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Abstract

We propose a novel dynamic approach to forecast the weights of the global mini-
mum variance portfolio (GMVP). The GMVP weights are the population coefficients
of a linear regression of a benchmark return on a vector of return differences. This
representation enables us to derive a consistent loss function from which we can infer
the optimal GMVP weights without imposing any distributional assumptions on the
returns. In order to capture time variation in the returns’ conditional covariance struc-
ture, we model the portfolio weights through a recursive least squares (RLS) scheme as
well as by generalized autoregressive score (GAS) type dynamics. Sparse parameteri-
zations combined with targeting towards nonlinear shrinkage estimates of the long-run
GMVP weights ensure scalability with respect to the number of assets. An empirical
analysis of daily and monthly financial returns shows that the proposed models perform
well in- and out-of-sample in comparison to existing approaches.
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1 Introduction

The global minimum variance portfolio (GMVP) allocates a given budget among n financial
assets such that the risk for the rate of expected portfolio return is minimized. In contrast to
the classical mean-variance optimal portfolio (Markowitz, 1952), the weights of the GMVP
do not depend on the expected returns of the assets. The expected returns have a major
impact on the mean-variance optimal strategy (Best and Grauer, 1991) but are notoriously
hard to predict (Welch and Goyal, 2008). Studies like Jagannathan and Ma (2003) hence
advocate the use of the GMVP, which only depends on the covariance matrix of the asset
returns. Conceptually, the GMVP is a special case of the mean-variance optimal portfolio
because it results from the latter either if all assets have the same expected return or if the
investor is infinitely risk averse.

In the present paper, we develop a dynamic approach for predicting the GMVP weights.
Our approach builds upon a consistent loss function (Gneiting, 2011) that arises from a rep-
resentation of the GMVP weights as population coefficients in an auxiliary linear regression
problem (Kempf and Memmel, 2006). We first provide a new theoretical result which further
justifies the use of this loss function for portfolio selection problems. In particular, we show
that the expected GMVP return entering the loss function as a nuisance parameter is un-
avoidable since there can be no loss function that uniquely identifies the GMVP weights on
their own. We then use the loss function in a dynamic context to develop time series models
for the GMVP weights, relying on a simple recursive least squares (RLS) with forgetting fac-
tor approach (Ljung and Söderström, 1983) as well as generalized autoregressive score (GAS;
Creal et al., 2013) recursions. Our approach combines a direct dynamic parametrization of
the weights with a consistent loss function for estimating the parameters and evaluating
the resulting predictions. This unified setup is in contrast to much existing work that uses
different loss functions for estimating versus evaluating an econometric model. In combining
a ‘non-standard’ but consistent loss function with GAS specifications we follow Patton et al.
(2019) who consider dynamic models for Expected Shortfall and Value-at-Risk.

When the number of assets is large a dynamic GMVP model requires a parsimonious
parameterization in order to be tractable in practice. While our RLS-based model is par-
simonious by construction, the GAS version requires parameter restrictions in order to be
applicable in high dimensions. To achieve parsimony, the GMVP-GAS approach can be com-
bined with the restriction that the long-run mean of the GMVP weights be equal to those of
a benchmark portfolio or with a targeting approach by which the long-run GMVP weights
are estimated from the sample covariance matrix of the asset returns. However, since the
standard sample covariance matrix is a poor estimator of the true covariance matrix when
the number of assets is large compared to the sample size (Ledoit and Wolf, 2003), we sug-
gest using the nonlinear shrinkage approach of Ledoit and Wolf (2012) for estimating the
long-run GMVP targeting weights. In an empirical analysis of daily and monthly financial
returns, our dynamic GMVP approaches based on RLS and GAS perform well compared to
a wide range of benchmarks from the literature, demonstrating their usefulness for portfolio
allocations.

Existing approaches for estimating and predicting GMVP weights can be broadly classi-
fied into three types. The first type considers dynamic models for the covariance matrix of
the asset returns and constructs a plug-in prediction of the GMVP weights from a forecast

2



of the covariance matrix (see, e.g., Ledoit et al. 2003, Engle and Kelly 2012, Clements et al.
2015). This approach is designed to account for the well-documented time variation in the
assets’ covariance structure, which can be expected to be important for GMVP predictions.
The covariance models are typically estimated using (quasi) maximum likelihood (ML) or
related techniques. Clearly, if the covariance model is correctly specified, ML asymptoti-
cally identifies the correct model, which results in optimal forecasts of the GMVP weights.
However, this approach can be problematic if the model is misspecified, such that not all
properties of the data-generating process (DGP) are correctly captured. Then the estimator
resorts to minimizing a measure of discrepancy between the covariance model and the data
(such as the Kullback-Leibler divergence in the ML case). However, such measures are not
directly related to the economic problem at hand so that there is the risk that the fitted
miss-specified model fails to capture the economically critically important properties of the
DGP while at the same time capturing irrelevant ones. See Elliott et al. (2016) for a more
detailed discussion and further references.

The second type of approaches uses a static framework for the GMVP based on either
the sample covariance matrix of the asset returns or a shrinkage version thereof (see, e.g.,
Ledoit and Wolf, 2003, 2004; DeMiguel et al., 2009; Frahm and Memmel, 2010; Candelon
et al., 2012; Frey and Pohlmeier, 2016). As we detail further below, such a static approach
is implicitly based on the Kempf and Memmel (2006) loss function for the GMVP weights,
and thus relies on an estimation principle which under miss-specification appears to be
advantageous compared to likelihood-based estimation that is typically used for the plug-in
strategies mentioned above. A further promising strategy is to directly estimate the inverse
of the covariance matrix, rather than the covariance matrix itself. In particular, Callot et al.
(2019) present a sparse estimation technique that allows for consistent estimation of the
GMVP portfolio weights and the Markowitz (1952) portfolio weights. By definition, the
static approach aims for the long-run (or unconditional) vector of portfolio weights. Hence
it abstracts from any short-run fluctuations in the portfolio weights, which seems restrictive
in view of well-documented time variation in the covariance matrix of asset returns (see
previous paragraph, as well as Section 2.1 below).

A third group of studies models the portfolio weights as functions of potentially relevant
state variables such as firm characteristics; see Brandt (2009, Section 4) for a review. The
optimal relation between the portfolio weights and the state variables are found by optimizing
a pre-specified utility function. However, in this approach dynamics in the portfolio weights
are accounted for only indirectly via time variation in the state variables.

Our proposed approach combines what we consider the strengths of those three groups of
studies: The time series dynamics featured by the first group, the loss function perspective
taken by the second and third group, and the third group’s proposal to model the weights
directly. In contrast to the third group of studies, we construct dynamic models for the
weights using pure autoregressive specifications (with current weights assumed to depend on
past weights). This modeling approach allows us to easily represent key properties of the
GMVP weights, such as their persistence or their long-run averages under stationarity. From
a conceptual perspective, our use of an economically motivated loss function is in line with
studies such as Weiss (1996), Hand and Vinciotti (2003), Christoffersen and Jacobs (2004)
and Engle and Colacito (2006). In addition to its economic appeal, we demonstrate that the
GMVP loss function is convenient for practical modeling purposes.
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The remainder of this paper is organized as follows. Section 2 introduces the Kempf and
Memmel (2006) GMVP loss function and provides a theoretical result motivating its use.
Section 3 introduces RLS and GAS models for forecasting the GMVP weights. Section 4
presents empirical results, and Section 5 concludes. Proofs and implementation details are
deferred to the online Appendix.

2 Consistent loss function for the GMVP

2.1 Setup

Let Rt = (R1t, ..., Rnt)
′ denote a vector of returns on n assets at period t. For ease of

exposition, we initially assume that Rt is independent across time, and denote the covariance
matrix of Rt by Σ. The vector of weights representing the GMVP for the n assets (subject
to the constraint that they sum to one) is denoted by w∗ = (w∗1, . . . , w

∗
N)′ and obtains as

w∗ =
Σ−1ι

ι′Σ−1ι
, ι′w∗ = 1, (1)

where ι is an n× 1 vector of ones.
According to Kempf and Memmel (2006) the GMVP weights w∗ can be represented using

the following auxiliary linear regression:

Yt = X ′tβ + εt, E(εt|Xt) = 0, (2)

where Yt = Rnt is the return of an (arbitrarily selected) baseline asset and the vector Xt =
(1, Rnt − R1t, . . . , Rnt − Rn−1t)

′ consists of the return differences between the baseline asset
and the remaining n − 1 ones (including a one). The corresponding population regression
coefficients are β = (β0, . . . , βn−1)

′, and are defined by

β = arg min
b

E[L(b, Rt)], (3)

where

L(b, Rt) = (Yt −X ′tb)2. (4)

As shown in Kempf and Memmel (2006, Proposition 1), the population coefficients for the
slopes in the auxiliary regression (2) coincide with the true GMVP weights while the intercept
represents the expected return of the GMVP, in that

w∗i =

{
βi i = 1, . . . , n− 1

1−
∑n−1

j=1 βj i = n
, E[R′tω

∗] = β0. (5)

In the terminology of Gneiting (2011), L(b, Rt) as given by (4) and used in (3) is a strictly
consistent scoring (or loss) function for β, which implies that the vector β is elicitable1. In

1A functional of a probability distribution is called elicitable if there exists a strictly consistent loss
function for this functional. It is hence possible to define a loss function that incentivizes a risk neutral
forecaster to state the value of the functional (see Gneiting 2011 for further discussion).
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the following we will use β1:n−1 to denote the sub-vector representing the GMVP weights
(β1, . . . , βn−1)

′ so that β = (β0, β
′
1:n−1)

′.
The intercept β0 is the only element of β that is not directly related to the GMVP weights.

