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Abstract

We study a voting model with partial information in which the evaluation
of social welfare must be based on information about agents’ top choices plus
qualitative background conditions on preferences. The former is elicited indi-
vidually, while the latter is not. The social evaluator is modeled as an imprecise
Bayesian characterized by a set of priors over voters’ complete ordinal preference
profiles. We apply this ‘frugal aggregation’ model to multi-dimensional budget
allocation problems and propose a solution concept of ‘ex-ante’ Condorcet win-
ners. We show that if the social evaluator has symmetrically ignorant beliefs
over profiles of quadratic preferences, the ex-ante Condorcet winners refine the
set of Tukey medians (Tukey, 1975).
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1 Introduction

Many economic and political decisions involve the allocation of resources under a

budget constraint. Examples are the allocation of public goods, the redistribution

across classes of beneficiaries, the allocation of tax burden, the choice of intertemporal

expenditure streams, or the macro-allocation between expenditure, tax receipts and

net debt. Here we explore the possibility of taking these decisions collectively by

voting. This will be done in a somewhat more general and abstract multi-dimensional

setting in which alternatives are elements of a convex subset of a Euclidean space and

preferences are convex. The budget allocation problem is the special case in which

the set of alternatives is a budget hyperplane.

Standard approaches to preference aggregation and voting assume ordinal or even

cardinal preference information as their input. Their application to budget alloca-

tion problems poses substantial difficulties. First, at the foundational level, except

for the one-dimensional case with two public goods and single-peaked preferences

(Black, 1948; Arrow, 1951/63), one is faced with generic impossibility results under

all reasonable domain restrictions (Kalai et al., 1979; Le Breton and Weymark, 2011)

just as in spatial voting models (Plott, 1967). In particular, in higher dimensions

there is no hope to generally find a Condorcet winner even if all agents have well-

behaved preferences. Indeed, the indeterminacy of majority voting is generic and can

be severe; for example, generically every alternative can be the outcome of a dynamic

(non-strategic) majority vote for an appropriate agenda (McKelvey, 1979). Thus,

from the point of view of ordinal social choice theory, it is not even conceptually clear

what allocations an optimal voting rule should aim at.

Second, at a pragmatic level, a basic problem already arises from the sheer number

of alternatives which grows exponentially in the number of dimensions (i.e. alternative

uses of the public resource). Articulating and communicating a complete ordering over

the set of all alternatives for each agent (whether citizen or representative) is often

simply infeasible. Clearly, much is to be said for making the task of the voter as

easy as possible. Here, we take a minimalist approach by assuming that only voters’

preference tops are individually elicited. As a collateral benefit, as detailed below, the

parsimony of the informational basis entailed by our approach allows one to overcome

the foundational indeterminacies of the classic preference aggregation model.
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Tops-Only Information

We focus on the tops-only information assumption firstly because of its simplicity

and prevalence in practice. Note that knowledge of voters’ tops is indeed required

to arrive at a reasonable decision in the most elementary instances of aggregation,

namely those of unanimity.

Elicitation of tops is simple in that it requires every voter only to determine what

she must in order to arrive at a choice all by herself. Reliance on tops-only elicitation

thus addresses a fundamental tension in the standard ordinal aggregation framework,

as the elicitation of a complete ordinal ranking requires much more cognitive effort

on part of the individuals than would be required for solo decision making, while

individual incentives to figure out ones own preferences are greatly reduced due the

diluted impact of a voter on the final choice.1

The Social Evaluator as an Imprecise Bayesian

This paper aims at determining which of the feasible social choices (here: allocations)

represent social welfare optima in the light of the available information. Due to the

lack of knowledge of the profile of complete preferences underlying an elicited pro-

file of tops, the social evaluator faces a decision problem under uncertainty. Besides

the individually elicited tops, the social evaluation may also be based on background

knowledge about the structure of voters preferences, such as preference convexity.

Probabilistic judgments may play a role as well. So the social evaluator will be mod-

eled as an ‘imprecise Bayesian’ whose epistemic state is described as a set of admissible

probability measures (‘priors’) over profiles of ordinal preferences compatible with a

given profile of top choices and the available background information.

Within this framework, one might want to postulate the evaluator to have precise

probabilistic beliefs (i.e. unique priors). But this approach has limited appeal here. In

particular, on what evidential basis is the evaluator to make the manifold subjective

judgments required for a precise Bayesian approach? Are there any sound reference

models to sensibly describe ignorance priors over a state space of profiles of ordinal

preferences on a continuous, multi-dimensional domain? Indeed, whose subjective

probability is supposed to serve as the basis of the evaluation? If the social evaluator

1This theme of ‘rational ignorance’ goes back to Down’s classic treatment (Downs, 1957, pp. 244-
246, 266-271).
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was understood as a social planner (‘bureaucrat’), one may think of the required

judgmental input as reflecting the planner’s expertise; but in a voting context, the

social evaluator is naturally viewed as representing ‘the group’ at a constitutional

stage at which individual preference profiles are unknown.

Instead of assuming a precise Bayesian prior, alluding to the notion of ‘fast and

frugal heuristics’ due to Gigerenzer and Goldstein (1996), in our ‘frugal’ approach we

rely on a qualitative specification of the social evaluator’s beliefs reflecting minimally

demanding informational assumptions. Our aim is to show that even from these

minimalist premises, attractive and credible choice implications can be derived.

The Ex-Ante Condorcet Approach

To determine ‘ex-ante’ optimal social choices, we propose a novel ex-ante Condorcet

(EAC) approach. The EAC approach relies on ex-ante comparisons between arbi-

trary pairs of alternatives. These comparisons are based on the interval of expected

majority counts consistent with the evaluator’s imprecise set of priors. A simple

yet fundamental observation shows that the pairwise comparisons can be made in

canonical manner independently of subjective attitudes of pessimism vs. optimism,

or ambiguity aversion vs. ambiguity proneness. The EAC approach then uses this ex-

ante majority relation to select an ex-ante Condorcet winner if it exists, and settles

for some Condorcet extension rule – left unspecified here – if not. Remarkably, in the

models at the center of this paper, ex-ante Condorcet winners do exist and can be

characterized explicitly.

The Plain Convex Model

An obvious starting point in the context of public resource allocation is to assume

knowledge of preference convexity (together with knowledge of the tops), and com-

plete ignorance about anything else. We shall refer to this as the plain convex model

of the evaluator’s beliefs. The plain convex model is very successful in the one-

dimensional (two goods) case in which convexity is tantamount to single-peakedness

of ex-post preferences. As the ex-post Condorcet winner is the median of voters’ tops,

it is known ex-ante and equal to the ex-ante Condorcet winner.2

2We use the ex-ante vs. ex-post metaphor purely for conceptual purposes in order to describe the
epistemic state of the social evaluator, without any assumption of an ex-post stage in real time at
which the actual profile of (‘ex-post’) preferences is observed.
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But in the multi-dimensional case (at least three competing uses of resources),

convexity by itself loses much of its bite. In particular, with tops in general po-

sition, convexity does not permit any significant novel inferences about preferences

beyond those available from knowledge the tops; by consequence, all tops are ex-ante

Condorcet winners (Proposition 3). This appears quite counterintuitive and unsatis-

factory, since any notion of centrality of the ex-ante Condorcet winner is lost, in stark

contrast to the one-dimensional case.

Looking more closely, this negative result indeed hinges on extreme cases involving

special ex-post profiles which appear unlikely a priori. Heuristically, one would want

to rule out such cases and obtain more plausible majority intervals by assuming that

preferences over pairs depend on the preference tops in a regular manner.

Symmetric Quadratic Models

To execute this formally, we assume a parametric form of convex preferences, namely

quadratic preferences. A particular quadratic form Q describes the substitution-

complementation structure of a quadratic preference ordering in terms of the cross-

partials of the utility function. Notably, assuming quadraticity does not help by

itself to overcome the counterintuitive implications of the plain convex model, for the

expected majority counts remain the same as the plain convex model (Fact 4.1).

Yet things change significantly once it is assumed that the evaluator’s beliefs are

symmetric in the sense that, for each admissible prior, the marginal distribution over

quadratic forms is the same across voters irrespective of their top. Heuristically,

symmetry expresses the idea that the evaluator lacks any grounds a priori to form

different probabilistic beliefs about the unknown quadratic preference structure of

different voters; in particular, the knowledge of voters’ tops does not form such a

ground. In addition, we also assume that the social evaluator is completely ignorant

about the preference structure for each voter in isolation, just as in the plain convex

model. These assumptions define the class of symmetrically ignorant quadratic (s.i.q.)

models of the evaluator’s beliefs. The main result of the paper, Theorem 1, shows

that in any s.i.q. model ex-ante Condorcet winners exist and coincide, when unique,

with the classical Tukey median (Tukey, 1975). When not unique, the EAC winners

coincide with a well-defined refinement of the set of Tukey medians. The Tukey

median is a well studied coordinate-free generalization of ordinary medians to multiple

dimensions, see Small (1990) for a classic survey and Rousseeuw and Hubert (2017)
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for comprehensive treatment.

