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Abstract Voting rules can be assessed from quite different perspectives: the axiomatic,
the pragmatic, in terms of computational or conceptual simplicity, susceptibility to
manipulation, and many others aspects. In this paper, we take the machine learning
perspective and ask how ‘well’ a few prominent voting rules can be learned by a neural
network. To address this question, we train the neural network to choosing Condorcet,
Borda, and plurality winners, respectively. Remarkably, our statistical results show that,
when trained on a limited (but still reasonably large) sample, the neural network mimics
most closely the Borda rule, no matter on which rule it was previously trained. The
main overall conclusion is that the necessary training sample size for a neural network
varies significantly with the voting rule, and we rank a number of popular voting rules
in terms of the sample size required.
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1 Introduction

Some Background on Voting Theory

Is there an optimal voting rule? This question has occupied a central role in political
and social theory for a long time, its origins can be traced back (at least) to the writings
of Ramón Llull and Nikolaus of Kues.1 The issue at hand found a particularly clear
expression in the debate between the Marquis de Condorcet and Jean-Charles de Borda
about the appropriate method to elect new members to the French Academy of Sciences
in the late 18th century. The Chevalier de Borda recognized the serious shortcomings of
the simple plurality rule used at that time by the Academy and suggested an alternative
method based on the aggregation of scores received by each candidate from the voters
– the method nowadays known as the Borda rule. Nicolas de Condorcet, then secretary
of the Academy, criticized Borda’s method by noticing that it sometimes fails to elect
a candidate that would receive majority support in a pairwise comparison against all
other candidates, a so-called Condorcet winner.2 However, an evident disadvantage of
pairwise majority comparisons of candidates is that they sometimes result in cyclic col-
lective preferences, a phenomenon already noticed by Condorcet himself. In particular,
in some voting constellations, a Condorcet winner does not exist. On the other hand,
the (perhaps less obvious) disadvantage of Borda’s rule is that the social evaluation
of two candidates not only depends on their relative position in the voters’ rankings
but on their cardinal scores, i.e. on their evaluation vis-á-vis other candidates. Borda’s
method thus violates a condition known as ‘independence of irrelevant alternatives,’
henceforth simply, binary independence.

The controversy about the ‘best’ voting rule culminated in Arrow’s famous impos-
sibility theorem (1951/63) which states that the only aggregation methods that always
produce consistent (i.e. transitive) social evaluations, respect unanimous consent in
pairwise comparisons of candidates and satisfy binary independence are the dictatorial
ones. Arrow’s theorem thus shows that every democratic (i.e. non-dictatorial) election
method suffers from some shortcomings, or even ‘paradoxes.’ But this insight has, of
course, not ended the search for the optimal election method. By contrast, it has made
the underlying problem even more urgent.

The predominant method of arguing for, or against, a particular voting method is
axiomatic. In this spirit, axiomatic characterizations have been put forward for the
Borda rule (Smith, 1973; Young, 1974; Saari, 2000), for general scoring rules (Young,
1975) and for voting methods that always choose the Condorcet winner if it exists, for
instance, the Copeland method (Henriet, 1985) and the Kemény-Young method (Young
and Levenglick, 1978).3 These and many other contributions in the same spirit have

1An introduction to the history of social choice theory with reprints of classic contributions can be
found in the volume edited by McLean and Urken (1995). For an illuminating account especially of
the role of Llull and Nikolaus (Cusanus) in this context, see also the Web edition of Llull’s writings on
electoral systems (Drton et. al., 2004) and the article Hägele and Pukelsheim (2008) on the relevant
parts in Nikolaus’ work De concordantia catholica.

2The election procedure that Llull describes in his De arte eleccionis (1299) is indeed based on
pairwise majority comparisons in the spirit of Condorcet, while the method suggested by Nikolaus of
Kues in the year 1433 for the election of the emperor of the Holy Roman Empire is the scoring method
suggested more than three centuries later by Borda (cf. McLean and Urken, 1995; Pukelsheim, 2003).

3Axiomatizations of other voting rules and related aggregation procedures include approval voting
(Fishburn, 1978), plurality rule (Goodin and List, 2006) and majority judgement (Balinski and Laraki,
2016).
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certainly deepened our understanding of the structure of the voting problem. However,
by lifting the controversy about different methods to an analogous discussion of their
respective properties (‘axioms’), the axiomatic approach has not been able to settle the
issue. And indeed, a consensus on the original question seems just as far as ever (as
argued, for instance, by Risse, 2005).