It therefore appears tempting to formulate an alternative loss function that exclusively elicits
the GMVP weights β1:n−1. However, as we state in the following proposition such a loss
function does not exist.

Proposition 1. The sub-vector β1:n−1 is not elicitable. That is, there is no loss function
whose expected value is uniquely minimized by β1:n−1.

Proof. See online Appendix A.

Clearly, a loss function that elicits β1:n−1 without β0 would be attractive in principle. By
stating that such a loss function does not exist, Proposition 1 motivates the use of Kempf
and Memmel’s loss function as a feasible and (strictly) consistent choice. We also note that
the joint elicitability of the composite vector β = (β0, β

′
1:n−1)

′ parallels theoretical results
on the joint elicitability of Value-at-Risk and Expected Shortfall (Fissler and Ziegel, 2016):
Just like the GMVP weights β1:n−1 are not elicitable without β0, Expected Shortfall is not
elicitable without Value-at-Risk.

So far, we have assumed that the returns Rt are temporally independent with a constant
covariance matrix, such that the vector β with the GMVP weights is time invariant. However,
it is well-known that financial returns are conditionally heteroscedastic. To account for this
stylized fact we can replace the constant return covariance matrix Σ in Equation (1) by the
conditional covariance matrix Σt = V(Rt|Ft−1) given the information set Ft−1 comprising
data up until time period t− 1. Time variation in Σt typically implies time variation in the
GMVP weights2. In this dynamic context, the time-dependent population coefficients of the
auxiliary regression (2), based on the loss function (4), are given by

βt = arg min
b

Et−1[L(b, Rt)],

where Et−1[·] ≡ E[·|Ft−1]. Analogously to Equation (5), it follows that

w∗it =

{
βit i = 1, . . . , n− 1

1−
∑n−1

j=1 βjt i = n
, Et−1(ω

∗
t
′Rt) = β0t,

where ω∗t = (ω∗1t, . . . , ω
∗
nt)
′ is the vector that minimizes the conditional portfolio variance

given Ft−1 and β0t represents the conditional expectation of the GMVP return.
We use this dynamic GMVP framework based on the consistent loss function L(b, Rt)

to develop predictive models for the GMVP weights, to estimate their parameters and to
evaluate their predictive performance. The models consist of parametric functions for the
weights β1:n−1t = ω∗1:n−1t and the expected GMVP returns β0t assumed to be measurable
w.r.t. the information set Ft−1,

(β0t, β
′
1:n−1t)

′ = βt = β(Zt−1; θ), t = 1, . . . , T, (6)

2Certain restrictive forms of time variation in Σt are compatible with constant GMVP weights. Examples
include the case Σt = τt Σ, where τt ∈ R+ is a positive-valued scalar and Σ is a constant matrix. By
comparison with Equation (1), τt does not affect the GMVP weights.
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where θ denotes the parameter indexing the model, T is the sample size, and Zt−1 ∈ Ft−1.
In the terminology of Patton et al. (2019) these GMVP models are semi-parametric as they
do not impose a parametric class of conditional distributions on the asset returns. For
estimating θ we follow Patton et al. (2019) and use an M-type estimator which minimizes
the average GMVP loss, so that

θ̂ = arg min
θ

1

T

T∑
t=1

L (β (Zt−1; θ) , Rt) . (7)

Given our choice of L (β (Zt−1; θ) , Rt) defined in Equation (4), θ̂ is hence a nonlinear least
squares (NLS) estimator. Before we present our proposed dynamic GMVP models in Section
3, the next section compares the expected GMVP loss function and the variance of the
portfolio returns as potential performance measures for GMVP models.

2.2 Relation between expected GMVP loss and variance of port-
folio returns

In empirical studies on the GMVP, it is common to assess the performance of a prediction
rule for the GMVP weights by using the sample variance of the portfolio returns {ω′tRt}, with
small values to be preferred (see, e.g., DeMiguel et al. 2009, Table 3 or Engle et al. 2019,
Table 8). Here we detail the relationship between the sample variance and our proposed
performance measure, the sample average of the GMVP loss function at (4).

Let {bt} be an arbitrary sequence of parameter values with period-t portfolio weights
ω1:n−1t = b1:n−1t and intercept parameter b0t. Then the conditional period-(t−1) expectation
of the period-t GMVP loss can be written as

Et−1[L(bt, Rt)] = Vt−1(ω
′
tRt) + {Et−1(ω′tRt)− b0t}2, (8)

so that

E [L(bt, Rt)] = E (Et−1 [L(bt, Rt)]) (9)

= V (ω′tRt)− 2 Cov [b0t,Et−1(ω
′
tRt)] +V(b0t)

+ {E(ω′tRt)− E(b0t)}2 .

Equation (9) states that the expected loss E[L(bt, Rt)] differs from the variance of the portfo-
lio returns V(ω′tRt) that is usually taken as a performance measure in empirical applications.
The following special cases are worth mentioning. First, if b0t is constant over time, with
b0 = E(ω′tRt), the difference between the expected loss and the variance of the portfo-
lio returns collapses. This case is discussed by Kempf and Memmel (2006, Proposition 1,
Statement 3) in the framework where returns are temporally independent with time-invariant
moments. Second, if b0t is the best predictor for the portfolio returns, i.e. if b0,t = Et−1(ω

′
tRt)

∀t, we have that Cov[b0t,Et−1(ω
′
tRt)] = V(b0t) and E(ω′tRt) = E(b0t) so that the expected

loss simplifies to E[L(bt, Rt)] = V(ω′tRt)−V(b0t).
This result raises the question of whether E[L(bt, Rt)] or V(ω′tRt) should be used for

forecast evaluation. Mirroring the results in Section 2.1, neither of the two alternatives
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exclusively evaluates forecasts of the GMVP weights, as would be desirable. That V(ω′tRt)
does not exclusively evaluate forecasts for the GMVP weights becomes evident from the law
of total variance which implies that

V(ω′tRt) = E [Vt−1(ω
′
tRt)] +V [Et−1(ω

′
tRt)] . (10)

The first summand in (10) measures the average predicted portfolio variance and achieves its
minimum for the sequence of true GMVP weights ωt = ω∗t . This first summand is relevant
for assessing the performance of GMVP predictions. By contrast, the second summand
in (10) measures the variance of the predicted portfolio returns, which is not relevant for
GMVP performance assessment. Since both summands depend on ωt, V(ω′tRt) entails an
undesirable trade-off between them. In particular, since the second summand does not
disappear for ω∗t , it can generate an ‘evaluation bias’ and therefore should not enter model
forecast comparisons for the GMVP weights. This reasoning against using V(ω′tRt) is also
found in Voev (2009).

For E [L(bt, Rt)], it is the parameter b0t for the predicted portfolio return (i.e., the first
element of bt) which prevents evaluating solely the forecasts for the GMVP weights. Equation
(8) implies that

E[L(bt, Rt)] = E [Vt−1(ω
′
tRt)] + E

[
{Et−1(ω′tRt)− b0t}2

]
.

This representation of E[L(bt, Rt)] shows that here the trade-off is between the average
predicted portfolio variance and the average squared error of the intercept b0t as an approx-
imation to the best predictor of the portfolio returns. However, in contrast to V(ω′tRt), the
trade-off-generating component disappears for the true GMVP weights ωt = ω∗t and b0t = β0t,
reflecting the consistency of the loss function L for the GMVP weights together with the
expected GMVP return. Moreover, by specifying the portfolio mean parameter b0t one can
directly control the trade-off generating factor, which is not feasible when using V(ω′tRt). A
further important advantage of E [L(bt, Rt)] is that it corresponds to a standard loss function
that can be consistently estimated by the average loss over time. Therefore, it can directly
be used for estimating parameters of prediction models and for comparing forecasts in terms
of their average out-of-sample loss. The latter is central to pairwise (Diebold and Mariano,
1995) and multiple (Hansen et al., 2011) comparisons of predictive ability that are commonly
used in econometrics.

These advantages of E [L(bt, Rt)] relative to V(ω′tRt) suggest to use the former for forecast
evaluation. This being said, it turns out that both measures yield similar results in our
empirical analysis (see, e.g., Table 2 in Section 4).

3 Dynamic GMVP models

In this section we describe our proposed dynamic models that specify a mapping from lagged
information to the current values of the GMVP weights and mean return (see Equation
6). The first model we consider is based on an RLS approach with forgetting factor while
the second one belongs to the class of GAS models. In both models, the M-estimator
from Equation (7), together with the GMVP loss function, allows for convenient parameter

7



estimation. The asymptotic statistical properties of the M-estimator for such semiparametric
models are discussed in Patton et al. (2019). Details on these properties of the M-estimator
for our proposed GMVP models as well as a description of its implementation are provided
in the online Appendix C.

3.1 Recursive least squares with forgetting factor

RLS with forgetting factor is a popular approach used to track the parameters in linear
regression models when they are time-varying (Ljung and Söderström, 1983; Young, 2011).
The RLS estimates with forgetting factor for the sequence of parameters {βt} in the auxiliary
regression (2) defining the GMVP weights β1:n−1t and mean returns β0t obtain from the
recursion

β̂t = β̂t−1 +
Ω−1t−1Xt

λ+X ′tΩ
−1
t−1Xt

(Yt −X ′tβ̂t−1), (11)

Ωt = XtX
′
t + λΩt−1. (12)

The parameter λ ∈ (0, 1] is the forgetting factor which operates as an exponential weight
decreasing for more remote observations: Observations τ periods in the past have weight λτ

in the estimate of βt. In empirical applications λ is typically set to value slightly less than
one (Raftery et al., 2010). For the special case that λ = 1, the RLS recursion in Equations
(11) and (12) becomes

β̂t = β̂t−1 +
[
∑t−1

τ=1XτX
′
τ ]
−1Xt

1 +X ′t[
∑t−1

τ=1XτX ′τ ]
−1Xt

(Yt −X ′tβ̂t−1),

which is the standard formula for updating the ordinary LS estimate β̂t−1 for the parameters
in regression (2) computed for the observations {Yτ , Xτ}t−1τ=1, when a new pair of observation
(Yt, Xt) is added to the sample and the parameters are assumed to be time-invariant (Harvey,
1993, Section 4.5).

