0A (w � �)1� �0A (w � �) = 1� �bTA (w; b) < 0; � = TA (w; b): (A.21)(i) Let w 2 W A and " 2 E be arbitrary. Using (A.21) the derivative of (21) 
omputes�w��(w; ") = (1� �wTA (w; b))h�w�#w + �0A (w)�b�#w � �w�#b � �0A (w)�b�#b i: (A.22)Using Lemma 3.2, the bra
keted term is non-negative under (P7) proving (i) by (A.21).(ii) Let w 2 W A be given and " > "0. We show that ��(w; ") > ��(w; "0). Set (w0; b0) :=�#(w; �A (w); "0) 2 VA and let ~�(
; Æ) := 
w0�TA (
w0; 
Æb0) whi
h is well-de�ned for all(
; Æ) 2 R2++ su
h that (
w0; 
Æb0) 2 VA . Using (A.21), the partial derivatives satisfy�
 ~�(
; Æ) = [1� �wTA (�)℄(w0 � Æb0) > 0 � �[1� �wTA (�)℄
b0 = �Æ ~�(
; Æ) (A.23)for all 
 > 0 and Æ � 1. Set 
0 := ""0 > 1 and Æ0 := �#(")=�#("0). By (P8) Æ0 � 1. Then,(A.23) implies ��(w; "0) = ~�(1; 1) � ~�(1; Æ0) < ~�(
0; Æ0) = ��(w; ") proving the 
laim. �A.14 Proof of Lemma 4.3Sin
e sho
ks in (17a,b) are multipli
ative and M#"ref is self-supporting under �#(�; "ref),�#b (w; �A (w); ") = #(")#("ref)�A �"ref" �#w(w; �A (w); ")� (A.24)whi
h holds for all w 2 W A and " 2 E . Di�erentiating (A.24) with respe
t to w gives�w�#b + �0A (w)�b�#b = h�w�#w + �0A (w)�b�#wi #(")#("ref) "ref" �0A ��#w(w; �A (w); "ref)�: (A.25)Sin
e �w�#w + �0A (w)�b�#w � 0 by Theorem A.1(iii), (A.25) implies (P7). �26



A.15 Proof of Theorem 4.1First note that both limits in (b) are well-de�ned sin
e �� is 
ontinuous and monotoni
.By (a), ��(�; "0) has a unique �xed point �w�0 2 W A . By stability, ��(w; "0) T w i� w S�w�0 . Sin
e " 7! ��(w; ") is stri
tly in
reasing, this implies ��(w; "min) < w for all w > �w�0and ��(w; "max) > w for all w < �w�0 . Hen
e, non-trivial �xed points of ��(�; "min) 
anonly exist in ℄wA ; �w�0 ℄ and do exist if limw!wA ��(w; "min)=w > 1 while non-trivial �xedpoints of ��(�; "max) 
an only exist in [ �w�0 ;1[ and do exist if limw!1 ��(w; "max)=w < 1.In the terminology of Bro
k & Mirman (1972, p.500), �� possesses a stable �xed-point
on�guration. De�ning w� := maxfw 2 W A j��(w; "min) = wg � �w�0 � �w� := minfw 2W A j��(w; "max) = wg, the set �W � := [w�; �w�℄ is the unique stable set of �� (de�ned asin Wang (1993, p.428)). The 
laim (ii) then follows from the results in Wang (1993). �A.16 Proof of Theorem 5.1(i) Fix � 2 [0; 1℄. Using Lemma 3.2 and (16a,b), the partial derivative of (22) satis�es�bV (w; b; �) = u0(w � b� k)h�bZ(w; b; �)b=z + Eg0(k)�bK(w; b; �)i > 0:(ii) Fix (w; b) 2 V+ and write k� := K(w; b; �) and z� := Z(w; b; �). Given � 2 [0; 1[,let M1 := E � [R(k�; �)v0(�)℄, M2 := E � [R(k�; �)2jv00(�)j℄, M3 := E � [(z�#�(�))2jv00(�)j℄,and M4 := E � [R(k�; �)z�#�(�)jv00(�)j℄. Write the map H#�i (z; k;w; b) from (16a,b) asHi(z; k; �), i = 1; 2. The derivatives with respe
t to � exist and satisfy(1��)��H1 = b[z=g0(k)M2�M4℄ and (1��)��H2 = �(z=g0(k)[M1� bM4℄ +M1� bM3:(A.26)By Lemma 3.1 and the IFT, � 7�! (Z(�);K(�)) := (Z#�(w; b);K#�(w; b)) is a C1-map.Using (A.9) and the notation from the proof of Lemma 3.2, the derivatives 
ompute� ��Z(�)��K(�) � = �[D�H℄�1� ��H1��H2 � = 1detD�H � �kH1��H2 � �kH2��H1�zH2��H1 � �zH1��H2 � :(A.27)Using that #� = �#1+(1��)#0 implies d�#� = #1�#0, the derivative of (22) 
omputes��V (w; b; �) = E � [(A�#1(�)� B�#0(�))v0(�)℄ (A.28)where A� := bz� + g0(k�)[��Zb=z� + Eg0(k�)��K℄ and B� := bz� > 0. Let � 2 [0; 1[ bearbitrary. We show that ��V < 0. If A� � 0, this follows immediately from (A.28), sosuppose A� > 0. By (16a,b), E � [(R(k�; �)� z�#�(�))v0(�)℄ = 0 whi
h 
an be written asE � [(#1(�)C� � #0(�))v0(�)℄ = 0 where C� := g0(k�)=z���1�� > 0. Exploiting (A.28), we showthat M := C�B� � A� > 0. Solving this 
ondition by using (A.26) and (A.5){ (A.8) in(A.27), tedious but straightforward 
al
ulations show that M > 0 if and only ifbju00j�M2�M4+M3�M4�+b�M2M3�M24 �� g00(k�)g0(k�)M1�b(M3�M4)�k(M2�M4)� > 0:Using Lemma A.2(b) and the fa
t that by (P4) and (16a,b) b(M3�M4)�k(M2�M4) =bM3 + kM4 � (bM4 + kM2) = 0, all bra
keted terms are positive, proving the 
laim. �27
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