As a possible route, an ‘operations research approach’ has been proposed that tries
to single out particular election methods as solutions to appropriately defined distance
minimization problems, see Elkind et al. (2015) for a recent contribution.4 However,
a very large class of voting rules can be obtained in this way, and the problem is then
lifted to the issue of selecting the appropriate distance metric.5

Another approach is motivated by the empirical method so successful in many
other branches of science. Couldn’t one simply argue that the election methods that
are predominant in real life reveal their superiority due to the very fact that they are
widely used for deciding real issues? Doubts about the validity of this claim are in
order. Indeed, on the count of empirical success, plurality rule (i.e. the election of the
candidate who receives the greatest number of first votes) would fare particularly well.
But, if there is one thing on which the experts in voting theory agree, it is the ineptness
of that particular voting method in many contexts (see the article ‘And the looser is
... plurality voting,’ Laslier, 2011).6

Finally, starting with the seminal work of Bartholdi et al. (1989), there is now a
sizable literature that assesses voting rules in terms of their computational complexity,
see Brandt et al. (2016). While it has been argued that computational complexity may
serve as a ‘shield’ against manipulations, high complexity may also have adverse effects
on the perceived legitimacy of the outcome of a voting process.

Our Contribution

In this paper, we take a ‘quasi-empirical’ approach to assessing the complexity of a
voting rule by investigating which election method best describes the behavior of a
sophisticated machine learning method that operates in a voting environment. More
specifically, we ask which voting rule corresponds to the implicit selection mechanism
employed by a trained neural network. By answering this question we hope to shed light
on the ‘conceptual’ complexity (in a non-technical sense), or the salience of different
voting rules. Concretely, we trained a Multi-Layer Perceptron, henceforth MLP, to out-
put the Condorcet winner, the Borda winners, and plurality winners, respectively, and
statistically compare the chosen outcomes by the trained MLP. It is well-known that
MLPs are universal function approximators (Hecht-Nielsen, 1987; Funahashi, 1989), in
particular an MLP will learn any voting rule on which it is trained with arbitrary ac-
curacy provided that the size of the training sample is sufficiently large. This is where
our work comes into the play. Specifically, we investigate the relation between the

4Bednay et al. (2017) offer a ‘dual’ approach based on distance maximization.
5A noteworthy alternative approach is taken by Nehring and Pivato (2018) who argue for a gen-

eralization of the Kemény-Young method on the ground of its superior properties in the general
‘judgement aggregation’ framework in which the preference aggregation problem occurs only as one
particular special case among many others.

6There are also experimental studies with non-expert subjects on the question of the public opinion
about the ‘best’ voting method, see, e.g., Giritligil Kara and Sertel (2005). However, the problem of
these studies is that it is not clear how to incentivize subjects to give meaningful answers. Moreover,
the underlying motives of subjects seem to be particularly hard to identify in this context.
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sample size and the accuracy by which the MLP learns different voting rules. Besides
the Borda count and plurality voting, we considered two Condorcet consistent voting
methods, the Copeland rule and the Kemény-Young method. As a further point of
comparison, we also looked at 2-approval voting.

Our empirical results are clear-cut: for limited, but still reasonably large sample
sizes, the implicit voting rule employed by the MLP is most similar to the Borda rule
and differs significantly from plurality rule; the Condorcet consistent methods such as
Copeland and Kemény-Young lie in between. Indeed, the choices made by the MLP
are closer to those of the Borda rule than to those by any of the other rules no matter
whether the MLP was trained on the choice of the Condorcet, Borda, or plurality
rule. In view of its popularity and simplicity, the poor performance of plurality rule is
remarkable but confirms its bad reputation among social choice theorists. Finally, we
also find that 2-approval voting does not perform well in our analysis.7

Relation to the Literature

MLPs has been very successfully employed in pattern recognition and a great number
of related problems (Haykin, 1999).8 More generally, neural networks have been used
by econometricians for forecasting and classification tasks (McNelis, 2005); in economic
theory, they have been applied to bidding behavior (Dorsey et al., 1994), market entry
(Leshno et al., 2002), boundedly rational behavior in games (Sgroi and Zizzo, 2009) and
for financial market predictions (Fischer and Krauss, 2018; Kim et al., 2020). To the
best of our knowledge, the present application to the assessment of voting rules is novel.
The papers closest in the literature to ours are Procaccia et al. (2009) and Kubacka et
al. (2020). The goal of Procaccia et al. (2009) is to demonstrate the (PAC-)learnability
of specific classes of voting rules and to apply this to the automated design of voting
rules. Kubacka et al. (2020) investigate the learning rates for the Borda count, the
Kemény-Young method and the Dodgson method with a dozen of machine learning
algorithms. Their main motivation is to find an effective computation method for the
Kemény-Young and Dodgson methods which are known to be computationally complex
(NP-hard in the number of alternatives, see Bartholdi et al., 1989).9