Another interpretation of RLS with forgetting factor emerges from the Kalman filter with
forgetting factor for a standard linear Gaussian state-space model (Kulhavỳ and Zarrop,
1993; Raftery et al., 2010; Koop and Korobilis, 2013). When taking the auxiliary regression
(2) as a measurement equation for the time-varying parameters βt with Gaussian measure-
ment errors εt and assuming that βt follows a Gaussian random walk, then β̂t as obtained
from the RLS recursion in Equations (11) and (12) is equivalent to the expectation of βt
under its filtering distribution resulting from the Kalman filter with forgetting factor (for
details see Raftery et al., 2010).

The GMVP model based on RLS with forgetting factor consists of the mapping βt+1 =
β(Zt; θ) = β̂t, such that

βt+1 = βt +
Ω−1t−1Xt

λ+X ′tΩ
−1
t−1Xt

(Yt −X ′tβt), (13)

with some initial conditions (β1,Ω0). The forgetting factor λ is treated as an unknown
parameter (θ = λ) to be estimated by the M-estimator in Equation (7). Note that under
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the RLS-GMVP model as given by Equation (13) the period-(t+ 1) value βt+1 is defined to
be the period-t RLS estimate β̂t based on the observations {Yτ , Xτ}tτ=1. This is akin to the
prediction step of the corresponding Kalman filter with forgetting factor when βt follows a
random walk (see, e.g., Raftery et al., 2010).

In our empirical applications below, the GMVP weights have very persistent time series
behavior. Hence the selection of the initial conditions β1 and Ω0 in the predictive recursion
(13) can become critical for the out-of-sample forecast performance when the length of the
estimation window T is small. A natural choice of β1 is the OLS estimate for β in the
static auxiliary regression (2) based on the data in the estimation period; for Ω0, one can
choose the corresponding sample average of XtX

′
t. We refer to these simple choices as

RLS-ols. However, if the number of assets n is large in relation to T , the OLS estimate is
known to be inaccurate, so that RLS-ols provides poor starting values. For high-dimensional
applications, we therefore consider another set of initial conditions (RLS-shr) that obtain
from the nonlinear shrinkage approach of Ledoit and Wolf (2012, 2015) described in Section
3.2.2.

The RLS-GMVP model as described above is specified in terms of the variables (Yt, Xt)
which, in turn, are obtained using asset n as baseline asset (see below Equation 2). As the
choice of the baseline asset is arbitrary, it is desirable for a GMVP model to be invariant
w.r.t. this choice, such that the results (estimation and tests) obtained under different base-
line assets are mutually compatible and lead to the same predictions for the GMVP weights.
In the online Appendix B we show that the RLS-GMVP model exhibits this invariance
property.

3.2 Generalized Autoregressive Score models

3.2.1 Model specification

The RLS model for the GMVP in Section 3.1 includes only a single parameter (the forgetting
factor λ). This makes it scalable in terms of the number of assets, but could be too restrictive.
As an alternative to model the GMVP, we thus consider a GAS approach. The GAS model
as introduced by Creal et al. (2013) assumes that the random variable to be modeled has
a parametric conditional distribution with parameters that follow an autoregression driven
by the scaled score of the log-likelihood. Following Patton et al. (2019), we adapt this
parametric GAS approach to our semi-parametric framework by replacing the log-likelihood
score with the score of the GMVP loss function in Equation (4).

The particular GAS recursion we consider for the mapping βt+1 = β(Zt; θ) is

βt+1 = c+Bβt + AH−1t ∇t, (14)

with initial conditions β1, where c = (ci) denotes an (n × 1) vector and A = (aij) and
B = (bij) are two (n× n) matrices of parameters such that θ = (c, B,A). The vector ∇t is
the score of the GMVP loss function given by

∇t =
∂L(βt, Rt)

∂βt
= −2Xt(Yt −X ′tβt),
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and Ht is an (n × n) matrix scaling the score. A common choice of the scaling matrix
Ht in parametric GAS models is to use a measure for the predicted local curvature of the
observation density (Creal et al., 2013). Accordingly, we select Ht to be related to the
curvature of the loss function with respect to βt as measured by its predicted Hessian given
by

Ht = Et−1
[
∂2L(βt, Rt)

∂βt∂β′t

]
= 2 Et−1 [XtX

′
t] .

For Et−1 [XtX
′
t] we use the predictions obtained from a simple exponential weighted moving

average (EWMA) computed as3

Et
[
Xt+1X

′
t+1

]
= κEt−1 [XtX

′
t] + (1− κ)XtX

′
t, (15)

with some initial value for E0 [X1X
′
1]. In our empirical implementation of the GAS model

the smoothing parameter κ is set equal to its typical value 0.94 (Callot et al., 2017) and the
initial conditions (β1,E0 [X1X

′
1]) are selected in the same way as those for the RLS model

(see Section 3.1).
A necessary condition for covariance stationarity of βt under the GAS recursion (14) is

that the roots of B lie inside the unit circle, in which case the stationary mean of βt obtains
as (Creal et al., 2013)

m ≡ E(βt) = (In −B)−1c. (16)

A reparametrization of the GAS recursion (14) in terms of this stationary mean will be
instrumental for imposing parameter restrictions and for parameter estimation subject to
targeting constraints, which we discuss in the next section.

As shown in the online Appendix B, the GAS-GMVP model as given by Equations (14)-
(15), when used without any restrictions on the parameters θ, is invariant w.r.t. the choice of
the baseline asset. However, certain types of restrictions on θ can compromise this invariance
(see Section 3.2.2 as well as online Appendix B). Therefore, a key challenge in the GAS model
is to derive restrictions on θ that are empirically useful (that is, achieving a good trade-off
between parsimony and flexibility) without compromising the model’s invariance properties.

3.2.2 Restricted GAS models

The vector of parameters in the unrestricted GAS-GMVP specification consists of n + 2n2

parameters, making it difficult to estimate and prone to in-sample overfitting when the
number of assets (n) is large. At the same time, the optimal degree of model complexity
(simplicity) is primarily an empirical question. We therefore consider several restricted
versions of the GAS model, taking into account only restrictions that do not affect the

3In an initial explorative analysis we also implemented the GAS model using for Ht the Fisher information
Et−1 [∇t∇′t] (Creal et al., 2013) and the outer product βtβ

′
t (similar to Opschoor et al. (2018)). However, these

choices did not improve upon the trade-off between numerical stability and computational speed achieved by
using the Hessian predicted by the EWMA. For other common alternatives discussed in Creal et al. (2013),
including Ht = In and Ht = Et−1 [∇t∇′t]

ν
, ν ∈ (0, 1) the resulting GAS model fails to be invariant w.r.t. the

choice of the baseline asset (see online Appendix B).
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invariance property. For describing these restrictions we partition the vector of the scaled
score st = H−1t ∇t conformably with the vector of the GMVP mean return and weights
βt = (β0t, β

′
1:n−1t)

′ into st = (s0t, s
′
1:n−1t)

′, so that the system of GAS Equation (14) can be
written as (

β0t+1

β1:n−1t+1

)
=

(
c0

c1:n−1

)
+

(
b00 b01
b10 B11

)(
β0t

β1:n−1t

)
(17)

+

(
a00 a01
a10 A11

)(
s0t

s1:n−1t

)
.

First, we consider diagonal matrices A and B by imposing the following restrictions in
Equation (17):

b01 = 0, b10 = 0, B11 = b11In−1, a01 = 0, a10 = 0, A11 = a11In−1,

where b11 and a11 are scalar parameters so that the number of parameters in A and B is
reduced from 2n2 to 4. Under this diagonal restriction the dynamic structure of the GMVP
mean return β0,t+1 (directed by the parameters b00 and a00) is allowed to differ from that of
the GMVP weights βi,t+1, i = 1, . . . , n− 1 (directed by the parameters b11 and a11), but the
dynamic structure for the weights is restricted to be the same across all assets. The latter is
needed to ensure that the restricted diagonal model remains to be invariant w.r.t. the choice
of baseline asset, which does not allow the elements in the diagonal matrices B11 and A11 to
differ (see online Appendix B).

Second, we consider the restriction that the expected GMVP return β0,t+1 is constant
over time which obtains by using in Equation (17)

b00 = 0, b01 = 0, a00 = 0, a01 = 0,

so that the number of parameters is reduced by 2n. This restriction appears to be reasonable
since portfolio returns are typically difficult to predict based on past information, at least at
the daily frequency (Cochrane, 2005, Chapter 20).