Related Literature

To the best of our knowledge, the present EAC approach and its application to the

‘frugal aggregation’ model of budget allocation are new to the literature. But there

are, of course, related approaches in the literature. Indirectly, the Tukey median has

been studied in the social choice literature inasmuch as it is equivalent to the outcome

of the minimax voting rule in standard spatial voting with Euclidean preferences

(Kramer, 1977; Demange, 1982; Caplin and Nalebuff, 1988). This model can be

viewed as a degenerate frugal model in which voters preferences conditional on their

top are known. But with this additional, sub-top preference information, the Tukey

median is no longer welfare optimal as we shall argue in Section 6.2.

Most work of theoretical interest in the problem of incomplete information as stud-

ied here has come from the computer science literature, see Boutilier and Rosenschein

(2016) for an overview.3 One strand explores the implications of partial knowledge

of complete (ex-post) preference profiles for inferences about the outcome of stan-

dard social choice rules and criteria, e.g. via the notions of ‘possible’ vs. ‘necessary’

winners (Konczak and Lang, 2005). A rather small strand in the literature adopts

a decision-theoretic ex-ante approach as the present paper does. Some papers seek

solutions that maximize expected welfare based on some utilitarian welfare criterion

and a probability distribution over profiles, frequently uniform. Others argue for

the modeling of the social evaluator’s epistemic state in terms of a set of possible

profiles, as we do, and propose to apply classical criteria of decision making under

ignorance such as maximin or minimax regret (Lu and Boutilier, 2011). In the highly

complex state spaces associated with the epistemic models studied here, it may be

very difficult to execute these approaches if that is possible at all. Significantly, the

two quoted strands share the major conceptual limitation of having to rely on an

interprofile-comparable standard of aggregate welfare ex post. Thus, they in fact

suppose that the Arrovian problems of coherent aggregation and interpersonal non-

comparability have been solved or assumed away, e.g. by assuming strong forms of

utilitarian aggregation ex post.

By contrast, the EAC approach introduced here rests on an evaluation of decisions

3We thank Jérôme Lang who pointed us to the pertinent literature.
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in pairs of alternatives taking the full state space (set of possible profiles) into account.

In such pairwise comparisons, the majority criterion carries over naturally to the ex-

ante stage, without raising new issues of interpersonal comparison, and allowing a

tractable characterization in many cases. These pairwise comparisons need then be

put together to obtain a coherent rationale for an ex-ante evaluation of complex

choices such as budget allocations. At this juncture, Arrovian style issues of coherent

aggregation might arise in principle. It is a rather remarkable finding of this paper

that, in the models studied here, these problems do not arise.

With respect to the focal application to the allocation of public budgets, there is

also an important recent literature on ‘participatory budgeting’ with intended appli-

cation to cities and local communities (Shah, 2007). Participatory budgeting schemes

have been put into practice at various scales in many places around the world. The

ballots are typically very parsimonious, often taking the form of a set of projects ap-

proved.4 Again, most of the theoretical contributions come from the computer science

community, with a focus on indivisibilities and on ‘proportionality’ considerations to

ensure that the interest of different local subcommunities are fairly represented (Aziz

and Shah, 2020). By contrast, our focus is on continuous divisible budgets, and on

finding allocations that best satisfy the aggregate interest (in parallel with most of

standard voting theory).

Overview of Paper

The remainder of this paper is organized as follows. In the next Section 2, we in-

troduce the general EAC approach. The subsequent two sections apply it to the

budget allocation problem under the assumption that the social evaluator knows the

profile of voters’ top alternatives (the ‘frugal aggregation’ model). Section 3 studies

the plain convex model which assumes in addition knowledge of convexity of voters’

preferences but complete ignorance about anything else. Proposition 3 shows that,

generically, the ex-ante Condorcet winners coincide with the voters’ tops in the plain

convex model. By contrast, our main result, Theorem 1 in Section 4, demonstrates

that in the symmetric quadratic model the ex-ante Condorcet winner coincide with

(a refinement of) the Tukey median. Section 5 extends this result to the case of prob-

4See, for instance, the open source project ‘Stanford Participatory Budgeting Platform’
(https://pbstanford.org) which offers guidance and allows municipalities, cities and other institu-
tions to run participatory budgeting elections online.
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abilistic uncertainty about voters’ tops. Sections 6.1 and 6.2 discuss the robustness

of our analysis with respect to the specific epistemic assumptions about the social

evaluator. Section 6.3 offers some considerations on the use of the Tukey median

as a voting mechanism played by self-interested voters. While the Tukey median is

frequently manipulable – unsurprisingly in view of strong impossibility results such

as Zhou (1991) –, we point out two ways in which it is notably attractive in terms

of its incentive properties, especially in contrast to salient alternatives such as the

multi-dimensional mean.

2 Condorcet Winners, Ex-Ante

We envisage a social evaluator who has to choose from a universe of alternatives

X on behalf of a group of n ∈ N voters under uncertainty about their preferences.

The social evaluator is modeled as an ‘imprecise’ Bayesian decision maker, i.e. his

epistemic state is described by a set of probability distributions over ‘admissible’

profiles <= (<1, ...,<n) of true (‘ex-post’) preferences.

Concretely, denote by π a probability measure over profiles (<1, ...,<n) of complete

preference orderings over X, and by Π a non-empty set of admissible such priors.5

The social evaluator is completely ignorant as to which probability distribution in Π

is the most appropriate and therefore needs to take into account all of them.

Often one will be interested in cases in which the priors in Π satisfy specific

additional properties. For instance, an important special case in the following will

involve X ⊆ RL and the assumption that all priors are concentrated over profiles of

convex preferences.

For all distinct x, y ∈ X, a prior π ∈ Π induces an expected support count mπ(x, y)

of votes for x against y, i.e.

mπ(x, y) := Eπ [#{i : x �i y}] ,

where Eπ denotes the expectation operator with respect to the probability distribution

π. Thus, a set of priors induces an interval mΠ(x, y) of expected support counts in

5To make this fully rigorous, one needs to specify a measure space on the set of profiles. For our
purposes, the essential property is that, for each agent i and all alternatives x and y, the ‘event’
that agent i prefers x to y represents a measurable set.
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the vote of x against y,

mΠ(x, y) :=
[
m−Π(x, y) , m+

Π(x, y)
]
,

where

m−Π(x, y) := inf
π∈Π

mπ(x, y), (2.1)

m+
Π(x, y) := sup

π∈Π
mπ(x, y). (2.2)

The family of these intervals will be what matters in our analysis. In deciding ex-

ante on a hypothetical choice between x and y, it is natural to base this choice on a

comparison of the intervals mΠ(x, y) and mΠ(y, x). Due to the imprecision of priors,

the intervals mΠ(x, y) and mΠ(y, x) may well overlap in general. But due to the

additivity of the complementary vote counts for x against y and for y against x,

a comparison of the lower and upper expected counts must yield the same result.

This evidently holds if preferences are known to be strict ex-post. To guarantee

it more generally, the following regularity condition is needed which ensures that

possible indifferences play a negligible role; this condition is satisfied in all applications

considered in the following, and we maintain it throughout. Say that a set of priors

Π is regular if for all priors π ∈ Π and all pairs x, y ∈ X of distinct alternatives, there

exists a prior π′ such that π′(x ∼i y) = 0 for all i = 1, ..., n, and mπ′(x, y) ≤ mπ(x, y).

Thus, regularity guarantees that, for any pair x, y ∈ X, the minimal/infimal expected

support for x against y is realized by a prior for which all indifferences between x and

y have zero probability.

Proposition 1. Let Π be regular. For all θ and all distinct x, y ∈ X,

m−Π(x, y) ≥ m−Π(y, x) ⇐⇒ m+
Π(x, y) ≥ m+

Π(y, x). (2.3)

(Proof in appendix.)

By Proposition 1, an unambiguous balance of uncertainties ex-ante is possible;

in contrast to the classical theory of decision making under ignorance (Luce and

Raiffa, 1957), there is no need or even meaningful role for an evaluator’s degree of

pessimism vs. optimism (ambiguity aversion vs. ambiguity proneness in more modern
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terminology).6

The ex-ante majority relation RΠ (for regular Π) is now defined as follows.

For all distinct x, y ∈ X,

xRΠy :⇐⇒ m−Π(x, y) ≥ m−Π(y, x) (2.4)

⇐⇒ m+
Π(x, y) ≥ m+

Π(y, x).

The maximal elements with respect to the ex-ante majority relation are referred

to as the ex-ante Condorcet winners, i.e.

CW(Π) := {x ∈ X | xRΠy for all y ∈ X}.

An aggregation rule is called ex-ante Condorcet consistent if it selects all

ex-ante Condorcet winners (if there are any).

In the following, we will refer to a set of priors Π as a model (of the evaluator’s

epistemic state). Moreover, we will say that two models are equivalent if they induce

the same expected majority intervals. Note that, trivially, sets of priors with the

same convex hull are equivalent, but the converse need not be true. Evidently, two

equivalent models induces the same set of ex-ante Condorcet winners, i.e. CW(Π′) =

CW(Π) whenever Π′ and Π are equivalent.

3 The Plain Convex Model

In the rest of this paper, we will study the case in which X is a convex subset of RL

for some L ∈ N, and all preferences in any profile are convex. For our purposes, the

following notion of convex preference will be useful. A weak order < on X ⊆ RL is

convex if, (i) for all x, y, z, w ∈ X, y = t · x + (1 − t) · z for some 0 ≤ t ≤ 1, x < w

and z < w jointly imply y < w, and (ii) for all x, y, z ∈ X, y = t · x + (1 − t) · z for

some 0 < t < 1, and x � z jointly imply y � z.7

An important economic application is the budget allocation problem in which X

takes the form of a budget hyperplane. Concretely, consider a group of agents that

6Nor is there a conflict – possibly even threatening an Arrow-like impossibility – between axioms
of choice consistency and of independence; see Milnor (1954); Arrow (1960); Nehring (2000, 2009).