It is also worth mentioning that Richards et al. (2006), in a somewhat ‘converse’
approach, employed specific voting rules in the construction of new learning algorithms
for ‘winner-takes-all’ neural networks.

The remainder of the paper is organized as follows. Section 2 introduces our frame-
work, formally defines a number of prominent voting rules and provides a brief overview
of the structure of the employed MLP. Section 3 describes the data generation process.
Section 4 gives an overview of the learning rates of our voting rules for the two-layer
perceptron and a fixed sample size of 1000 profiles in each application. Section 5 looks

7We also trained the MLP on 2-approval voting and did not find much improvement; the results
can be found at http://www.uni-corvinus.hu/~tasnadi/results.xlsx.

8Recently, a combination of neural networks has been successfully employed by Silver et al. (2016)
to defeat one of the world leading human Go champions.

9The NP-hardness results highlight that – despite the universal approximation theorem for neural
networks – even MLPs will not be able to forecast the Kemény-Young or Dodgson winners with
appropriate precision in a realistic time frame. Kubacka et al. (2020) use the Borda count as a
benchmark because of its simplicity. The Borda count could be learned by some methods with a
prediction accuracy of 100%, while the highest accuracy found for the Kemény-Young and Dodgson
methods is 85% and 87%, respectively. This confirms the results of our study below.
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in much more detail at the two-layer and three-layer perceptrons for a large range of
sample sizes, and largely confirms the results for the fixed sample. Section 6 concludes.

2 Framework

2.1 Voting rules

Let X be a finite set of alternatives with cardinality q. By P, we denote the set of all
linear orderings (irreflexive, transitive and total binary relations) on X. Let rk[x,�]
denote the rank of alternative x in the ordering � ∈ P (i.e. rk[x,�] = 1 if x is the top
alternative in �, rk[x,�] = 2 if x is second-best in �, and so on). The set of voters
is denoted by N = {1, . . . , n}. In all what follows, we will assume that n is odd. A
vector (�1, ...,�n) ∈ Pn is referred to as a profile of ballots.

Definition 1. A mapping F : Pn → 2X \ {∅} that selects a non-empty set of winning
alternatives for all profiles of ballots is called a voting rule.

Note that this definition allows for ties among the winners. The following voting
rules are among the most studied in the literature and will be the subject of our
subsequent investigation. Denote the Borda score of x ∈ X in the ordering � by
bs [x,�] := q − rk[x,�].

Definition 2. The Borda count is defined by

Borda (�1, ...,�n) := arg max
x∈X

n∑
i=1

bs[x,�i].

For a given profile (�1, ... �n) ∈ Pn, denote by v(x, y, (�i)ni=1) the number of
voters who prefer x to y, and say that alternative x ∈ X beats alternative y ∈ X
if v(x, y, (�i)ni=1) > v(y, x, (�i)ni=1), i.e. if x wins against y in pairwise comparison.
Moreover, denote by l[x,�i] the number of alternatives beaten by x ∈ X for a given
profile (�1, ...,�n).

Definition 3. The Copeland method is defined by

Cop (�1, ...,�n) := arg max
x∈X

l[x, (�i)ni=1].

In order to define the next voting rule, let

DKY (�1, ...,�n) := arg max
�∈P

∑
{x,y∈X, x�y}

v(x, y, (�i)ni=1)).

Definition 4. The Kemény-Young method chooses the top ranked alternative(s) from
the set of linear orderings in DKY , i.e.,

x ∈ Kem−Y ou (�1, ...,�n) :⇐⇒ {rk[x,�] = 1 for some � ∈ DKY (�1, ...,�n)} .

Definition 5. The plurality rule is defined by

Plu (�1, ...,�n) := arg max
x∈X

# {i ∈ N | rk[x,�i] = 1} .

4



Definition 6. The k-approval voting rule is defined by

k−AV (�1, ...,�n) := arg max
x∈X

# {i ∈ N | rk[x,�i] ≤ k} .

Definition 7. A Condorcet winner is an alternative that beats every other alternative
in a pairwise majority comparison.