Third, we consider the restriction that the long-run mean of the portfolio weights cor-
respond to the equally weighted portfolio, so that E(βit) = 1/n for i = 1, . . . , n − 1. Us-
ing Equation (16) and partitioning m = E(βt) conformably with the vector of intercepts
c = (c0, c

′
1:n−1)

′, this restriction can be represented as(
c0

c1:n−1

)
=

[
In −

(
b00 b01
b10 B11

)](
m0

m1:n−1

)
, with m1:n−1 = ιn−1/n, (18)

where ιn−1 is a (n − 1)-dimensional vector full of ones. By this restriction, fixing n − 1
parameters, all GMVP weights are forced to fluctuate around the benchmark value 1/n
defined by the equally weighted portfolio. Our use of this benchmark follows DeMiguel et al.
(2009); Candelon et al. (2012); Frey and Pohlmeier (2016) who consider shrinkage of the
GMVP weights towards equality in a static framework. More broadly, the popularity of the
equally weighted portfolio can perhaps be explained by its simplicity and the fact that it
avoids estimation errors (DeMiguel et al., 2007).
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Finally, we consider a reduction of the number of parameters by using a targeting estima-
tion approach that replaces the long-run mean vector of the GMVP weights m in Equation
(18) by a sample estimate. A simple estimate obtains by running the static auxiliary regres-
sion of Kempf and Memmel (2006) using OLS or, equivalently, by replacing in Equation (1)
the population covariance Σ by the sample covariance matrix. However, when the number of
assets n is large compared to the sample size T , the estimation of Σ by the sample covariance
matrix is prone to in-sample overfitting due to the excessive number of free parameters in Σ.
Hence for an increasing ratio n/T , the accuracy of the sample covariance matrix deteriorates,
leading to an increasing systematic bias in the estimates for the long-run mean of the GMVP
weights (Basak et al., 2009). To robustify the targeting approach against large dimensions, we
thus propose to use the nonlinear shrinkage approach of Ledoit and Wolf (2012, 2015) that is
suitable for large covariance matrices. This shrinkage approach operates on the eigenvalues of
the covariance matrix and relies on the inversion of the Marčenko and Pastur (1967) equation
for the nonlinear relationship between the population and sample eigenvalues under large-
dimensional asymptotics. It pulls up the smallest sample eigenvalues which are systemati-
cally downward biased and pulls down the largest eigenvalues which are upward biased. For
implementing this nonlinear shrinkage approach we use Ledoit and Wolf’s (2017) numerical
inversion technique for the Marčenko-Pastur equation, which is available as a Matlab function
on Michael Wolf’s webpage (https://www.econ.uzh.ch/en/people/faculty/wolf.html).

The GAS models we consider in our empirical work include the unrestricted model and
models with the four restrictions described above, as well as combinations thereof. Table 1
lists the resulting model specifications: The (non-diagonal) model without any restriction
(GAS), the diagonal model (d-GAS), the diagonal model with constant mean return (d-
GAS-cβ0), equal long-run weights (d-GAS-ew), constant mean return combined with equal
long-run weights (d-GAS-cβ0-ew), constant mean return combined with targeting towards
the OLS estimates of the long-run weights (d-GAS-cβ0-ols-ta) and combined with targeting
towards the nonlinear shrinkage estimates of the long-run weights (d-GAS-cβ0-shr-ta). In
accordance with how its target is constructed, we use the nonlinear shrinkage estimate for β
and the second moments E(XtX

′
t) as initial conditions for the d-GAS-cβ0-shr-ta model. For

all other GAS specifications, the OLS estimate and the sample second moments are used for
initialization.

4 Empirical Results

In this section we apply our proposed GMVP prediction models to historical return data,
and compare them to a set of benchmark methods that are described in Section (4.1). Like
our proposed models, these benchmarks aim to predict the GMVP weights in period t based
on data up until period t−1, i.e., based on the information set Ft−1. We consider both daily
data (Sections 4.2 and 4.3) and monthly data (Section 4.4). In doing so, we intend to cover
various practically relevant scenarios regarding the ratio n/T (number of assets divided by
length of the time series).
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Model Restriction # Params

GAS none 2n2 + n

d-GAS B11 = b11In−1, A11 = a11In−1, n+ 4
b01 = a01 = 0, b10 = a10 = 0

d-GAS-cβ0 & b00 = a00 = 0 n+ 2

d-GAS-ew & m1:n−1 = ιn−1/n 5

d-GAS-cβ0-ew & b00 = a00 = 0, m1:n−1 = ιn−1/n 3

d-GAS-cβ0-ols-ta & b00 = a00 = 0, m: OLS estimate 2

d-GAS-cβ0-shr-ta & b00 = a00 = 0, m: nonlinear shrinkage estimate 2

Table 1: List of GAS model specifications according to Equations (17) and (18); n is the number

of assets in the portfolio and m = E(βt). ‘# Params’ indicates the number of model parameters to

be estimated by the M-estimator given in Equation (7).

4.1 Competing models

As alternatives to our proposed GMVP models we use several static and dynamic approaches
that are motivated by their popularity in the literature:

(i) The OLS estimator constructs the period-t prediction of the GMVP weights by re-
placing the return covariance matrix Σ in the GMVP formula (1) with the sample covariance
matrix of the returns observed up to period t − 1. This approach is equivalent to running
Kempf and Memmel’s (2006) static auxiliary regression using OLS for each period.

(ii) The linear shrinkage (SHR-l) estimator modifies the OLS estimator by estimating
Σ in (1) via the linear shrinkage estimator of Ledoit and Wolf (2004). This estimator
shrinks the sample covariance matrix towards the identity matrix. It minimizes the expected
Frobenius norm of the difference between the shrinkage estimator and the true covariance
matrix by pushing the eigenvalues of the sample covariance matrix towards the average of
all eigenvalues.

(iii) The nonlinear shrinkage (SHR-nl) estimator estimates Σ in (1) via the nonlinear
shrinkage procedure of Ledoit and Wolf (2012, 2015), which we also adopt for the targeting
approach in the GMVP-GAS model (see Section 3.2.2). While the linear shrinkage estima-
tor shrinks all sample eigenvalues with the same intensity so as to minimize the expected
Frobenius norm, the nonlinear shrinkage approach uses an individualized intensity for each
eigenvalue.

(iv) The näıve estimator sets the prediction of the GMVP weights equal to the weights
of the equally weighted portfolio.

(v) The standard dynamic conditional correlation (DCC) model proposed by Engle
(2002). In this model, the conditional covariance matrix Σt of a return vector Rt is de-
composed into

Σt = D
1/2
t CtD

1/2
t ,
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where Ct is the conditional correlation matrix and Dt = diag(h1t, . . . , hnt) is a diagonal
matrix with the conditional return variances, each of which follows a univariate GARCH(1,1)
process. The correlation matrix Ct is given by

Ct = (Q∗t )
−1/2Qt(Q

∗
t )
−1/2,

with Qt = (1−α−β)S+αet−1e
′
t−1+βQt−1, where et = D

−1/2
t Rt is the vector of standardized

returns. The diagonal matrix Q∗t is composed of the diagonal elements of Qt, and S is
the unconditional covariance matrix of the standardized returns. In order to implement
correlation targeting, S is estimated by the sample covariance of the standardized returns et
that are based on univariate GARCH models. We construct the period-t prediction for the
GMVP weights by plugging the covariance prediction Σ̂t (computed in period t−1) into the
GMVP formula given in Equation (1).

(vi) The DCC model with correlation targeting based on nonlinear shrinkage estimates
(DCC-nl) is developed and recommended by Engle et al. (2019) who consider it the ‘new DCC
standard in large dimensions’. It modifies the original DCC model by using the nonlinear
shrinkage estimator of Ledoit and Wolf (2012, 2015) – instead of the sample covariance
matrix – for correlation targeting.

Both DCC models are implemented using the assumption of normally distributed errors
and are estimated by a composite likelihood approach as recommended by Engle et al. (2019).

4.2 In-sample results for daily data

For the experiments with daily returns we use a data set considered by Moura et al. (2019).
It consists of the daily stock prices of all NYSE, AMEX and NASDAQ stocks of which we
select the 200 stocks with the largest market capitalization at the last trading day of the
sample period. The sample covers the period from January 2, 2002 to December 6, 2016 for
a total of T = 3, 759 trading days. Following Engle et al. (2019), for asset pairs with sample
correlation larger than 0.95 we remove the respective stock with the lower market volume
at the last day of the sample period in order to avoid highly similar asset pairs. The daily
prices Pit are transformed into continuously compounded returns: Rit = 100 ln(Pit/Pit−1).

4.2.1 Low-dimensional application

Estimating the heavily parameterized non-diagonal unrestricted GAS specification is pro-
hibitively difficult for a large number of stocks. In an initial experiment, we thus consider a
low-dimensional application of our proposed GMVP models to five of the 200 stocks. This
experiment allows us to compare the seven GAS specifications in Table 1 and the RLS model
and to investigate the impact of different degrees of sparsity of the GAS parameter matrices
c, A and B. The five stocks we use for this experiment are those with the largest market
capitalization at the last trading day of the estimation period: Apple, Microsoft, ExxonMo-
bil, Amazon and Johnson & Johnson.

Table 2 reports the average in-sample GMVP loss for the seven GAS specifications and the
two versions of the RLS model (initialized by the OLS and nonlinear shrinkage approaches).
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GAS d-GAS d-GAS d-GAS d-GAS d-GAS d-GAS RLS RLS
-cβ0 -cβ0 -cβ0 -ew -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.928 1.029 1.055 1.055 1.055 1.050 1.071 1.067 1.067
Portf. var. 0.928 1.046 1.055 1.055 1.055 1.066 1.071 1.061 1.061

Table 2: Average in-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio

(Portf. var.) of the GAS and RLS models for n = 5 stocks. The sample period ranges from January

2, 2002 to December 6, 2016 (T = 3, 759).