7Observe that (ii) is clearly implied by but significantly weaker than strict convexity. For instance,
linear preferences satisfy both conditions (i) and (ii) but are not strictly convex.
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has to collectively decide on how to allocate a fixed budget, normalized to unity, to

a number L of public goods. Assuming given prices, the problem is fully determined

by specifying the expenditure shares. The corresponding allocation problem can thus

be modeled as the choice of an element of the following (L−1)-dimensional polytope:

X :=

{
x ∈ RL |

L∑
`=1

x` = 1 and x` ≥ 0 for all ` = 1, ..., L

}
, (3.1)

where x = (x1, ..., xL). Convex preferences are entirely standard in this context.

Other applications include the spatial voting model in which the coordinates rep-

resent different issues and alternatives represent political positions on these issues

(Downs, 1957), or the collective choice of design of projects positioned in a charac-

teristics space in the sense of Lancaster (1966).

The model of all priors with convex preferences on X without any further restric-

tion is referred to as the plain convex model and denoted by Πco.

3.1 Certainty about Tops

To simplify the task of the social evaluator, we assume first that the evaluator knows

the top choices of voters. Concretely, denote by θ = (θ1, ..., θn) the profile of the

voters’ top alternatives which we assume to be unique. The epistemic state of the

social evaluator will now be denoted by Πθ
co to indicate the knowledge of θ. Here, the

set Πθ
co is assumed to consist only of priors π that are compatible with the top profile θ

in the sense that every profile <= (<1, ...,<n) in the support of π has θ = (θ1, ..., θn)

as the corresponding top profile.

3.2 The One-Dimensional Case: Median Voting

In the one-dimensional case, our notion of preference convexity is equivalent to the

standard notion of single-peakedness, and the choice of the median top(s) constitutes

the unique ex-ante Condorcet consistent aggregation rule; specifically, we have the

following result. For every profile θ = (θ1, ..., θn), denote by θmed the unique median

if n is odd, and by [θmed− , θmed+ ] the median interval if the number of voters is even.
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Proposition 2. Suppose that X ⊆ R, and let θ = (θ1, ..., θn) be a profile of tops in

X. Then,

CW(Πθ
co) =

{
{θmed} if n is odd

[θmed− , θmed+ ] if n is even
.

(Proof in appendix.)

Thus, in the one-dimensional case the ex-post and ex-ante Condorcet criterion

give the same result under single-peakedness. The reason is, evidently, that under

knowledge of single-peakedness any given top uniquely determines the preference on

both sides of the top, and that is all what is needed to apply the Condorcet criterion.

3.3 The Multi-Dimensional Case: Generic Plurality Rule

In the multi-dimensional case, a result similar to Proposition 2 holds if the top profile

is contained in a one-dimensional subspace; but in general, in the plain convex model

the ex-ante Condorcet winners essentially coincide with the plurality winners.

In the following, we say that a set of points Y ⊆ RL is in general position if no

three elements of Y are collinear. The crucial observation for the plain convex model

is that, if θ, x, y are not collinear, then there exist convex preferences < and <′ with

top θ such that x � y and y �′ x. This implies the following characterization of the

ex-ante Condorcet winners in the plain convex model. For its formulation, it will be

useful to identify profiles of individual tops with type profiles of tops with different

counts. Specifically, we denote by θ = (θ1; p1, ..., θm; pm) the anonymous profile in

which the fraction pi of all voters has top θi, where 0 < pi ≤ 1 and
∑

i pi = 1; in

that context, we also refer to θi as the type of voter i and assume without of loss of

generality that the θi are pairwise distinct.

Proposition 3. Consider a type profile (θ1; p1, ..., θm; pm) such that {θ1, ..., θm} ⊆ X

are in general position. If pi∗ is maximal among {p1, ..., pm}, then θi∗ ∈ CW(Πθ
co).

Moreover, if pi∗ is uniquely maximal among {p1, ..., pm}, then

CW(Πθ
co) = {θi∗}.

(Proof in appendix.)

This is somewhat paradoxical. Intuitively it would appear that preference convex-

ity contains substantial information beyond knowledge of the tops but Proposition 3

12



appears to contradict this. What is amiss?

Example 1. Consider a set of voters with pairwise distinct tops in a set U . In ad-

dition, suppose that two voters are concentrated at a point x outside U (see Figure

1). If all tops in U plus the point x are in general position then, according to Propo-

sition 3, x is the unique ex-ante Condorcet winner. Indeed, for any point z 6= x,

m−
Πθco

(x, z) = 2 while m−
Πθco

(z, x) ≤ 1, or equivalently, m+
Πθco

(x, z) ≥ n − 1. Note that

the expected majority intervals are extremely wide, and the ex-ante Condorcet winner

is left to ‘grasp for straws’ in picking the optimal alternative that happens to be the

top of two voters rather than just of one. Nonetheless, if the epistemic state of the

social evaluator is literally that of complete ignorance within Πθ
co, then the ex-ante

preference for x over any other alternative z seems defensible.

However, this rationale is not very robust. Consider in particular the comparison

of x to y where y is sufficiently close to x and ‘between’ x and U as shown in Fig. 1.

Note that for x to be preferred to y by some voter with top θi in U , i’s preference must

be very special; for instance, geometrically, only rather special ellipses with center at

θi that include x will not include y.

xy

U

Figure 1: Illustration of Proposition 3

The conceivable convex preference for x against y of a voter with top in U , on

which the conclusion in Example 1 hinges, seems very unlikely a priori. It would

therefore be desirable to capture this intuition by an appropriate specification of

somewhat more precise evaluator’s beliefs. The challenge is to describe these beliefs

in a qualitative manner that is weak enough to be acceptable on slim information

while at the time sufficiently strong to have substantive implications. This task is at

the heart of this paper and is taken on in the next section.
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4 Symmetrically Ignorant Quadratic Models

Our proposal for modeling the evaluators beliefs in a more appropriate and specific

manner involves two key features: First, we conceptually separate voters’ tops from

the substitution vs. complementation structure of preferences, and secondly, we as-

sume that this substitution vs. complementation structure is ‘ex-ante independent’ of

the tops. The first feature allows one to model preferences as quadratic; the second

feature means that knowledge of the tops is not informative ex-ante for the substitu-

tion vs. complementation structure described by the quadratic preferences.

Specifically, say that a preference < on X is quadratic if it can be represented

ordinally by a utility function of the form

uθi(x) = −(x− θi)T · Qi · (x− θi), (4.1)

for some θi ∈ X and a positive definite, symmetric L× L matrix Qi. Geometrically,

the representation in (4.1) means that the indifference curves are ellipsoids generated

from circles with center θi by a common affine transformation. The special case

in which the quadratic form Qi is the identity matrix I corresponds to the case of

Euclidean preferences which has been extensively studied in the literature on spatial

voting (Austen-Smith and Banks, 1999).

The cross-partial derivatives given by Qi capture the specific pattern of comple-

mentarities and/or substitutabilities between different goods. Quadratic preferences

can thus also be viewed as (second-order) Taylor approximations of arbitrary smooth

convex preferences. Denote by Πquad ⊆ Πco the model consisting of all sets of priors

over profiles of quadratic preferences on X, the plain quadratic model. Evidently,

for all tops θi ∈ X and all x, y ∈ X such that θi, x, y are not collinear, there exist

quadratic preferences <i,<′i both with top θi such that x �i y and y �′i x. By

consequence, we have:

Fact 4.1. The models Πquad and Πco are equivalent. In particular, the two models

induce the same ex-ante majority relation and CW(Πquad) = CW(Πco).

Thus, the plain quadratic model can be viewed as a parametrized version of the

plain convex model. In particular the ‘generic plurality’ conundrum posed by Example

1 continues to apply to the plain quadratic model. But the great boon of the quadratic

model is that it allows for a clear separation between the preference top and the
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preference structure (described by the quadratic from Qi). This will be the key in

our proposed resolution of the puzzle posed by Example 1.

Specifically, the epistemic state of the evaluator is given by a set of priors Π with

state space X1× ...×Xn×Q1× ...×Qn where Xi is the set of possible tops for voter

i and Qi the set of possible quadratic forms (symmetric and positive definite L× L
matrices) for voter i. For every prior π ∈ Π and all i = 1, ..., n, denote by πXi and

πQ1 the marginal distributions induced by π on Xi and Qi, respectively.

In the remainder of this section, we will impose the following conditions on a model

Π. For all x ∈ X, denote by δ(x) the degenerate probability distribution that puts

unit mass on x; similarly, for all Q ∈ Q, denote by δ(Q) the degenerate probability

distribution that puts unit mass on Q.

1. Concentration on Quadratic Preferences. Π ⊆ Πquad.

2. Tops Certainty. For all π ∈ Π and all i, πXi = δ(θi) for some θi ∈ X.

3. Symmetry. For all π ∈ Π and all i, j, πQi = πQj .

4. Complete Ignorance of Marginals. For all i and all Q ∈ Q, there exists

π ∈ Π such that πQi = δ(Q).