Note that, if a Condorcet winner exists given a profile of ballots, it must neces-
sarily be unique. It is well-known (and easy to verify) that both the Copeland and
Kemény-Young methods are Condorcet consistent in the sense that they select the Con-
dorcet winner whenever it exists. None of the other methods listed above is Condorcet
consistent.

2.2 The Multi-Layer Perceptron

The fundamental idea behind artificial neural networks, henceforth ANNs, is that a
simplified model of the human brain could be the starting point for developing compu-
tational models. ANNs mimic the behavior of the brain by following a simple model of
connected neurons. ANNs are an appropriate tool for supervised learning. Specifically,
we provide the ANN with a set of ‘examples’ and the respective ‘correct responses.’ A
part of this data constitutes the training set from which the ANN learns the functional
relationship between the inputs (i.e. examples) and the outputs (i.e. correct responses).
Another part of the data is used for validation, that is for providing a stopping condi-
tion of the learning process. A third and final part of the data is used as a test set to
evaluate the quality of the learning process. Exposed to a training set, ANNs develop
a ‘memory’ by setting the weights between its neurons appropriately.

The original McCulloch and Pitts (1943) perceptron has a given number of inputs,
a single neuron with an activation function determining a single output. The learning
process determines the weights of the inputs based on the data provided for supervised
learning as described in the previous paragraph. Not surprisingly, a single McCul-
loch and Pitts perceptron has a limited learning capability. Therefore, in a modern
multi-layer perceptron (MLP), a number of perceptrons all facing the same inputs are
organized into a ‘layer.’ The outputs of the perceptrons of the first layer are the inputs
of the perceptrons of the next layer and so on, until one arrives at the final layer which
yields the outcome results.

While we considered a priori the more general case, it turned out that for our
purposes an MLP with two layers is sufficient. In fact it is known that two layers are
already enough to learn a large class of functions, specifically, one can show that the
two-layer perceptron is a universal function approximator, see Hecht-Nielsen (1987) and
Funahashi (1989). We checked the robustness of our results by verifying that adding
further layers only minimally improved our learning rates. Therefore, we restrict our
following description to the case of two-layers (the three- and multi-layered perceptrons
work in a completely analogous way).

To define a two-layered perceptron formally, we denote by m, p and r the number
of inputs, hidden neurons and output neurons, respectively. Figure 1 illustrates the
general structure of a two-layered perceptron. The weight matrices V ∈ R(m+1)×p and
W ∈ R(p+1)×r are determined by the backpropagation algorithm of Rumelhart et al.
(1986). The trained two-layered perceptron gathers its knowledge in V and W from
the training set, which in our case are various sets of profiles of ballots with prespecified
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Figure 1: Structure of the MLP

winners. For profiles without specification of a winner we then obtain the ‘choice’ of
the trained neural network by determining first the activation level

hj :=

m∑
i=0

vijxi , aj := g(hj) =
1

1 + e−βhj
, (2.1)

for each hidden neuron, and subsequently the activation level

ok :=

p∑
j=0

wjkaj , yk := g(ok) =
1

1 + e−βok
, (2.2)

for each output neuron, where g is the so-called activation or threshold function. For
more detailed description and analysis of neural networks, see, e.g., Haykin (1999) or
Marshland (2009).

3 Data Generation

In order to investigate the speed and accuracy with which the MLP learns different
voting rules, we randomly generated a set of profiles using the impartial culture (IC)
assumption according to which each preference relation is assigned independently and
with equal probability to each voters.10

We considered cases with 7, 9 or 11 voters and 3, 4 or 5 alternatives. We en-
coded preference orderings in the following way. Let X = {x1, x2, . . . , xq}. If xi1 �
xi2 � · · · � xiq , where (i1, . . . , iq) is a permutation of (1, . . . , q), we store the respec-
tive pairwise comparisons in a vector corresponding to the upper triangular matrix
(ajk)

q,q
j=1,k=j+1 with ajk = 1 if xj � xk and ajk = 0 otherwise. For example, the

ordering x1 � x4 � x2 � x3 is coded by (1, 1, 1, 1, 0, 0) corresponding to the binary
comparisons x1 vs. x2, x1 vs. x3, x1 vs. x4, x2 vs. x3, x2 vs. x4, x3 vs. x4. A profile

10In the working paper Burka et al. (2016), we also report the results for the anonymous impartial
culture (AIC) assumption and other underlying distributions. A careful inspection of the results shows
that the influence of the underlying distribution is small; if at all, our main findings are even more
pointed under the AIC assumption.
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is then given by a row vector with n · q(q − 1)/2 entries. We did not include results
for encoding a preference relation by the simple ordering of alternatives, since this
encoding favored the Borda count for obvious reasons.