As expected, the lowest average loss is attained by the unrestricted (non-diagonal) GAS
specification with 55 parameters, which allows for the largest degree of flexibility in approx-
imating the dynamic behavior of the GMVP weights. The models with the largest average
losses are the d-GAS-cβ0-ew (constant expected portfolio returns and equal long-run means
of the portfolio weights) with three parameters and the RLS with only one parameter. How-
ever, even for a dimension as low as in the present experiment (n = 5), NLS based parameter
estimation in the unrestricted GAS model turned out to be numerically challenging4. More-
over, the parameter estimates for the unrestricted GAS model (not presented here) reveal
that none of the model’s 55 parameters is significantly different from zero at the 10% level,
indicating that the model is clearly over-parameterized. With regard to out-of-sample fore-
cast accuracy (analyzed below), these results suggest using restrictions to eliminate many
of the unnecessary parameters. By contrast, the estimates of the d-GAS parameter b11 are
highly significant and exceed 0.98 for all diagonal GAS specifications, indicating high tempo-
ral persistence of the GMVP weights. The estimates for a00 and b00 are for all specifications
insignificant at conventional levels, so that there is no evidence for predictable dynamics in
the conditional mean of the daily GMVP return. The estimate for the forgetting factor of
the RLS model λ is statistically highly significant and its estimated value is 0.988, which
implies that observations from a year ago still have a weight of 5% in the current GMVP
prediction, whereas observations from two years ago have a weight of 0.2%.

In addition to these results we find that the predictions of the portfolio weights obtained
under the sparsely parameterized diagonal GAS specifications and the RLS model are less
noisy than those for the unrestricted GAS model, so that the former ask for less portfolio
regrouping. This is illustrated in Figure 1, which shows the time series plots of the portfolio
weights for the Johnson & Johnson stock predicted under the unrestricted GAS and the
d-GAS-cβ0. While the trends of the two series are very similar, the weight predictions of
d-GAS-cβ0 are less volatile than those of the unrestricted GAS. In particular, d-GAS-cβ0
does not feature the economically questionable jumps predicted by the unrestricted GAS.

In addition to the average GMVP loss, we report in Table 2 the sample variance of the
predicted GMVP returns. The comparison of the values for the two performance measures
shows that they are typically close to each other. As discussed in Section 2.2, this suggests
that the estimated GMVP mean returns β0t are fairly stable over time, so that the observed
small differences in the two measures are in line with our previous finding on the lack of

4One reason of the numerical problems appears to be the large number of local minima of the average
GMVP loss function.
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Figure 1: Estimated GMVP weights for the Johnson & Johnson stock in a portfolio of n = 5

assets, for the (fully unrestricted) GAS (blue line) and the d-GAS-cβ0 model (red line).

predictability of GMVP returns.

4.2.2 High-dimensional application

Based on the results of our low-dimensional application, it seems empirically and practically
reasonable to focus on the sparsely parameterized versions of our proposed GMVP models,
i.e. the diagonal GAS models and the RLS model. The average in-sample loss and sample
variance of the portfolio returns for those models applied to all n = 200 stocks in our
daily data set are reported in Table 3 which also provides results for the benchmark models
described in Section 4.1.

d-GAS d-GAS d-GAS d-GAS d-GAS d-GAS RLS RLS
-cβ0 -cβ0 -cβ0 -ew -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.350 0.351 0.354 0.355 0.354 0.355 0.352 0.352
Portf. var. 0.350 0.351 0.354 0.355 0.355 0.355 0.352 0.352

DCC DCC-nl OLS SHR-l SHR-nl näıve

Avg. loss 0.425 0.425 0.355 0.356 0.357 1.603
Portf. var. 0.425 0.425 0.355 0.355 0.357 1.601

Table 3: Average in-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio

(Portf. var.) of the GAS and RLS models and the benchmark models for n = 200 stocks. The

sample period ranges from January 2, 2002 to December 6, 2016 (T = 3, 759).

Table 3 shows that the RLS model and nearly all d-GAS models attain smaller in-sample
loss than the competing benchmark models. For example, the two-parameter d-GAS-cβ0-
ols-ta and d-GAS-cβ0-shr-ta model, and even the single parameter RLS approach, result in
portfolio predictions with much lower in-sample losses than the portfolios predicted by the
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highly parameterized DCC with 602 parameters. It is only the static OLS estimator which
is on par with the d-GAS-cβ0-shr-ta and the d-GAS-cβ0-eω model. Next, we find that the
increase in the average loss resulting from imposing the cβ0-restriction of constant expected
portfolio returns in the d-GAS model is negligible and is only about 0.3%. The loss increase
for the ew-restriction of equal long-run means of the portfolio weights is somewhat larger at
1%. This suggests that the stationary equilibrium differs from the näıve equally weighted
portfolio which is consistent with the result that the näıve portfolio model produces by far
the largest average loss among all models. It is also in line with our finding that the optimal
degree of shrinkage towards the näıve portfolio for the shrinkage estimators is close to zero,
so that the weight predictions and the resulting average losses for the static OLS, SHR-l and
SHR-nl estimators are very close to each other.

As in the low-dimensional application, the parameter estimates of the GAS models (not
presented here) indicate high persistence of the GMVP portfolio weights with estimates for
b11 larger than 0.9 for all d-GAS specifications. The estimate for the forgetting factor λ
in the RLS model is 0.999, which is also close to the value found in the low-dimensional
experiment.

All in all, the results of the in-sample experiment show that all loss function based
dynamic GMVP models perform broadly similar and outperform the DCC model fitted by a
likelihood based estimation technique and then used within the common plug-in approach.

4.3 Out-of-sample results for daily data

We now analyze the out-of-sample forecasting performance of our GMVP models and com-
pare it to that of the competing benchmark approaches. For this purpose, we use the same
data set as for the in-sample experiments. In our out-of-sample experiments we focus on
one-day-ahead forecasts obtained by re-estimating the model parameters every month on a
rolling window scheme, where we follow the convention that 21 consecutive days constitute
one month. The out-of-sample period starts on January 3, 2007 and ends on December 6,
2016 which results in a total of 2,501 daily point forecasts. We consider estimation window
lengths of T = 250 (one year) and T = 1, 250 (five years) and portfolio sizes of n = 50 and
n = 200. This allows us to compare the performance of the competing models for different
ratios n/T .

Following Engle et al. (2019), the n stocks included in the respective portfolio are rede-
termined before re-estimating the parameters each (virtual) month. The stocks are selected
as follows: First, we identify the stocks that have a complete series of reported returns over
the most recent T trading days and over the next 21 trading days. Then, we identify all pairs
of stocks with a sample correlation larger than 0.95 over the past T days and remove the
respective stock with lower trading volume observed at the time of re-estimation. Finally,
we select the largest n stocks in terms of market capitalization at the re-estimation period.

Since the in-sample analysis yields virtually no evidence for temporal variation in the
daily expected portfolio returns, we focus on the d-GAS specifications with the cβ0-restriction
in our out-of-sample analysis. Tables 4 and 5 provide the average out-of-sample loss and
portfolio variance of these d-GAS-cβ0 models, the RLS and the benchmark models. Table 4
reports the results for the portfolio size n = 50 based on the 1-year and the 5-year estimation
window with a ratio n/T of 0.2 and 0.04, respectively, and Table 5 the corresponding results
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T = 1, 250 d-GAS d-GAS d-GAS d-GAS RLS RLS
n/T = 0.04 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.671 0.672 0.665 0.675 0.639 0.630
Portf. var. 0.671 0.672 0.665 0.675 0.638 0.630

DCC DCC-nl OLS SHR-l SHR-nl näıve

Avg. loss 0.654 0.647 0.669 0.667 0.665 1.574
Portf. var. 0.654 0.647 0.669 0.667 0.665 1.574

T = 250 d-GAS d-GAS d-GAS d-GAS RLS RLS
n/T = 0.20 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 1.778 0.832 0.696 0.833 0.751 0.654
Portf. var. 1.764 0.829 0.693 0.830 0.748 0.651

DCC DCC-nl OLS SHR-l SHR-nl näıve

Avg. loss 0.737 0.673 0.755 0.729 0.677 1.584
Portf. var. 0.736 0.672 0.752 0.729 0.677 1.585

Table 4: Average out-of-sample GMVP loss (Avg. loss) and variance of the predicted GMVP

portfolio (Portf. var.) of the GAS and RLS models and the benchmark models for n = 50 stocks.

Parameter estimation is based on a sample of length T . The out-of-sample period ranges from

January 3, 2007 to December 6, 2016 (2, 501 observations). Bold numbers indicate the smallest

average GMVP loss and grey cells indicate that the model belongs to the 90% Model Confidence

Set.

for n = 200 with value for n/T of 0.8 and 0.16. For assessing the statistical significance of
differences in the average out-of-sample loss across models, we use the model confidence set
(MCS) approach of Hansen et al. (2011). Based on the maximal t-statistic for the pairwise
loss differentials of all models under consideration, the MCS is constructed to contain the
best-performing models at a given confidence level, which we set equal to 90%. In the
bootstrap implementation of the MCS, we use a block bootstrap with block length bT 1/3

evalc,
where Teval = 2, 501 is the size of the evaluation sample, and a bootstrap sample size of
10, 0005. Results of a forecast comparison based on the test for Superior Predictive Ability
(Hansen, 2005, SPA) are qualitatively very similar and are available in the online Appendix
D.