A model Π satisfying Assumptions 1 to 4 will be called symmetrically ignorant

quadratic, or s.i.q. for short. Assumption 2 means that all voters’ tops are known;

therefore Assumptions 1 and 2 can be summarized as requiring Π ⊆ Πθ
quad in our pre-

vious notation, where θ = (θ1, ..., θn) is the known profile of voters tops. Assumption

3 means that an individual’s top (or any other observable individual characteristic)

does not contain any information on the distribution of the individual’s preferences

by itself. Finally, Assumption 4 assumes in effect complete ignorance about each

agent’s Qi.
The plain quadratic model satisfies all assumptions except Symmetry. The ‘regu-

larizing’ effect of the Symmetry assumption can be illustrated in Example 1.

Example 1 (cont.) Consider again the situation depicted in Fig. 1 above, but now

suppose that the epistemic state of the social evaluator is described by a symmetric

quadratic model Π rather than by the plain convex model. The minimal expected ma-

jority count for x against y is still 2, since it is evidently possible to find a symmetric

prior such that all voters in U prefer y to x, i.e. m−Π(x, y) = 2. For example, one may
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take the prior that assumes with certainty that all preferences are Euclidean. What

about m−Π(y, x)? As before, one can assign quadratic forms (Q1, ...,Qn) to the tops

such that all voters with top in U prefer x to y. But, as is evident from Fig. 1, these

quadratic forms generally have to be distinct for different voters; the prior assuming

this profile with certainty is therefore not symmetric. Any symmetric prior must thus

be properly probabilistic; for example, a symmetric prior might assign equal probability

1/n! to each of the permutations of the profile (Q1, ...,Qn). But for any such prior

the expected majority count for y against x will be at least 3, i.e. m−Π(y, x) ≥ 3, as a

key argument in the proof of our main result shows; for the geometric intuition behind

this argument, see Figure 3 below. Hence, for any symmetric quadratic model Π we

obtain m−Π(y, x) > m−Π(x, y), and thus yPΠx, where PΠ denotes the asymmetric part

of the ex-ante majority relation RΠ; in other words, x is not an ex-ante Condorcet

winner.

At one extreme, there exists a unique largest (most imprecise) s.i.q. model consist-

ing of all symmetric priors. Note that it does not impose any additional knowledge,

i.e. probability one restrictions, beyond the plain quadratic model; it can thus be

viewed as a regularized version of that model.

At the other extreme, there is also a unique smallest (most precise) s.i.q. model,

as follows. Call a prior uniform if it puts all mass on profiles of the form (Q, ...,Q)

for some quadratic form Q, and denote by Πunif the uniform (quadratic) model

consisting of all uniform priors; moreover, denote by Πexunif the extremal uniform

model consisting of all uniform priors of the form δ(Q, ...,Q), i.e. all priors that

put unit mass on some single profile of the form (Q, ...,Q). Evidently, the extremal

uniform model satisfies Assumptions 1 to 4; conversely, combining Assumptions 3 and

4 also shows that any s.i.q. model contains the extremal uniform model.8

There is a wide range of intermediate specifications. For example, the quadratic

forms Qi can be assumed to be drawn i.i.d. from some unknown distribution. In the

subjectivist tradition, this is captured (and slightly generalized in the finite case) by

assuming that Π consists of all exchangeable priors in the sense of de Finetti (1931).9

Finally, a s.i.q. model Π may also incorporate beliefs in possibly learnable correlations

8By the preceding observation, the class of all s.i.q. models forms a bounded lattice partially
ordered by set inclusion.

9Specifically, in our context a prior π is exchangeable if, for all events E ⊆Q1× . . .×Qn and all
permutations σ of agents, π(E) = π(σ(E)), where σ(E) is the event obtained from E by applying
σ.
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between the tops and the quadratic forms; it only excludes prior information about

what these correlations are.

It turns out that the ex-ante Condorcet winners in the s.i.q. models are Tukey

medians (Tukey, 1975) of a particular kind. For all x ∈ X, denote by Hx the family

of all Euclidean half-spaces that contain x (i.e. the family of all sets of the form

{y ∈ X : a ·y ≥ a ·x} for some non-zero vector a ∈ RL). For all profiles θ = (θ1, ..., θn)

and all half-spaces H, denote θ(H) := #{i : θi ∈ H}, and define the Tukey depth of

x at the profile θ by

d(x; θ) := min
H∈Hx

θ(H).

Intuitively, the Tukey depth measures the ‘centrality’ of x with respect to the profile

of tops: the larger d(x; θ) the more tops θi are guaranteed to lie in every direction

viewed from x, and d(x; θ) = 0 means that x can be separated from the entire set

of tops θ by a hyperplane. Denote by d∗(θ) := maxx∈X d(x; θ) the maximal Tukey

depth over X. The Tukey median rule selects, for every profile θ, the alternatives

that attain this maximal depth:

T (θ) := arg max
x∈X

d(x; θ) = {x ∈ X | d(x; θ) = d∗(θ)}.

Our main result involves the following refinement. For all profiles θ and all x,

denote by H∗x := {H 3 x : θ(H) = d∗(θ)}. A Tukey median x ∈ T (θ) is strict if, for

no y ∈ T (θ), H∗y ( H∗x. The set of strict Tukey medians is denoted by T ∗(θ).

Theorem 1. For all profiles θ and every symmetrically ignorant quadratic model

Π ⊆ Πθ
quad, CW(Π) is non-empty. Moreover,

CW(Π) = T ∗(θ).

The proof of Theorem 1 (provided in the appendix) proceeds in a series of steps.

First, it is shown that all s.i.q. models are equivalent. The argument relies crucially

on both the symmetry assumption and the EAC solution concept. It allows to focus

on the characterization of the analytically convenient uniform model. This simplifies

matters greatly since the uniform model is characterized by strong ex-post restrictions

on profiles. In particular, profiles of preferences with a common quadratic form are

intermediate preferences in the sense of Grandmont (1978). More specifically, for any

two alternatives x and y, the tops in a profile of preferences with a common quadratic
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form Q that prefer x to y are separated from those preferring y to x by a hyperplane

through the midpoint between x and y, see Lemma A.2 in the appendix; Figure 2

shows these hyperplanes for selected common quadratic forms (for the identity matrix

Q = I, the hyperplane is perpendicular to the straight line through x and y).

x

y

tops preferring x to y
tops preferring y to x

Q = IQ′Q′′

Figure 2: Intermediate preferences with separating hyperplane

From this one can show that the ex-ante majority relation of the uniform model

coincides locally with the comparison of alternatives in terms of their relative Tukey

depth: for all distinct x, y ∈ X, let

xRdy :⇐⇒ min
H∈Hx, y 6∈H

θ(H) ≥ min
H∈Hy , x 6∈H

θ(H). (4.2)

The ex-ante majority relation does not coincide globally with the relative Tukey depth

relation (4.2) since the half-spaces separating the underlying tops in the quadratic

model must go through the midpoint between x and y. Nonetheless, the set of local

maxima of this relation is shown to coincide with the set of global maxima, which in

turn coincides with the set of strict Tukey medians. Finally, the existence of strict

Tukey medians is shown by an appeal to the Hausdorff maximal principle.

Example 1 (cont.) In Example 1, the Tukey depth of x relative to y is evidently

minH∈Hx, y 6∈H θ(H) = 2. Conversely, the Tukey depth of y relative to x is obtained

by looking at the straight line ∂H through x and y: the tops that support y against x

must at least contain the tops in U∩H, or the tops in U∩Hc. As can be inferred from

Fig. 3, we therefore have minH∈Hy , x 6∈H θ(H) = 3, and hence yPdx, where Pd denotes

the asymmetric part of Rd. It follows from the arguments provided in the proof of

Theorem 1 in the appendix that we thus also obtain yPΠx for any s.i.q. model Π, as
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claimed above.

xy

H

Hc

∂H
U

Figure 3: The Tukey depth of y relative to x is equal to 3

To illustrate the relation between absolute and relative Tukey depth, consider the

following example.

Example 2. Suppose that there are five voters whose tops θ1, ..., θ5 form a pentagon

as shown in Figure 4. The (strict) Tukey median (and hence by Theorem 1 also the

ex-ante Condorcet winners of any s.i.q. model) is given by the points in the inner

convex pentagon marked in red.10 Fig. 4 also shows a point y and its associated upper

contour set with respect to the relative Tukey depth relation given by (4.2) in blue

color. Note in particular that the points x and y have the same (absolute) Tukey

depth but different relative depth, to wit xPdy.

θ1

θ5 θ2

θ4 θ3

y x

Figure 4: Absolute versus relative Tukey depth

10This can be verified from the following observations. First, any line passing through the inner
red pentagon has at least two tops on either side; on the other hand, for any point outside the inner
pentagon there is a Euclidean half-space containing that point and at most one top. In particular,
the maximal Tukey depth is d∗(θ) = 2; all points in the convex hull of the tops that are not in this
inner pentagon have depth one, and all points outside the convex hull of the tops have depth zero.

19



While every Tukey median is strict in Example 2, it is an open question if this is the

case generally. It must be the case whenever Tukey medians are unique (because strict

Tukey medians always exist). Demange (1982) has in fact shown such uniqueness

whenever voters’ tops are continuously distributed with a convex support. Using this

result, we obtain the following ‘continuous’ version of Theorem 1.