To complete an input of a training set we also specified a target alternative, the
‘winner(s)’ of the respective voting rule. For this we used the so-called ‘1-of-N encod-
ing,’ e.g. the indicator vector (0, . . . , 0, 1, 0, . . . , 0), in which the ith coordinate equals
1 if and only if the respective alternative is a winner in that profile for the investigated
voting rule.

When training for a set of winners, we considered three scenarios. First, we trained
on the subset of profiles with a (necessarily unique) Condorcet winner from the ran-
domly generated profiles; secondly, we trained the Borda count as a set-valued function
on the set of randomly generated profiles; and thirdly, we trained the plurality rule as
a set-valued function again on the set of randomly generated profiles. In the first sce-
nario, we decided to train on Condorcet winners (and used only profiles for which a
Condorcet winner exists) because we did not want to commit to a particular Condorcet
consistent extension.

For all scenarios, we generated random training sets ranging from 100 to 3000
profiles. Section 4 gives an overview of the results for sample size 1000 and the two-
layered perceptron, while Section 5 uses the entire range of sample sizes and also
presents the results for the three-layered perceptron in the case of 11 voters (to keep
the number of figures manageable, we omitted the other cases for the three-layered
perceptron; they can be found at http://www.uni-corvinus.hu/~tasnadi/results.
xlsx).

The generation of profiles, training sets, the training of the neural networks and,
subsequently, the ‘predicting’ of the winning alternative(s) without specified target
values was done in MatLab. The statistical evaluation was carried out in Excel. All
program codes are available from the authors upon request.11

To train an MLP we generated five random sample training seeds and took five
random network seeds for the training procedure of the MLP. Finally, we selected one
random testing seed pair for each training seed to generate test samples as well. For
a given random training seed the five trained MLPs were each tested using the sample
based on the respective testing seed pair. An alternative was selected as a winner on a
test sample if it was selected by the majority of the five MLPs (i.e. selected by at least
three out of the MLPs corresponding to the five possible network seeds). In order to
determine the prediction accuracy, we used the five test seeds and took the average of
the five hitting ratios to stabilize our results. Altogether, we evaluated and aggregated
25 results for each profile and for each testing sample to obtain a prediction accuracy
for a given number of voters and alternatives.

4 Overview of Results for Fixed Sample Size

To give a first overview of the results as a function of the number of alternatives
and the number of voters, we consider in this section the results from the two-layered
perceptron with a fixed sample size of 1000 profiles. First, consider the case in which
we took profiles with a Condorcet winner as training sample and the Condorcet winner

11For all results of the present study, we used the MatLab MLP; by contrast, the results of Burka
et al. (2016) were obtained with Marshland’s (2009) Python code.
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as target value. Table 1 shows the corresponding results for three, four, and five
alternatives and 7, 9, and 11 voters, respectively. The table entries give the average
percentages of those cases in which a trained MLP selects a winner of the method
appearing in the respective column heading. As can be seen, the Borda count performs
best for the cases with five alternatives and for the case with four alternatives and 11
voters. It is particularly remarkable that the Borda count outperforms in these cases
both the Copeland and the Kemény-Young method even though these are Condorcet
consistent while the Borda is not.

Method Cop Kem-You Borda Plu 2-AV
q=3, n=7 96.12% 96.12% 94.36% 86.82% 80.94%
q=3, n=9 97.88% 97.88% 95.60% 88.28% 79.00%
q=3, n=11 97.58% 97.56% 94.50% 87.12% 77.80%
q=4, n=7 96.68% 93.58% 92.90% 80.80% 84.00%
q=4, n=9 92.54% 89.40% 92.30% 76.98% 82.62%
q=4, n=11 89.58% 86.38% 90.72% 75.76% 81.40%
q=5, n=7 84.30% 80.92% 87.12% 71.26% 78.86%
q=5, n=9 78.14% 74.48% 81.98% 66.22% 74.66%
q=5, n=11 77.02% 72.76% 80.16% 63.44% 72.78%