Tables 4 and 5 show that, for all four n/T -scenarios, the two best performing specifications
within our proposed GMVP approach are the d-GAS-cβ0 model with targeting based on
the nonlinear shrinkage approach (d-GAS-cβ0-shr-ta) and RLS initialized by the nonlinear
shrinkage approach (RLS-shr). We also see that their performance gains relative to RLS-
ols and the other d-GAS-cβ0 models consistently increase with the ratio n/T . This finding
indicates that a precise estimator of the long-run-weights (provided by nonlinear shrinkage)

5We use the implementation of the MCS procedure in the Oxford MFE toolbox that is available on
https://www.kevinsheppard.com/code/matlab/mfe-toolbox.
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T = 1, 250 d-GAS d-GAS d-GAS d-GAS RLS RLS
n/T = 0.16 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.625 0.526 0.506 0.525 0.510 0.492
Portf. var. 0.622 0.526 0.506 0.525 0.510 0.491

DCC DCC-nl OLS SHR-l SHR-nl näıve

Avg. loss 0.493 0.474 0.524 0.521 0.504 1.808
Portf. var. 0.493 0.474 0.524 0.521 0.504 1.808

T = 250 d-GAS d-GAS d-GAS d-GAS RLS RLS
n/T = 0.80 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 1.767 2.666 0.513 4.387 1.543 0.486
Portf. var. 1.767 2.661 0.511 4.383 1.538 0.484

DCC DCC-nl OLS SHR-l SHR-nl näıve

Avg. loss 0.984 0.510 1.575 0.864 0.495 1.813
Portf. var. 0.984 0.510 1.571 0.864 0.495 1.813

Table 5: Same as Table 4, but for n = 200 stocks.

is particularly valuable when the number of assets is large relative to the sample size. The
finding is also fully in line with the forecast improvements we find when moving from standard
DCC with OLS targeting (DCC) to DCC with nonlinear shrinkage targeting (DCC-nl) and
from static OLS to the nonlinear shrinkage estimator (SHR-nl). The comparison of all
competing models shows that RLS-shr belongs to the 90% MCS for all n/T ratios and also
has the smallest average loss, except in the scenario with (n, T ) = (200, 1250), where DCC-nl
performs best. Finally, we find that the performance of the static SHR-nl estimator improves
compared to the dynamic models when the sample size T decreases, which is to be expected,
since the shorter the (rolling) estimation window, the easier it is for a static approach to
adapt to local parameter change.

Figure 2 shows time series plots of the period-wise accumulated out-of-sample GMVP
losses for the RLS-shr, d-GAS-cβ0-shr-ta and DCC-nl in terms of their differences relative
to the accumulated losses of the SHR-nl model for n = 200 and T = 250. They reveal
that RLS-shr achieves its largest gains in out-of-sample fit relative to the static SHR-nl
benchmark and the two dynamic alternative models during the 2007-2008 financial crises
and also performance quite well during the 2011 stock market fall. Beyond these periods,
however, the out-of-sample performance of all dynamic models generally appears to be worse
than that of the static SHR-nl as indicated by the mostly negative trends in the differences
of the accumulated losses.

4.4 Out-of-sample results for monthly data

In this section, we analyze the robustness of our previous results to changes in the sampling
frequency by considering the out-of-sample forecasting performance of the GMVP models
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Figure 2: Difference in accumulated out-of-sample GMVP loss for SHR-nl versus RLS-shr (red

line), SHR-nl versus DCC-nl (blue line) and SHR-nl versus d-GAS-cβ0-shr-ta (black line) for n =

200 and an estimation window of length T = 250. A positive loss difference indicates that the other

model outperforms SHR-nl.

when applied to monthly asset returns. For this experiment we rely upon four data sets
used by DeMiguel et al. (2009), which we have extended to cover the period from July
1963 to February 2019. They consist of returns for Fama-French portfolios sorted by size
and book-to-market ratio and industry portfolios representing the U.S. stock market: The
first data set contains six Fama-French portfolios (6-FF), the second one 25 Fama-French
portfolios (25-FF), the third one 10 industry portfolios (10-Ind), and the last one 48 industry
portfolios (48-Ind)6. As in our application to daily returns, we consider one-period-ahead
forecasts and use a rolling window for parameter estimation. The window length is set equal
to T = 120 (10 years) and the out-of-sample period ranges from July 1973 to February 2019,
which yields a total of 548 monthly forecasts for each data set.

Table 6 contains the resulting average out-of-sample GMVP loss of our proposed models
and the competing alternatives. They show that for all four portfolios, the best performing
model in the class of RLS and d-GAS models attains smaller average loss than both versions
of the DCC approach. For the 6-FF, 25-FF and 10-Ind portfolios, for which the n/T -ratio
is at most 0.21, the static SHR-l estimator attains the smallest loss. However, the RLS-shr
model is always contained in the 90% MCS, indicating that the loss difference between RLS-
shr and SHR-l is not statistically significant. As explained above, one possible explanation
for the relatively good performance of this static SHR estimator is that the estimation
window in this experiment is rather short (T = 120), much shorter than in our previous
experiments with daily data in Section 4.3. For the 48-Ind portfolio for which we have the
most challenging scenario in terms of the n/T -ratio, the best model is the RLS-shr with a
performance which is significantly better than that for all competing models. Furthermore,
we observe that RLS-shr belongs to the 90% MCS for all four portfolios, which is fully in

6The data has been obtained from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html.
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6-FF 25-FF 10-Ind 48-Ind

n/T 0.05 0.21 0.08 0.49

d-GAS-cβ0 17.14 19.81 14.03 21.35

d-GAS-cβ0-ols-ta 16.41 15.90 13.69 19.79

d-GAS-cβ0-shr-ta 16.54 13.80 13.22 13.96

d-GAS-cβ0-ew 16.06 15.75 13.66 20.49

RLS-ols 17.60 13.90 14.04 10.10

RLS-shr 17.60 13.67 14.04 10.07

DCC 17.22 16.99 13.77 16.35

DCC-nl 17.16 16.16 13.45 13.22

OLS 15.72 14.83 12.86 17.30

SHR-l 15.54 13.27 12.63 14.84

SHR-nl 15.72 13.63 12.79 13.11

näıve 24.49 26.48 18.35 23.79

Table 6: Average out-of-sample GMVP loss of the diagonal GAS models, the RLS and the bench-

mark models for monthly portfolio returns. The length of the estimation window is 10 years

(T = 120), the out-of-sample forecasting period ranges from July 1973 to February 2019 (548 ob-

servations). Bold numbers indicate the smallest average GMVP loss and grey shaded cells indicate

that the model belongs to the 90% Model Confidence Set.

line with the results for the experiments based on daily data. These results regarding the
forecast performance are corroborated by the results of the SPA test, which are provided in
the online Appendix D.

A visual inspection of the period-wise accumulated out-of-sample GMVP losses for the
48-Ind portfolio (see Figure 3) again indicates gains in the out-of-sample fit of RLS-shr
relative to the static SHR-nl benchmark and the two other dynamic models in the 2007-2008
financial crisis. In contrast to the daily results, however, the out-of-sample performance of
RLS-shr appears to be uniformly better than that of the static SHR-nl, as shown by the
overall positive trend in the accumulated loss differences also in tranquil periods.

5 Conclusion

In this paper, we propose to use the Kempf and Memmel (2006) loss function in order to
model the weights of the global minimum variance portfolio (GMVP). We provide a new
theoretical result justifying the use of the loss function, and propose tractable time series
models for the portfolio weights. While all of these models make extensive use of the Kempf
and Memmel (2006) loss function, we consider two types of dynamic specifications: Recursive
least squares (RLS) with forgetting factor, as well as generalized autoregressive score (GAS).
All of our proposed specifications are invariant with respect to the choice of baseline asset,
which is important both conceptually and practically.
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Figure 3: Difference in accumulated out-of-sample GMVP loss for SHR-nl versus RLS-shr (red

line), SHR-nl versus DCC-nl (blue line) and SHR-nl versus d-GAS-cβ0-shr-ta (black line) for the

48-Ind portfolio with n = 48 and an estimation window of length T = 120. A positive loss difference

indicates that the other model outperforms SHR-nl.

In order to use our GMVP models for out-of-sample portfolio weight forecasting in large
dimensions we propose to regularize them using nonlinear shrinkage. We use the latter
technique for long-run mean targeting (when applied to GAS) and for initializing the au-
toregressive model recursions (when applied to RLS). In out-of-sample forecast experiments,
we find that RLS combined with nonlinear shrinkage (RLS-shr) performs particularly well
across a broad range of empirical settings, covering daily and monthly data as well as various
ratios of n (number of assets) over T (length of estimation sample). Unlike any other model
we consider, the RLS-shr approach is contained in the 90% Model Confidence Set (Hansen
et al., 2011) in all of the experiments. This finding indicates that the approach manages
to adjust the predicted portfolio weights (in particular, the amount of shrinkage and the
forgetting factor governing the weights’ dynamic properties) in a way that matches the data
at hand.
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A Elicitability of GMVP weights

We begin with stating an auxiliary result. While the result is straightforward, we are not
aware of a reference and thus provide a proof.

Lemma 1. A mixture of two n−variate distributions with mean vectors µa, µb and covariance
matrices Σa,Σb has precision matrix

Σ−1π =
π(1− π)

1 + π(1− π)d′V −1π d
dd′V −1π ,

where π ∈ [0, 1] is the mixture probability for the first component, and

d = (µa − µb),
Vπ = πΣa + (1− π)Σb.

Proof. The covariance matrix of the mixture is given by

Σπ = Vπ + (µa, µb)

(
π(1− π) −π(1− π)
−π(1− π) π(1− π)

)(
µ′a
µ′b

)
.

The result then follows from a variant of the Woodbury matrix identity (Petersen and Pe-
tersen, 2012, Equation 159).

To discuss elicitability, we next introduce some notation. Let G denote the family of n-
variate continuous distributions with finite mean vector and covariance matrix. For a typical
member G of this family, we denote the covariance matrix associated with G by Σ(G). The
(n− 1)× 1 vector β1:n−1(G) contains the associated GMVP weights for the first n− 1 assets
(the remaining weight is implied by the constraint that the weights sum to unity). Moreover,
the n×1 vector β(G) is given by (β0(G), β1:n−1(G)′)′, where the first element is the expected
GMVP return implied by G.

Proposition 1. β1:n−1 does not have convex level sets. That is, a convex combination Gπ

of two distributions Ga, Gb ∈ G such that β1:n−1(Ga) = β1:n−1(Gb) = b1:n−1 generally has
β1:n−1(Gπ) 6= b1:n−1.