Theorem 1′ Suppose that voters’ tops are distributed according to a continuous mea-

sure θ with convex support. Then, the strict Tukey median set T ∗(θ) consists of a

single point, and for every s.i.q. model Π ⊆ Πθ
quad,

CW(Π) = T (θ) = T ∗(θ).

(Proof in appendix.)

5 Uncertainty about Tops

We have so far assumed that the only individuating information about individual

preferences concerns their tops, and that this information is perfect (tops assumed to

be known by the social evaluator). We now extend the frugal aggregation approach

maintaining the first assumption while abandoning the second. Formally, we now

assume that the evaluator has a precise prior over the top of each voter. Such models

may be of interest when individual tops are elicited by a vote or a poll, and when

there are doubts whether they should be taken at face value, for instance for incentive

reasons. Obviously, for concrete applications this needs to be developed further by

specifying how the evaluator’s probabilistic beliefs over tops are themselves formed.

Specifically, we adapt our assumptions on the epistemic state Π of the evaluator

as follows.

1. Concentration on Quadratic Preferences. Π ⊆ Πquad.

2a. Tops Probabilism. For all π, π′ ∈ Π and all i, πXi = π′Xi =: µi.

2b. Independence. For all i and all θi, θ
′
i ∈ suppµi, πQθi = πQθ′

i

.

3. Symmetry. For all π ∈ Π and all i, j, πQi = πQj .

4. Complete Ignorance of Marginals. For all i, θi ∈ suppµi and all Q ∈ Q,

there exists π ∈ Π such that πQθi = δ(Q).
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Assumption 2a says that all priors in Π agree on the distribution of tops, i.e. the

uncertainty about tops is probabilistic rather than imprecise. Assumption 2b adds

that any top θi in the support of the marginal top distribution µi induces the same

marginal distribution πQθi over quadratic forms. The marginal top distributions can

take the form of finite or continuous measures; in the latter case, in order to apply

Theorem 1′, we need to assume that all µi have a common convex support.11 Denoting

by µ = (µ1, ..., µn) the profile of the marginal distributions over tops, and by Πµ
quad

the set of all quadratic priors that induce the marginal distribution profile µ, we

can summarize Assumptions 1 and 2a by requiring Π ⊆ Πµ
quad. With slight abuse

of terminology, we continue calling a model satisfying these modified assumptions

symmetrically ignorant quadratic (s.i.q.) since no confusion can arise.

To adapt our main result to the situation in which the social evaluator is uncertain

about the voters’ tops but has a unique prior µ over the profile of the distribution of

tops, denote by µ the average distribution of tops defined by

µ :=
n∑
i=1

1

n
· µi.

Associate with each i an ‘ex-ante subpopulation’ with distribution of tops µi and

relative size 1/n; these combine to a total ex-ante population with distribution of tops

µ and quadratic forms still unknown as in Theorem 1. Independence (Assumption

2b) ensures symmetry within each subpopulation, while Symmetry (Assumption 3)

ensures symmetry across subpopulations. Therefore, the argument of Theorem 1

applies and yields the strict Tukey median with respect to µ as the ex-ante Condorcet

winners; note that, in the following result, Tops Probabilism (Assumption 2a) is

indispensable as it is necessary to even define the characterized set T ∗(µ).

Theorem 2. For all profiles µ = (µ1, ..., µn) such that the µi are either finite or

continuously distributed with a common convex support, and for every symmetrically

ignorant quadratic model Π ⊆ Πµ
quad, CW(Π) is non-empty. Moreover,

CW(Π) = T ∗(µ).

(Proof in appendix.)

11It might be possible to generalize the result to arbitrary or arbitrary continuous probability
distributions, but this would require additional arguments.
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6 Discussion

How robust is our proposed solution concept, the (strict) Tukey median, with respect

to the precise epistemic assumptions of the symmetrically ignorant quadratic model?

We now argue that the solution is indeed remarkably robust with respect to assuming

less knowledge, but not necessarily with respect to assuming more knowledge about

the underlying preferences. The latter should, of course, come as no surprise, since

additional available information generally has to be accounted for in the search for

welfare optima.

6.1 Less Informative Beliefs: Hedging Quadraticity

The argument for the Tukey median as ex-ante Condorcet winner relies crucially

on the assumption of quadratic preferences and symmetrically ignorant beliefs. But

if these assumptions cannot be taken for granted, it seems sensible for the social

evaluator to hedge the commitment to the s.i.q. model by mixing it with the plain

convex model. Formally, assume that the epistemic state of the social evaluator is

described by a ‘mixture’ of models, as follows.

For β ∈ [0, 1], define the mixture of the models Π and Π′ by

βΠ + (1− β)Π′ := {βπ + (1− β)π′ | π ∈ Π and π′ ∈ Π′} .

Concretely, consider a distribution θ of tops, any s.i.q. model Π ⊆ Πθ
quad and the

mixture βΠ + (1 − β)Πθ
co. With continuously distributed tops, the effect of this

mixing on the outcome selection is clearcut and striking: as long as β > 0, there is

none, i.e. the Tukey median continues to be the normative optimum!

Proposition 4. Suppose that θ is continuously distributed with convex support, and

let Π ⊆ Πθ
quad be any symmetrically ignorant quadratic model. Then, for all β > 0,

CW(βΠ + (1− β)Πθ
co) = T (θ).

To see this, consider two distinct alternatives x and y. The tops of voters who

prefer x to y with probability one under the plain convex model are all located on the

line through x and y and therefore have mass zero under a continuous distribution;
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in other words m−
Πθco

(x, y) = 0. Thus,

m−
βΠ+(1−β)Πθco

(x, y) = β ·m−Π(x, y) + (1− β) ·m−
Πθco

(x, y)

= β ·m−Π(x, y). (6.1)

By (6.1), the mixed model βΠ+(1−β)Πθ
co induces the same ex-ante majority relation

as the s.i.q model Π, hence also the same ex-ante Condorcet winner, for all β > 0.

In the finite case, there is no exact counterpart to Proposition 4. Indeed, an ex-

ante Condorcet winner might well fail to exist in the mixed model. But one can still

expect appropriate Condorcet extensions to deliver an approximate version of the

Tukey median rule in the finite case since the underlying rationale – the large size of

the expected majority intervals under plain convexity – is transparent and robust.

6.2 Informative Beliefs about Marginals

Another possible issue in applying the Tukey median in a particular setting is based

on a concern that it may rest on too little information. We have already discussed that

Symmetry (Assumption 3) accommodates a wide range of beliefs about the correlation

of quadratic forms across voters. So here we ask about the possible implication of

relaxing Complete Ignorance of Marginals (Assumption 4) by considering sets of priors

Π such that the induced set of marginals over quadratic forms is strictly contained in

∆(Q).

By a preliminary consideration, note that, even if the set of priors can be described

simply and plausibly, it may be very difficult to characterize the induced expected

majority intervals analytically or computationally; furthermore, an ex-ante Condorcet

winner may well not exist, and some appropriate (ex-ante) Condorcet extension would

need to be applied. So even if the Complete Ignorance of Marginals assumption is

seen as too agnostic entailing a misspecification in the set of priors, the Tukey median

may retain much of its appeal as a useful informationally conservative and tractable

‘approximation’ or ‘stand-in’ for the intractable normative optimum corresponding

to the actual set of beliefs.

Setting tractability aside, to get a better grip on the possible opportunity loss

of unused information, focus on the polar opposite of the Complete Ignorance of

Marginals condition above, namely certain knowledge of the individual quadratic

forms Qi which, by Symmetry, must then coincide with some common quadratic
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form Q. This is a limiting case of our frugal aggregation framework in which the

top reveals the entire preference ordering; in fact, the quest for a frugal optimum

boils down to a question of standard ordinal aggregation of complete preferences on

a restricted domain. If Q is the unit matrix, we are in the classical spatial model in

which preferences are assumed to be Euclidean. (Note that the aggregation problems

for general Q can be reduced to a Euclidean aggregation problem by a change of

coordinates via an appropriate affine transformation of the space of alternatives).

In the case of a known common quadratic form Q, welfare optima are naturally

obtained as the maxima of the program

arg max
x∈X

n∑
i=1

f(ui(x)), (6.2)

where f is a common transformation and the ui(·) are given as in (4.1) with the

common quadratic form Q. The common transform f can be pinned down naturally

by appeal to the Condorcet principle which selects Condorcet winners whenever they

exist. While it is well-known that their set is generically empty in this setting (McK-

elvey, 1979), they do exist if all tops are collinear in which case the Condorcet winner

coincides with the standard median on a line. This forces f to be the square root

function. In the case of Euclidean preferences, this means that the welfare optima

minimize the sum of the Euclidean distances to the tops. In general, the utilitar-

ian welfare optimum (6.2) is given by the ‘geometric median’ with respect to the

quadratic form Q. Concretely, for all profiles θ and all quadratic forms Q, let

MedQ(θ) := arg max
x∈X

n∑
i=1

−
√

(x− θi)T · Q · (x− θi). (6.3)

which we refer to as the geometric Q-median. The geometric median is another classic

multi-dimensional median; see, e.g., Vardi and Zhang (2000) for its basic properties.

With the geometric medians as a normative yardstick under full knowledge, one

can make the question of opportunity loss more precise by comparing the Tukey and

geometric medians. It is easy to see that, without any restrictions on the profile of

tops, different Q-medians may be far apart, and so may be a Q-median and the Tukey

median.