Table 1: Trained on Condorcet winners

While the two Condorcet consistent methods are also not far from MLPs choices
(with a slight advantage of the Copeland method as compared to the Kemény-Young
method), the other methods differ significantly, in particular for more alternatives.
Interestingly, and in contrast to the plurality rule, coincidence of MLPs choice with
the 2-approval voting winner is larger for four alternatives than for three and five
alternatives.12

We obtain essentially the same ordering of methods in terms of coincidence with
MLP’s choices if we train the neural network either on Borda winners (see Table 2),
or on plurality winners (see Table 3). In these cases the Borda count performs unani-
mously best among all voting methods. Not surprisingly, MLP’s choice behavior comes
even closer to the Borda count if trained to choose the Borda winner. On the other
hand, it is remarkable that, except in the case of three alternatives and 7 voters, plu-
rality rule does not seem to perform better even when the MLP is trained to choose
the plurality winner (compare the entries in the column for plurality rule across Tables
1-3).

It is worth mentioning that the great majority of percentages in Tables 1-3 is de-
creasing both in the number of alternatives and in the number of voters for all investi-
gated voting rules. However, this does not necessarily mean that the MLP learns these
rules with lower accuracy for higher number of alternatives and voters. The reason is
that an increase in the number of alternatives and voters over-proportionally increases
the size and dimension of the input data; for instance, for q = 3 and n = 7 the dimen-
sion of the input (under binary encoding) is n · q(q− 1)/2 = 21 while it grows to 66 as
we move to the case q = 4 and n = 11.

12In evaluating the differences in percentages one must keep in mind that different methods agree
on many profiles, so that even small differences in percentage points may hint at significant underlying
differences in learning performance.
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Method Cop Kem-You Borda Plu 2-AV
q = 3, n = 7 93.60% 93.60% 96.50% 86.08% 83.24%
q = 3, n = 9 93.36% 93.34% 98.20% 87.08% 81.82%
q = 3, n = 11 92.40% 92.32% 97.86% 86.48% 80.84%
q = 4, n = 7 88.84% 86.14% 95.38% 78.82% 85.62%
q = 4, n = 9 87.40% 84.30% 94.08% 75.86% 83.94%
q = 4, n = 11 87.32% 84.16% 92.78% 75.34% 82.86%
q = 5, n = 7 82.00% 78.70% 88.26% 69.88% 78.60%
q = 5, n = 9 78.42% 74.94% 84.20% 65.36% 76.26%
q = 5, n = 11 76.56% 72.60% 80.96% 62.88% 73.10%

Table 2: Trained on Borda winners

Method Cop Kem-You Borda Plu 2-AV
q = 3, n = 7 94.44% 94.42% 95.64% 86.24% 82.54%
q = 3, n = 9 92.00% 91.82% 94.46% 86.16% 80.14%
q = 3, n = 11 89.76% 89.52% 92.62% 84.86% 78.48%
q = 4, n = 7 80.52% 78.10% 83.74% 73.16% 80.38%
q = 4, n = 9 76.48% 73.82% 79.56% 69.72% 75.54%
q = 4, n = 11 77.42% 74.32% 80.52% 69.58% 75.46%
q = 5, n = 7 66.62% 63.68% 70.12% 59.90% 67.04%
q = 5, n = 9 65.56% 62.72% 67.32% 57.02% 64.34%
q = 5, n = 11 60.78% 57.10% 61.74% 53.02% 58.80%

Table 3: Trained on plurality winners

5 Detailed Results

In this section, we investigate the robustness of our results both with respect to the
sample size and the depth of the MLP. In particular, we examine if an increase in the
depth of the network improves the learning accuracy for identical sample sizes. We
do not find much improvement both with respect to the speed and the accuracy of
learning; moreover, the absence of a positive effect of increasing the depth of the MLP
by adding a layer holds essentially at all sample sizes.