Proof. Follows from Lemma 1. As a simple example, the violation can be checked for the
case n = 2, Σ(Ga) = Σ(Gb) = I2, µ(Ga) = (1, 1)′ and µ(Gb) = (2, 2)′.

Since β1:n−1 does not have convex level sets, it can not be elicitable. The necessity of
convex level sets for elicitablity is formally stated for the case of a univariate predictand in
Gneiting (2011, Theorem 6). However, the condition is also necessary in the present case of
an n − 1 variate predictand, c.f. the proof of Lemma 1 in Lambert et al. (2008) as well as
the discussion by Fissler and Ziegel (2019, p. 1170).

Since β is elicitable, it must have convex level sets. For example, consider two distribu-
tions Ga, Gb ∈ G such that Σ(Ga) ∝ Σ(Gb) and β0(Ga) = β0(Gb). This setup implies that
β(Ga) = β(Gb). Using Lemma 1 and the fact that(

µ(Ga)− µ(Gb)
)′

Σ(Ga)
−1ι = 0,

it can be shown that Σ(Gπ)−1ι ∝ Σ(Ga)
−1ι and hence β(Gπ) = β(Ga) = β(Gb), which

illustrates that β has convex level sets.
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B Invariance of the GMVP models

B.1 Preliminaries

In order discuss the invariance of the dynamic GMVP models based on the RLS recursion
(in Section 3.1) and the GAS specifications (in Section 3.2), we begin with stating the
relationship between the auxiliary regressions identifying the GMVP weights for different
baseline assets.

When asset n is used as baseline asset, then the GMVP auxiliary regression (as repro-
duced from Section 2.1) is

Yt = X ′tβt + εt, (A-1)

Yt = Rnt, X ′t = (1, Rnt −R1t, . . . , Rnt −Rn−1t),

with expected GMVP return β0t and GMVP weights

w∗it =

{
βit i = 1, . . . , n− 1,

1−
∑n−1

j=1 βjt i = n.

Suppose we select a different baseline asset, say asset k instead of asset n. Then the
corresponding variables in the GMVP regression of the form (A-1) are given by

Ỹt = Rkt, X̃ ′t = (1, Rkt −R1t, . . . , Rkt −Rk−1t, Rkt −Rnt,

Rkt −Rk+1t, . . . , Rkt −Rn−1t).

These regression variables associated with baseline asset k obtain from those for baseline
asset n according to the one-to-one transformation

Ỹt = d′kXt + Yt, X̃t = RkXt, (A-2)

where

d′k = (0,−e′k), Rk =

(
1 0′n−1
0n−1 Sk

)
,

Sk =

 Ik−1 −ιk−1 0k−1×n−k−1
0′k−1 −1 0′n−k−1
0n−k−1×k−1 −ιn−k−1 In−k−1

 .

Here we have used ι` to denote the `-dimensional vector full of ones, 0` to denote the `-
dimensional Null vector, 0`1×`2 to denote the (`1 × `2)-dimensional Null matrix and ek to
denote the k’th column of the (n−1)-dimensional identity matrix In−1. For the permutation
matrix Rk it holds that

Rk = R−1k , R′kdk = −dk. (A-3)

Using the equalities Yt = Ỹt + d′kX̃t and Xt = RkX̃t resulting from Equations (A-2) and
(A-3) in the GMVP regression (A-1) for baseline asset n, yields the following equivalent
GMVP regression for baseline asset k:

Ỹt = X̃ ′tβ̃t + εt, (A-4)
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with

β̃t = R′kβt − dk, (A-5)

w∗it =

{
β̃it i = 1, . . . , k − 1, k + 1, . . . , n

1−
∑n−1

j=1 β̃jt i = k,

and expected portfolio return β̃0t. An immediate implication of Equation (A-5) is that the
coefficients βt in the GMVP regression used to identify the GMVP weights under baseline
asset n are in one-to-one correspondence to the coefficients β̃t in the GMVP regression
associated with baseline asset k equivalently identifying the GMVP weights. Moreover,
Equation (A-4) shows that the error terms of the GMVP regressions for both baseline assets
are the same. Whence the value of the loss function (4) computed for (Yt, Xt, βt) is the same
as that computed for (Ỹt, X̃t, β̃t).

With the one-to-one mapping between (Yt, Xt, βt) and (Ỹt, X̃t, β̃t) as given by Equations
(A-2) and (A-5) we can now discuss the invariance of our proposed dynamic GMVP models
with respect to the selection of the baseline asset. For the invariance of a dynamic GMVP
model, it is necessary, first, that there exists a parametrization (including initial conditions)
for the model associated with baseline asset k which leads to the same predictions for the
GMVP weights as the model associated with baseline asset n which requires according to
Equation (A-5) that the predictions satisfy β̃t+1 = R′kβt+1 − dk ∀t and, second, that this
parametrization for baseline asset k is in one-to-one correspondence with that for baseline
asset n. Since for β̃t = R′kβt−dk the loss function for (Yt, Xt, βt) is the same as for (Ỹt, X̃t, β̃t)
it follows that under those two conditions the M-estimator as defined in Equation (7) is
invariant w.r.t. the choice of the baseline asset and leads to the same estimates for the
predicted GMVP weights.

B.2 Invariance of the RLS model

In Lemma 2 we provide the parametrization for the RLS model of Section 3.1 for baseline
asset k which leads to the same GMVP predictions as the RLS model for baseline asset n.

Lemma 2. Consider the RLS model for baseline asset n given by

βt+1 = βt +
Ω−1t−1

λ+X ′tΩ
−1
t−1Xt

Xt(Yt −X ′tβt), (A-6)

Ωt = XtX
′
t + λΩt−1, (A-7)

with initial condition β1 and Ω0. This RLS model is equivalent to the following RLS model
for baseline asset k:

β̃t+1 = β̃t +
Ω̃−1t−1

λ̃+ X̃ ′tΩ̃
−1
t−1X̃t

X̃t(Ỹt − X̃ ′tβ̃t), (A-8)

Ω̃t = X̃tX̃
′
t + λ̃Ω̃t−1, (A-9)
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with

λ̃ = λ, (A-10)

β̃1 = R′kβ1 − dk, (A-11)

Ω̃0 = RkΩ0R
′
k. (A-12)

Specifically, for the βt’s obtained according to Equations (A-6)-(A-7) and the β̃t’s obtained
according to Equations (A-8)-(A-12) it holds that β̃t = R′kβt − dk for all t = 2, 3, . . ., as
desired.

Proof. From (A-9) with (A-10) and (A-12) it follows that

RkΩ̃tR
′
k = Ωt, t = 0, 1, 2, . . . . (A-13)

Using (A-2), (A-10) and (A-13) together with β̃t = R′kβt−dk on the r.h.s. of Equation (A-8)
shows that if β̃t = R′kβt − dk and βt+1 and β̃t+1 are generated according to Equations (A-6)
and (A-8), then it holds that β̃t+1 = R′kβt+1 − dk. This combined with the initial condition
β̃1 = R′kβ1 − dk in (A-21) completes the proof.

The implication of Equations (A-10)-(A-12) is that the parameter and initial conditions
(λ, β1,Ω0) associated with baseline asset n are in one-to-one correspondence with the pa-
rameter and initial conditions (λ̃, β̃1, Ω̃0) associated with baseline asset k. Whence the RLS
model is invariant w.r.t. the choice of the baseline asset.

B.3 Invariance of the GAS model

Lemma 3 provides the parametrization for the GAS model of Section 3.2 for baseline asset
k which leads to the same GVMP predictions as the GAS model for baseline asset n.

Lemma 3. Consider the GAS model in Equations (14)-(15) for baseline asset n written as

βt+1 = c+Bβt − A(Et−1[XtX
′
t])
−1Xt(Yt −X ′tβt), (A-14)

Et[Xt+1X
′
t+1] = κEt−1[XtX

′
t] + (1− κ)XtX

′
t, (A-15)

with initial condition β1 and E0[X1X
′
1]. This GAS model is equivalent to the following GAS

model for baseline asset k:

β̃t+1 = c̃+ B̃β̃t − Ã(Et−1[X̃tX̃
′
t])
−1X̃t(Ỹt − X̃ ′tβ̃t), (A-16)

Et[X̃t+1X̃
′
t+1] = κEt−1[X̃tX̃

′
t] + (1− κ)X̃tX̃

′
t, (A-17)

with

c̃ = R′k(c+ dk −Bdk), (A-18)

B̃ = R′kBR
′
k, (A-19)

Ã = R′kAR
′
k, (A-20)

β̃1 = R′kβ1 − dk, (A-21)

E0[X̃1X̃
′
1] = RkE0[X1X

′
1]R

′
k. (A-22)
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Specifically, for the βt’s obtained according to Equations (A-14)-(A-15) and the β̃t’s obtained
according to Equations (A-16)-(A-22) it holds that β̃t = R′kβt − dk for all t = 2, 3, . . ., as
desired.

Proof. From Equations (A-17) and (A-22) it follows that

RkEt[X̃t+1X̃
′
t+1]R

′
k = Et[Xt+1X

′
t+1], t = 0, 1, 2, . . . . (A-23)

Using (A-2), (A-18)-(A-19) and (A-23) together with β̃t = R′kβt−dk on the r.h.s. of Equation
(A-16) shows that if β̃t = R′kβt− dk and βt+1 and β̃t+1 are generated according to Equations
(A-14) and (A-16), then it holds that β̃t+1 = R′kβt+1 − dk. This combined with the initial
condition β̃1 = R′kβ1 − dk in (A-21) completes the proof.

Equations (A-18)-(A-22) show that the parameters (c, B,A, β1,E0[X1X
′
1]) associated with

baseline asset n are in one-to-one correspondence to the parameters (c̃, B̃, Ã, β̃1,E0[X̃1X̃
′
1])

associated with baseline asset k. This implies that the GAS model without any restrictions
on its parameters (c, B,A) is invariant w.r.t. the choice of the baseline asset.