On the other hand, if the tops are sufficiently ‘bunched together,’ there may be
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fairly tight restrictions on how far apart the two medians can be. Indeed, there are

strong results on the relationship between the Tukey median and the coordinate-wise

mean in such settings. (Note that the mean is the welfare optimum under a different

ordinal transform f , namely the identity.) Specifically, Caplin and Nalebuff (1988,

1991) show that if the distribution of tops has a log-concave density, the mean has

Tukey depth of at least 1/e; they also argue that the set of points with this property

is ‘small,’ hence that the mean and the Tukey median must be close together.

It is an interesting – and challenging – question for future research to determine if

a similar result holds for the geometric median. If it did, it would provide additional

support for the Tukey median as a frugal aggregator, inasmuch as it would bound the

potential loss from underspecification tightly.12

The literature has approached the spatial model as an instance of general-purpose

ordinal aggregation rules applied to a specific domain of profiles, focusing on differ-

ent standard Condorcet extension rules. Most prominent among them is the min-

max (‘Simpson-Kramer’) solution, see Kramer (1977); Demange (1982); Caplin and

Nalebuff (1988). Remarkably, the minmax solution under Euclidean preferences co-

incides with the Tukey median, and this equality generalizes to all uniform profiles

of quadratic preferences. By consequence, the minmax rule ignores the non-top pref-

erence information entirely (even though it is available) and thus fails to exploit the

metric structure of Euclidean resp. uniformly quadratic preference profiles. By con-

trast, the Tukey median as ex-ante Condorcet solution in the s.i.q. models cannot be

criticized for failing to use such information, since this information is not available in

these models ex hypothesis.

6.3 The Tukey Median as a Voting Mechanism?

In this paper, we have studied the (strict) Tukey median as a criterion of normative

evaluation under restricted (‘frugal’) information. A different though not unrelated

question concerns the suitability of the Tukey median as a voting mechanism in which

voters choose ‘top’ messages in a self-interested fashion.

An initial question is whether honesty is consistently in voters’ self-interest, and

12In support of this possibility, the Tukey median is more similar to the geometric median than
to the mean as the former agree exactly on collinear profiles, while the latter does not. On the
other hand, the Tukey median shares with the mean the feature of being equivariant under affine
transformation which the geometric median does not.
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the unsurprising answer is that it is not, and cannot be. In a variation of the classical

impossibility result on strategy-proof social choice, this has been as shown for rich

domains of convex preferences (including rich domains of quadratic preferences) in

particular by Zhou (1991).

So strategy-proofness is a moot issue. Beyond signaling the value of future re-

search, with the following remarks we aim to provide a few indications why the

Tukey median holds promise also as a parsimonious voting mechanism employed by

self-interested voters.13 Specifically, we suggest the following two notable points. Vot-

ers will frequently have an incentive to ‘manipulate’ (i.e. to depart from their true

top). But in some cases, such manipulations are arguably permissible, indeed even

desirable from an impartial social-evaluator point of view; in that sense, strategy-

proofness is not even an appropriate ideal in a frugal setting. In other cases, the

impartial evaluation of manipulation might be more ambiguous, but the risk to the

interests of other voters remains limited using the Tukey mechanism.

Understood as a game form, a voting rule now takes messages as inputs not the

true tops. (The latter, now denoted by θi, are not directly observed and remain in

the background). At a given profile of other voters’ messages θ−i, call a message by

i ‘consonant’ with that profile if it enhances the Tukey depth of the profile (then

necessarily by 1), and ‘dissonant’ if it does not. Formally, θi is consonant at θ−i if

d∗(θi, θ−i) = d∗(θ−i) + 1; and it is dissonant if d∗(θi, θ−i) = d∗(θ−i). Moreover, for

m ≥ 1 denote by

T [−m](θ) := {x ∈ X | d(x; θ) ≥ d∗(θ)−m}.

Fact 6.1. (i) If θi is consonant at θ−i, T (θi, θ−i) ⊆ T (θ−i).

(ii) If θi ∈ T (θ−i), then θi is consonant at θ−i and θi ∈ T (θi, θ−i).

(iii) If θi is dissonant at θ−i, T (θ−i) ⊆ T (θi, θ−i) ⊆ T [−1] (θ−i)

To give a normative angle to these properties of the Tukey median rule as a

mechanism, based on the main argument of the paper, take T (·) as normatively

13In the following remarks, we focus for simplicity on the non-strict Tukey median. We also allow
the mechanism being defined as a correspondence, leaving the ultimate selection of an alternative
unspecified. This corresponds to a valuable strand in the strategy-proofness literature starting with
Kelly (1977); Gärdenfors (1979); a fuller analysis would presumably want to consider stochastic or
deterministic single-valued selections as well.
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optimal if all voters messages are truthful, and focus on a potential manipulation by

voter i, assuming all others’ messages to be truthful. If i’s message is consonant,

then, according to Fact 6.1(i), the final choice set will select from within T (θ−i); by

hypothesis, the elements of T (θ−i) are equally optimal (from the impartial point of

view of the social evaluator) for the subset of voters other than i. So, after restricting

the social choice to T (θ−i), i’s interests are arguably aligned with those of the social

evaluator. Obtaining a maximal element (or subset) in T (θ−i) may require a departure

from i’s true top, but why should such manipulation bother the social evaluator?14

On the other hand, if i’s message is dissonant, then some of the chosen alternatives

may now conflict with the aggregate interests of the other voters as represented by

T (θ−i). However, this departure is minimal since the depth is still ‘almost’ maximized.

Note also that, for any θ, the sets {T [−m](θ)}m≥1 form a nested family of closed convex

sets. Unless the number of voters n is small, the elements of T [−1](θ) will thus stay

‘close’ to T (θ). In this sense, the risk of manipulation by any single voter stays

bounded. Contrast this with other tops-only mechanisms, such as the mean rule on

RL. At any profile θ−i, under the mean rule voter i can achieve his true top θi by

selecting θi = nθi −
∑

j 6=i θj, overriding the input of the other voters completely.

One can extend the preceding bounded risk argument to coalitional manipulations

by noting that, for any subset of voters J,

T (θJ , θ−J) ⊇ T [−|J |] (θJ) .

So to completely override the voters outside J by moving outside the convex hull

of their tops, it takes a coalition of size at least d∗(θ).15 Such coalitions need to be

sizeable since by a fundamental result (Donoho and Gasko, 1992, Prop. 2.3), for any

profile of tops θ,

d∗(θ) ≥ n

L+ 1
.

We conclude with two illustrating examples.

14At first blush, it might seem that consonant messages are likely to be the exception, and dissonant
ones the rule. Not so! Take any profile θ with n voters, choose a number m ≤ n with uniform
probability, a random subset J ⊆ {1, ..., n} of size m and a random voter j ∈ J . Then θj is
consonant with θJ−j with probability equal to d∗(θ), as can be established by a double counting
argument.

15These considerations are formally analogous to the robustness analysis of multi-dimensional
statistical estimators in terms of ‘breakpoints,’ see Donoho and Gasko (1992). The concern with
outliers in the statistical setting translates into a concern with coalitional manipulations here.
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Example 3. Suppose the (true) tops of 4 voters are in general position as, for in-

stance, in the profile displayed in Figure 5.

θ1

θ3

z
θ4

θ2

Figure 5: Four points in general position

Here, no top is in the convex hull of the others, and the line segments [θ1, θ3]

and [θ2, θ4] intersect at z.Then d∗(θ) = 2. Note that, for any voter, any message is

consonant; moreover, any voter i can obtain any of the alternatives in co{θ−i} as a

singleton. For instance, voter 1 can obtain any y ∈ co{θ2, θ3, θ4} as a singleton by

choosing θ1 = y. With convex preferences, the preference maximum in co{θ2, θ3, θ4}
lies on the line segment [θ2, θ4], yet it would be entirely accidental if it was equal

to z. So voter 1 would typically have an incentive to manipulate; but, as argued

above, the evaluator has good reason to concur since voter 1 reveals useful private

information.16 The thrust of our argument here is simply to counter the common

intuition that manipulations are generally detrimental.

Example 4. Now consider a profile with three voters. Again, suppose that the true

tops are in general position (see Figure 6), and consider the options of voter 1.

Any message θ1 outside the line through θ2 and θ3 is dissonant, and entails the

choice of co{θ1, θ2, θ3}. It is not clear how voter 1 would profit from a dissonant

departure from the truth. Voter 1 may have a stronger motive for choosing a conso-

nant message in the segment [θ2,θ3], depending on his actual preferences. While she

forfeits the chance at his top alternative, she avoids the risk of obtaining the worst

in co{θ1, θ2, θ3} which, by preference convexity, is either θ2 or θ3. Again, there is no

evident reason for the social evaluator to object.

16Evidently, the same reasoning applies to each of the four voters, so all of them might manipulate.
Predicting what will happen is a matter of game theoretic analysis which is notoriously difficult in
the context of voting.
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θ1

θ3

θ2

Figure 6: Three points in general position

Evidently, a detailed study of the Tukey median as a voting mechanism is a rich

topic far beyond the scope of this paper. The above observations are meant to suggest

the promise of that study, and of the Tukey median as a voting mechanism.
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Appendix A: Proofs

Proof of Proposition 1. Given the pair x, y ∈ X, let Π′ ⊆ Π be the subset of all

priors π ∈ Π such that, for all i = 1, ..., n, π(x ∼i y) = 0. By the regularity

assumption, we have m−Π(x, y) = m−Π′(x, y) and m−Π(y, x) = m−Π′(y, x), and therefore

also m+
Π(x, y) = m+

Π′(x, y) and m+
Π(y, x) = m+

Π′(y, x). By construction, we have for all

π ∈ Π′,

mπ(x, y) +mπ(y, x) = n.