Since the results are qualitatively similar for all number of voters, we present
here only the results with 11 voters, all other results are downloadable at http:

//www.uni-corvinus.hu/~tasnadi/results.xlsx.13 The results generally confirm
the picture of the previous section. For ‘small’ sample sizes the choices of the MLP
resemble most closely the Borda rule no matter if it was trained on Condorcet winners,
the Borda count or the plurality rule. But, of course, the size of the training sample has
to be compared to the complexity of the problem. For five alternatives, the Borda rule
unanimously outperformed all other rules for all investigated sample sizes and all train-
ing treatments. The Borda rule also outperformed all other rules when the MLP was

13The downloadable files also contain the prediction accurateness of the two-layered perceptron with
5 and 10 hidden neurons, and for the three-layered perceptron with 5 and 10 hidden neurons in the
first hidden layer and 5 and 10 hidden neurons in the second hidden layer.
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trained either on plurality rule or the Borda rule itself. The picture becomes different
only when the MLP was trained to choose the Condorcet winner; in that case, MLP’s
choices are closer to the Borda count for sample sizes up to slightly more than 1000 in
the case of four alternatives, up to a few hundreds in the case of three alternatives.

5.1 Trained on Condorcet winners

The following six figures (Figures 2 – 7) present the results for the two-layered (2LP)
and three-layered perceptrons (3LP) when trained on the set of profiles with Condorcet
winners.

Figure 2: 2LP trained on Condorcet winners for q = 3

In Figure 2, we see that for three alternatives and sample sizes of more than 500 the
2LP trained on the set of profiles with Condorcet winners makes choices most similar
to the Copeland and the Kemény-Young method with a slight (and barely visible)
advantage for the Copeland method. At a sample size of 3000, the 2LP chooses the
same alternative as the Kemény-Young and the Copeland method in 97.43% of the
cases (for either rule). On the other hand, for small sample size of up to 400 the 2LP
behaves more like the Borda count.

Figure 3 shows the case of four alternatives. One can see that when trained on
the set of profiles with Condorcet winners the 2LP behaves now more similar to the
Borda count than to the two Condorcet consistent methods even for sample sizes up to
1100. For sample sizes larger than 1100 it comes closest to the Copeland method. For
a sample size of 3000 the trained 2LP makes choices according to the Copeland, the
Kemény-Young, and the Borda methods in 97.19%, 93.85% and 91.29% of the cases,
respectively.

Figure 4 shows the case of five alternatives. Now the 2LP even though trained on
the set of profiles with Condorcet winners behaves most similar to the Borda count for
all considered sample sizes. The trained 2LP behaves still far more like the Copeland
than the Kemény-Young method. For a sample size of 3000 the 2LP makes the same
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Figure 3: 2LP trained on Condorcet winners for q = 4

Figure 4: 2LP trained on Condorcet winners for q = 5

11



choice as the Copeland, Kemény-Young and Borda methods in 88.35%, 84.2% and
89.17% of the cases, respectively.

Figures 5 – 7 contain the respective results for the three-layered perceptron; the
differences between the 2LP and 3LP are minimal.14

Figure 5: 3LP trained on Condorcet winners for q = 3

5.2 Trained on the Borda count

Figure 8 shows the learning rates of the 2LP when trained on the Borda winners. The
rates for the Borda count itself are close to 100%. We also see almost identical per-
centages for the Copeland and Kemény-Young methods (again with a slight advantage
for the Copeland method). Interestingly, the 2LP behaves more like the two Condorcet
consistent methods than like the other two scoring methods, i.e. plurality rule and
2-approval voting. The learning accuracy for the Borda count at a sample size of 3000
equals 97.35%. The rates for the Copeland and Kemény-Young methods are 92.21%
and 92.19%, respectively. To interpret these figures, one has to keep in mind that
for three alternatives the choices of different rules are more similar than for a larger
number of alternatives.

The picture for four and five alternatives (Figures 9 and 10) is very similar. Now,
the advantage for the Copeland over the Kemény-Young method is more pointed. The
learning accuracy for the Borda count at a sample size of 3000 equals 97.15% for q = 4
and 93.31% for q = 5. As a side observation, we note that in contrast to the case of
three alternatives 2-approval voting fares better than plurality rule.

Figures 11 – 13 show the results from the three-layer perceptron. One can see that
adding a further layer does not change the graphs much; indeed, the improvement in
predicting the Borda winner is minimal at larger sample sizes. The learning accuracy
for the Borda count at a sample size of 3000 equals 97.57% for q = 3 which is just slightly

14Inspecting the precise numerical values one finds (surprisingly, perhaps) that the 3LP differs in
slightly more cases from the voting rule on which it was trained than the 2LP.
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Figure 6: 3LP trained on Condorcet winners for q = 4

Figure 7: 3LP trained on Condorcet winners for q = 5
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Figure 8: 2LP trained on the Borda count for q = 3

Figure 9: 2LP trained on the Borda count for q = 4
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Figure 10: 2LP trained on the Borda count for q = 5

Figure 11: 3LP trained on the Borda count for q = 3
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higher than in case of the 2LP. We conclude that adding a further layer improves our
results just minimally. Interestingly, for small sample sizes the 2LP performs even
better than the 3LP. For q = 3, the cutting sample size is 500 for which both the two-
layer and the three-layer perceptron’s prediction accuracy for the Borda count equals
95.96%.