However, restrictions on the GAS parameters can, depending on the form of the restric-
tion, violate the necessary one-to-one correspondence of the parameterizations. This is the
case for the natural restriction to assume that the matrices A = (aij) and/or B = (bij) are
diagonal, say

A = diag(a00, a11, . . . , an−1n−1), B = diag(b00, b11, . . . , bn−1n−1).

Then it is easy to verify by using (A-19) and (A-20) that Ã and B̃ are in contrast to A and
B not diagonal, unless we restrict the diagonal elements such that

A = diag(a00, a11, . . . , a11), B = diag(b00, b11, . . . , b11), (A-24)

or

A = diag(a00, a00, . . . , a00), B = diag(b00, b00, . . . , b00).

The diagonal GAS models we use in our empirical application are based on the restriction
given in Equation (A-24) and are therefore invariant w.r.t. choice of the baseline asset (see
Section 3.2.2).

C Statistical inference based on the M-estimator

For estimating the parameters θ of our proposed dynamic GMVP models specifying a func-
tion for βt = β(θ, Zt−1) = βt(θ) we use the NLS estimator as given in Equation (7), repeated
here for convenience:

θ̂ = arg min
θ

1

T

T∑
t=1

L (βt(θ), Rt) , L (βt(θ), Rt) = [Yt −X ′tβt(θ)]2. (A-25)

The nonlinear function βt(θ) for the RLS-GMVP model is given in Equation (13) and that for
the GAS-GMVP model in Equation (14). For solving the minimization problem in Equation
(A-25) we use the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
algorithm based on analytical gradients which are given in Section C.2 below.
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C.1 Asymptotic distribution

Under standard regularity conditions for M-estimators such as those of Amemiya (1985,
Theorems 4.1.1 and 4.1.3), the NLS estimator θ̂ in Equation (A-25) is consistent and asymp-
totically normal with

√
T (θ̂ − θ) d→ N (0, D−1WD−1), (A-26)

where

D = lim
T→∞

T−1
T∑
t=1

E
[
∂gt(θ)

∂θ′

]
, W = lim

T→∞
T−1

T∑
t=1

E [gt(θ)gt(θ)
′] , (A-27)

and gt(θ) = ∂L(βt(θ), Rt)/∂θ is the gradient of the loss function1.
The asymptotic covariance matrix of the M-estimator as given by Equations (A-26)-(A-

27) comprises the expected outer-product of the gradient of the loss function E[gt(θ)gt(θ)
′]

and the expected Hessian E[∂gt(θ)/∂θ
′].

The gradient of the GMVP loss function is given by

gt(θ) =
∂L(βt(θ), Rt)

∂θ
=
∂βt(θ)

′

∂θ

∂L(βt(θ), Rt)

∂βt
,

with

∂L(βt(θ), Rt)

∂βt
= ∇t = −2Xt[Yt −X ′tβt(θ)],

so that its expected outer product obtains as

E [gt(θ)gt(θ)
′] = 4E

(
[Yt −X ′tβt(θ)]

2 ∂βt(θ)
′

∂θ
XtX

′
t

∂βt(θ)

∂θ′

)
.

The Hessian of the GMVP loss function is given by

∂gt(θ)

∂θ′
=
∂βt(θ)

′

∂θ

∂∇t

∂θ′
+ (∇′t ⊗ Im)

∂vec [∂βt(θ)
′/∂θ]

∂θ′
,

where vec(·) denotes the operator which stacks the columns of a matrix into a vector, and
⊗ is the Kronecker matrix product. It follows that

E
[
∂gt(θ)

∂θ′

]
= E

(
Et−1

[
∂βt(θ)

′

∂θ

∂∇t

∂θ′
+ (∇′t ⊗ Im)

∂vec [∂βt(θ)
′/∂θ]

∂θ′

])
= E

(
∂βt(θ)

′

∂θ
Et−1

[
∂∇t

∂θ′

])
= 2E

(
∂βt(θ)

′

∂θ
XtX

′
t

∂βt(θ)

∂θ′

)
.

1Patton et al. (2019) provide specific sufficient conditions for the consistency and asymptotic normality
(of the form as in Equation A-26) for an M-estimator similar to ours. As in their work, our estimator
minimizes a consistent loss function for dynamically evolving parameters (βt), which are given as functions
that are measurable in Ft−1 and continuous in the static parameters (θ).
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Assuming that

T−1
T∑
t=1

gt(θ)gt(θ)
′ − T−1

T∑
t=1

E [gt(θ)gt(θ)
′]

p→ 0,

T−1
T∑
t=1

∂gt(θ)

∂θ′
− T−1

T∑
t=1

E
[
∂gt(θ)

∂θ′

]
p→ 0,

the components of the asymptotic covariance matrix of the M-estimator W and D in Equa-
tions (A-26) and (A-27) can be consistently estimated by

Ŵ = T−1
T∑
t=1

gt(θ̂)gt(θ̂)
′

= T−1
T∑
t=1

4
[
Yt −X ′tβt(θ̂)

]2 ∂βt(θ̂)
′

∂θ
XtX

′
t

∂βt(θ̂)

∂θ′
,

and

D̂ = T−1
T∑
t=1

∂gt(θ)

∂θ′

= T−1
T∑
t=1

2
∂βt(θ̂)

′

∂θ
XtX

′
t

∂βt(θ̂)

∂θ′
.

These estimates require to compute the gradients ∂βt(θ̂)/∂θ for which we use their analytical
form.

C.2 The gradients ∂βt(θ)/∂θ for the RLS and GAS model

For the RLS model

βt = βt−1 +
Ω−1t−2Xt−1

λ+X ′t−1Ω
−1
t−2Xt−1

(Yt−1 −X ′t−1βt−1),

with θ = λ the first derivative of βt(λ) obtains recursively as

∂βt(λ)′

∂λ
=

∂βt−1(λ)′

∂λ
+
{

(Ψt−2Xt−1)
′(λ+X ′t−1Ω

−1
t−2Xt−1)

− (Ω−1t−2Xt−1)
′(1 +X ′t−1Ψt−2Xt−1)

}
×
Yt−1 −X ′t−1βt−1(λ)

(λ+X ′t−1Ω
−1
t−2Xt−1)2

−
X ′t−1Ω

−1
t−2

λ+X ′t−1Ω
−1
t−2Xt−1

∂βt−1(λ)′

∂λ
Xt−1,

8



where

Ψt =
∂Ω−1t
∂λ

= −Ω−1t
∂Ωt

∂λ
Ω−1t .

For the GAS model

βt = c+Bβt−1 + AH−1t−1∇t−1,

with θ = (c′, vec(B)′, vec(A)′)′, the corresponding recursion for the first derivative of βt(θ) is

∂βt(θ)
′

∂θ
=

∂c′

∂θ
+
∂vec(B)′

∂θ
(βt−1(θ)⊗ In)

+
∂vec(A)′

∂θ

[
(H−1t−1∇t−1)⊗ In

]
+
∂βt−1(θ)

′

∂θ

(
2Xt−1X

′
t−1H

−1
t−1A

′ +B′
)
.

D Superior Predictive Ability Test Results

As a robustness check for the MCS results presented in Section 4, Table A1 reports p-values
of the test for Superior Predictive Ability (SPA). The test’s hypothesis is that a given bench-
mark model is at least as good as all of its competitors. Hence a small p-value yields evidence
against the benchmark model. Our implementation is based on the stationary bootstrap with
a mean block length of bT 1/3

evalc, and we use the conservative estimator µ̂u for the mean loss
differential (Hansen, 2005, p. 372).

The results in Table A1 are qualitatively very similar to the results based on the MCS
approach. In particular, successful models that are included in the MCS typically achieve
high SPA p-values when used as a benchmark model. Conversely, for poor performing models
that are not included in the MCS, the SPA p-value is typically very small. For example, the
RLS-shr model, which is contained in the MCS for all eight experiments, generally achieves
an SPA p-value exceeding five percent. In this regard, RLS-shr outperforms all other models,
each of which in at least one of the empirical experiments has a SPA p-value that is less than
one percent. By contrast, the näıve model, which is not part of the MCS for any of the eight
forecast experiments, attains an SPA p-value of zero in each case.
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Daily data Monthly data

6-FF 10-Ind 25-FF 48-Ind

n 50 50 200 200 6 10 25 48
T 250 1250 250 1250 120 120 120 120

d-GAS-cβ0 0.03 0.00 0.00 0.00 0.06 0.02 0.00 0.00
d-GAS-cβ0-ols-ta 0.00 0.00 0.00 0.00 0.19 0.02 0.00 0.00
d-GAS-cβ0-shr-ta 0.03 0.01 0.30 0.19 0.14 0.21 0.55 0.00
d-GAS-cβ0-ew 0.00 0.01 0.01 0.00 0.64 0.05 0.00 0.00
RLS-ols 0.00 0.64 0.00 0.11 0.07 0.14 0.00 0.01
RLS-shr 0.99 0.99 0.97 0.75 0.08 0.14 0.82 1.00
DCC 0.00 0.00 0.00 0.00 0.11 0.01 0.00 0.00
DCC-nl 0.75 0.70 0.80 0.98 0.11 0.35 0.02 0.00
OLS 0.00 0.00 0.00 0.00 0.89 0.54 0.00 0.00
SHR-l 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00
SHR-nl 0.62 0.01 0.96 0.40 0.79 0.11 0.24 0.00
näıve 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A1: p-values of the Hansen (2005) test for Superior Predictive Ability. Rows corre-
spond to benchmark models, columns correspond to forecast experiments. The one-sided
Null hypothesis is that the benchmark is at least as good as all competitors.
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