This implies

m−Π′(x, y) +m+
Π′(y, x) = n and

m−Π′(y, x) +m+
Π′(x, y) = n,

therefore

m−Π′(x, y) +m+
Π′(y, x) = m−Π′(y, x) +m+

Π′(x, y),

and hence (2.3).

For the following proofs, the following observation will be useful. Denote by Πexco

the ‘extremal’ convex model, i.e. the submodel of the plain convex model which only

contains sets of priors that put all mass on a single profile of convex preferences.

Lemma A.1. The two models Πexco and Πco are equivalent.

Proof. Consider any pair of distinct alternatives x, y ∈ X. Let π0 be a minimizer of

the support count for x against y under the model Πco, i.e. m−Πco
(x, y) = mπ0(x, y).

Furthermore, let <0 be a profile of convex preferences in the support of π0 such that

#{i : x �i y} is minimal among all profiles in the support of π0. Let δ(<0) be the

prior that puts all mass on <0; then, mδ(<0)(x, y) ≤ mπ0(x, y). But since δ(<0) is an

admissible prior under the model Πco, we have in fact mδ(<0)(x, y) = mπ0(x, y); this

implies the desired result.

Proof of Proposition 2. Using Lemma A.1, the proof is straightforward from well-

known properties of single-peaked preferences.

Proof of Proposition 3. Again using Lemma A.1, it is sufficient to prove the statement

for the model Πexco ⊆ Πθ
co. Consider any x 6= θi∗ ; by assumption, there is at most one
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θj 6= θi∗ on the straight line through x and θi∗ . Since preference convexity entails no

restriction in the comparison of x and θi∗ for tops outside that straight line, and since

θi∗ has largest popular support, this implies m−Πexco
(θi∗ , x) ≥ m−Πexco

(x, θi∗), i.e. θi∗ is

an ex-ante majority winner against x; if θi∗ has uniquely largest popular support, we

even have m−Πexco
(θi∗ , x) > m−Πexco

(x, θi∗). Since x was chosen arbitrarily, the result

follows.

Proof of Theorem 1

The proof of Theorem 1 is given by means of a series of auxiliary results. First,

Proposition 5 shows that all s.i.q. models are equivalent to the uniform quadratic

model hence, by an argument analogous to that given in the proof of Lemma A.1, also

to the extremal uniform model Πexunif . The main subsequent steps are summarized

in two further propositions: Proposition 6 shows that the ex-ante Condorcet winners

of the extremal uniform model coincide with the maximizers of the relative Tukey

depth. Finally, Proposition 7 demonstrates that the set of maximizers of the relative

Tukey depth is non-empty and coincides with the strict Tukey median.

A key fact about the s.i.q. models is that they are all equivalent; specifically, we

have the following result.

Proposition 5. All symmetrically ignorant quadratic models are equivalent.

Proof. We show that any s.i.q. model Π is equivalent to the uniform quadratic model

Πunif . Consider a fixed pair x, y ∈ X of distinct alternatives, and a fixed profile θ

of tops. Let π be any symmetric prior and consider any fixed voter h = 1, ..., n.

Denote by π̃ ∈ Πunif be the unique prior that is concentrated on uniform profiles and

satisfies π̃Qh = πQh . By symmetry of π, we have πQi = πQh for all i = 1, ..., n, and by

construction, π̃Qi = π̃Qh for all i = 1, ..., n; hence, π̃Qh = πQh for all i = 1, ...n. This

implies

mπ̃(x, y) = Eπ̃[#{i : x �i y}] =
n∑
i=1

Eπ̃Qi [x �i y] =

n∑
i=1

EπQi [x �i y] = Eπ[#{i : x �i y}] = mπ(x, y).
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In other words, for every prior π ∈ Π there exists a uniform prior π̃ ∈ Πunif that

induces the same expected majority count for x against y. This implies

m−Πunif
(x, y) ≤ m−Π(x, y). (A.1)

On the other hand, by Assumptions 3 (Symmetry) and 4 (Complete Ignorance of

Marginals), every s.i.q. model contains the extremal uniform model Πexunif , hence

m−Π(x, y) ≤ m−Πexunif
(x, y). (A.2)

Finally, by an argument completely analogous to the argument in the proof of

Lemma A.1, we have

m−Πexunif
(x, y) = m−Πunif

(x, y). (A.3)

Combining (A.1), (A.2) and (A.3), we obtain that the arbitrary s.i.q. model Π

induces the same intervals of expected majority counts as the uniform quadratic

model Πunif .

Denote the relative Tukey depth of x with respect to y by

d(x, y; θ) := min
H∈Hx, y 6∈H

θ(H),

so that xRdy :⇔ d(x, y; θ) ≥ d(y, x; θ) (cf. (4.2)), as well as

S(θ) := {x ∈ X| for no y ∈ X, yPdx}.

Due to Proposition 5 and Lemma A.1, we can concentrate in the remainder of the

proof of Theorem 1 on the extremal uniform model Πexunif (with the fixed top profile

θ). Our goal is to prove the following result.

Proposition 6. For all profiles θ and Πexunif ⊆ Πθ
quad,

CW(Πexunif) = S(θ).

One difficulty in showing this is that the ex-ante majority relation of the extremal

uniform model does in fact not coincide with the relative Tukey depth, as noted in

Example 2 above. Nevertheless, their maximal elements coincide.
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Again, we need a preliminary result. Observe that, since a preference is quadratic

if and only if is obtained from a Euclidean preference (with circles as indifference

curves) by an affine transformation, we have the following result.

Lemma A.2. Let x, y ∈ X be any two distinct alternatives, and <= (<1, ...,<n) a

uniform profile of quadratic preferences with tops θ = (θ1, ..., θn). Then, there exists

a (Euclidean) half-space H ⊆ RL such that the hyperplane ∂H passes through the

midpoint between x and y, and

{θi |x �i y} ⊆ int(H) and {θi | y �i x} ⊆ int(Hc), (A.4)

where Hc is the complement of H in RL. Conversely, for any (Euclidean) half-space

H that separates x from y such that ∂H passes through the midpoint between x and

y, there exists a uniform profile of quadratic preferences that satisfies (A.4).

Proof of Proposition 6. Let x∗ ∈ CW(Πexunif), i.e. x∗RΠexunif
y for all y ∈ X. By

contradiction, assume that x∗ 6∈ S(θ). Then, yPdx
∗ for some y ∈ X, i.e.

d(x∗, y; θ) < d(y, x∗; θ). (A.5)

Let H0 ∈ Hx∗ be a Euclidean half-space that separates x∗ from y and that minimizes

the measure θ(H) among all such half-spaces. Without loss of generality, we may

assume that x∗ ∈ ∂H0 and that ∂H0∩{θ}ni=1 ⊆ {x∗} (the latter by the fact that {θ}ni=1

is a discrete set). Therefore, we my shift H0 slightly towards y to H̃0 while keeping the

mass with respect to θ constant, i.e. such that θ(H0) = θ(H̃0) = d(x∗, y; θ). Consider

the intersection point w of the straight line L connecting y and x∗ with ∂H̃0, and

the point z on L such that w is the midpoint between w and x∗ (see Figure 7). By

Lemma A.2 we have m−Πexunif
(x∗, z) = θ(H̃0) = d(x∗, y; θ). Moroever, we evidently

also have d(x∗, y; θ) = d(x∗, z; θ), and d(z, x∗; θ) ≥ d(y, x∗; θ). Thus, using (A.5) and

the fact that, for all w, v ∈ X, m−Πexunif
(w, v) ≥ d(w, v; θ), we obtain,

m−Πexunif
(z, x∗) ≥ d(z, x∗; θ) ≥ d(y, x∗; θ) >

d(x∗, y; θ) = d(x∗, z; θ) = m−Πexunif
(x∗, z).

i.e. zPΠexunif
x∗ in contradiction to the initial assumption that x∗ ∈ CW(Πexunif).
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y x∗
z

w

H0

H̃0

Figure 7: ‘Localization’ argument

Conversely, let x∗ ∈ S(θ), i.e. x∗Rdx for all x ∈ X. Consider any fixed y ∈ X

distinct from x∗, and let w denote the midpoint of the line segment connecting x∗

and y. Let H1 be a half-space with x∗ ∈ H1, w ∈ ∂(H1) such that θ(H1) is minimal

among all half-spaces with these two properties. Then, by Lemma A.2,

m−Πexunif
(x∗, y) = θ(H1). (A.6)

Since x∗ is in the interior of H1 and w on its boundary, we have

θ(H1) ≥ d(x∗, w; θ). (A.7)

By the assumption x∗ ∈ S(θ), we have

d(x∗, w; θ) ≥ d(w, x∗; θ), (A.8)

and again by Lemma A.2,

d(w, x∗; θ) = m−Πexunif
(y, x∗). (A.9)

Combining (A.6) - (A.9), we thus obtain,

m−Πexunif
(x∗, y) ≥ m−Πexunif

(y, x∗),

i.e. x∗RΠexunif
y. Since y was arbitrarily chosen, we thus obtain x∗ ∈ CW(Πexunif) as

desired.