Figure 12: 3LP trained on the Borda count for q = 4

For q = 4, the learning accuracy for the Borda count at a sample size of 3000 equals
97.58%. Again, for lower and medium ranges of the sample sizes the 2LP performs
better than the 3LP; for instance, at a sample size of 1000 the 2LP’s prediction accuracy
for the Borda count equals 92.78%, while the same value for the 3LP is only at 91.22%.

Finally, for q = 5 the learning accuracy of the 3LP for the Borda count at a sample
size of 3000 is 91.84%. Although the rate is somewhat lower than for three and four
alternatives, the trained 3LP still behaves much more like the Borda count than any of
the other methods. Now the Copeland method performs significantly better than the
Kemény-Young method.

5.3 Trained on plurality rule

In line with the results of Section 4, the 2LP hardly learned plurality rule for any
number of alternatives (see Figures 14 – 16), and adding a further layer does not help
the situation. Since plurality rule is one of the simplest voting rules it is surprising to
see the MLP performing so poorly. One possible reason is the fact the input (individual
preferences) contains a lot of superfluous information since only the top alternatives
count.

For all numbers of alternatives, even though the MLP was trained on plurality
rule, the Borda count performed best followed by the Copeland and Kemény-Young
methods. Plurality rule itself is on the fourth rank beating only 2-approval voting.
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Figure 13: 3LP trained on the Borda count for q = 5

Figure 14: 2LP trained on the plurality rule for q = 3
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Figure 15: 2LP trained on the plurality rule for q = 4

Figure 16: 2LP trained on the plurality rule for q = 5
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6 Concluding Remarks

Our results demonstrate that among a number of popular voting rules, the Borda
count enjoys a special status from the viewpoint of machine learning. Indeed, among a
number of popular voting rules, it seems to be the one that best represents the overall
behavior of our trained MLP.

Due to the theoretical properties of MLPs, every voting rule can be learned by the
trained network. In particular, if trained on some rule different from the Borda count
the MLP’s choices must necessarily converge to the choices of that rule. However, as
we have shown, the required size of the training sample can become very large for some
rules. For the Condorcet consistent rules, the sample size had to be beyond 1000 in
the case of three and four alternatives, and beyond 3000 in the case of five alternatives.
For smaller sample sizes, the Borda count outperformed both the Copeland and the
Kemény-Young method. The Borda count also outperformed plurality rule in all cases
and for all sample sizes even when the MLP was trained to choose the plurality winner.

Thus, from a machine learning perspective, the Borda count can be viewed as the
most salient of a number of popular voting methods: it is the voting rule that best
describes the behavior of a trained neural network in a voting environment for limited
sample sizes. One should be careful, however, in using this finding as an argument
for the general superiority of the Borda count vis-à-vis other voting rules, even the
ones tested here. Indeed, our results may ‘only’ show that the internal topology of
the employed MLP is best adapted to the ‘linear’ mathematical structure underlying
the Borda rule. But then again, if this common underlying structure is successful in a
number of different application areas, the Borda count must at least be considered as
a serious contender in the competition for ‘optimal’ voting rule.

One may interpret learning by neural networks also as a device to select a ‘suit-
able’ degree of internal complexity. On such an account, plurality rule and its variant
2-approval turn out to be too simple while the two investigated Condorcet consistent
methods seem to be too sophisticated. When choosing a winner, the MLP obviously
uses more information than only the top ranked alternatives in each ballot. On the
other hand, it does also not seem to make the pairwise comparisons necessary in order
to determine the Copeland or Kemény-Young winners. The comparison of the learn-
ing rates of the Copeland method vis-a-vis the Kemény-Young method is well in line
with this interpretation: the computationally more complex of these two methods, the
Kemény-Young rule, performs consistently worse.

Based on our analysis one might conjecture that the intuitive choices of humans
not trained in social choice theory would also be more in line with the Borda count
than with other voting methods. However, this would have to be examined by carefully
designed experiments with human subjects.
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