It remains to be shown that S(θ) coincides with the strict Tukey median, and that
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these two sets are indeed non-empty.

Proposition 7. For all θ, the strict Tukey median T ∗(θ) is non-empty and

S(θ) = T ∗(θ).

The proof of Proposition 7 is given through a series of lemmata.

Lemma A.3. For all x, y ∈ X, d(x; θ) > d(y; θ) implies xPdy.

Proof. By assumption there exists a half-space H containing y with θ(H) < d(x; θ),

hence in particular x 6∈ H. Thus,

d(x, y; θ) ≥ d(x; θ) > θ(H) ≥ d(y, x; θ).

Note that Lemma A.3 implies S(θ) ⊆ T (θ).

Lemma A.4. For all distinct x, y ∈ X such that d(x; θ) = d(y; θ) =: α, one has

d(x, y; θ) = α or d(y, x; θ) = α.

Proof. Let H 3 x be such that θ(H) = α; without loss of generality, we may assume

that x is on the boundary ∂(H) of H (otherwise, one may shift the boundary of H to

x without increasing θ(H)). For any such H, θ(∂H \ {x}) = 0. Indeed, if ∂H \ {x}
contained some voters’ tops, an appropriate slight rotation around x to H ′ would

eliminate some of them without including additional ones (by the finiteness of the set

{θi}ni=1); but this would entail d(x; θ) < α, a contradiction.

If y 6∈ H, then d(x, y; θ) = α. If y ∈ H, since x is on the boundary of H, H could

be changed slightly (by appropriate shift plus slight rotation) to H ′ with y ∈ H ′

eliminating x without including any additional tops (by the argument above). Thus,

α ≤ θ(H ′) ≤ θ(H) ≤ α, in particular θ(H ′) = α. In other words, we have constructed

H ′ such that θ(H ′) = α, y ∈ H ′ and x 6∈ H ′, hence d(y, x; θ) = α.

Lemma A.5. For all distinct x, y ∈ X with d(x; θ) = d(y; θ) =: α,

xPdy ⇐⇒ d(x, y; θ) > α ⇐⇒ Hα
x ( Hα

y , (A.10)
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where Hα
x := {H ∈ H | x ∈ H and θ(H) = α}. In particular, the relation Pd is a

strict partial order and

S(θ) = T ∗(θ). (A.11)

Proof. The first biconditional in (A.10) follows from Lemma A.4 since d(y, x; θ) ≥
d(y; θ) = α. Thus, we only need to show that d(x, y; θ) > α ⇐⇒ Hα

x ( Hα
y . If

d(x, y; θ) > α, there does not exist a half-space H such that x ∈ H, y 6∈ H and

θ(H) = α. Moreover, by Lemma A.4, d(y, x; θ) = α, i.e. there exists a half-space H

such that y ∈ H, x 6∈ H and θ(H) = α; hence in fact Hα
x ( Hα

y .

Conversely, if Hα
x ( Hα

y , there does not exist a half-space H such that x ∈ H,

y 6∈ H and θ(H) = α, hence d(x, y; θ) > α.

The equality stated in (A.11) now follows from the definition of the strict Tukey

median.

We now show that the sets T ∗(θ) and hence S(θ) are indeed non-empty. To this

end, consider the Tukey median set T (θ), i.e. the depth level set with maximal depth

and denote, for all x ∈ T (θ), by L̃x(θ) := {y ∈ T (θ) | xRdy} \ {x} (i.e. the lower

contour set of x with respect to Rd minus the alternative x itself). Moreover, denote

the complement of L̃x(θ) in T (θ) by Ũx(θ), i.e.

Ũx(θ) = {y ∈ T (θ) | yPdx} ∪ {x}

(this is the upper contour set of x with respect to Pd plus the alternative x itself).

Lemma A.6. For all x ∈ T (θ), the sets Ũx(θ) are relative closed in T (θ).

Proof. We show that the complementary sets L̃x(θ) are relative open in T (θ). Con-

sider any pair x, y ∈ T (θ) such that xRdy and x 6= y, and let α∗ be the maximal

Tukey depth. We have d(x; θ) = d(y; θ) = α∗, and by Lemmas A.4 and A.5, we

have d(y, x; θ) = α∗. Thus, there exists a half-space H with θ(H) = α∗, y ∈ H,

x 6∈ H. Since the voters’ tops form a discrete set, we can move the boundary ∂H

slightly towards x in a parallel fashion to obtain a half-space H ′ such that H ⊆ H ′,

θ(H ′) = θ(H) = α∗ and x 6∈ H ′. Thus, d(y′, x; θ) = α∗, and hence again by Lemma

A.5, xRdy
′, for all y′ in a small neighborhood of y. This shows that L̃x(θ) is relative

open in T (θ).

Lemma A.7. For all profiles θ, S(θ) is non-empty.
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Proof. Consider chains of upper contour sets, i.e. subsets C ⊆ {Ũx(θ) | x ∈ T (θ)}
totally ordered by set inclusion, and denote by U the family of all such chains partially

ordered by set inclusion. By Zorn’s Lemma, there exists a maximal element in U ,

i.e. a maximal chain C∗.
The function x 7→ d(x; θ) is upper semicontinuous, hence the set T (θ) of its max-

imizers is non-empty and closed. Hence, since T (θ) is clearly also bounded, T (θ) is a

compact set. By Lemma A.6, the elements of C∗ are relative closed in T (θ), hence as

relative closed subsets of the compact set T (θ) themselves compact.

Consider the directed net (Z,≥) where Z := {x ∈ T (θ) | Ũx(θ) ∈ C∗} and

x ≥ y :⇐⇒ Ũx(θ) ⊆ Ũy(θ).

By the compactness of T (θ), the net (Z,≤) contains a convergent subnet in Z; let x∗

denote its limit. By the orderedness of the chain C∗, x ≥ y implies x ∈ Ũy(θ); hence

by the closedness of Ũy(θ), we have x∗ ∈ Ũy(θ) for all y ∈ Z, and therefore x∗ ∈ ∩C∗.
By Lemma A.5, the relation Pd is transitive on T (θ), hence Ũx∗(θ) ⊆ Ũy(θ) for all

y ∈ Z, and therefore Ũx∗(θ) ⊆ ∩C∗. By the maximality of C∗, Ũx∗(θ) = {x∗}. By the

definition of Ũx∗(θ), x
∗ ∈ S(θ), in particular S(θ) = T ∗(θ) is non-empty.

Proof of Proposition 7. By Lemma A.5, we have S(θ) = T ∗(θ), and by Lemma A.7

S(θ) is non-empty. This completes the proof of Proposition 7.

Proof of Theorem 1. The proof follows from combining Propositions 5, 6 and 7.

Remaining Proofs

Proof of Theorem 1′. The first steps in the proof follow closely the proof of Theorem

1. Indeed, many intermediate steps and arguments hold without change in the case

of a continuous distribution θ of tops. In particular, Proposition 5 can be shown in

an analogous manner, and Lemmas A.2 and A.3 hold without change. Next, we show

that

CW(Πexunif) = S(θ) (A.12)

(cf. Proposition 6). As in the proof of Proposition 6, suppose that x∗ ∈ CW(Πexunif)

and, by contradiction, x∗ 6∈ S(θ), i.e. (A.5) for some y ∈ X. As in the proof of

Proposition 6, we choose H0 such that y 6∈ H0, x∗ ∈ ∂(H0) and θ(H0) = d(x∗, y; θ).
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Since θ is continuously distributed, for any positive ε, we can shift H0 slightly towards

y to H̃0 as in Fig. 4 above such that θ(H̃0) < θ(H0) + ε. If ε is sufficiently small, we

obtain

m−Πexunif
(z, x∗) ≥ d(z, x∗; θ) ≥ d(y, x∗; θ) >

d(x∗, y; θ) + ε > θ(H̃0) = m−Πexunif
(x∗, z).

i.e. zPΠexunif
x∗ in contradiction to the initial assumption that x∗ ∈ CW(Πexunif).

The converse statement S(θ) ⊆ CW(Πexunif) follows exactly as in the proof of

Proposition 6 above.

By (Demange, 1982, Sect. 2.4.(ii)), the Tukey median set T (θ) consists of a unique

point x∗. In particular, d(x∗, θ) > d(y, θ) for all y ∈ X \ {x∗}; hence by Lemma A.3,

S(θ) = T (θ) = {x∗}. Thus, by (A.12) also CW(Πexunif) = {x∗} = T (θ).

Proof of Theorem 2. Consider any s.i.q. model Π ⊆ Πµ
quad. Any prior π ∈ Π corre-

sponds to a unique symmetric prior π ∈ Πµ
quad such that, for all θ ∈ suppµ, πQθ = πQθ .

Denote by Π the set of all such priors π, i.e. Π := {π : π ∈ Π}. As is easily verified,

Π satisfies Assumptions 1-4 of Section 4 (in particular, Tops Certainty) with respect

to the distribution µ. Moreover, for all distinct x, y ∈ X, we have

mπ(x, y) = n ·mπ(x, y),

hence m−Π(x, y) = n ·m−
Π

(x, y); therefore, the ex-ante majority relations corresponding

to Π and Π coincide and we have CW(Π) = CW(Π). Since Π satisfies the assumptions

required for Theorem 1 in the case of a finite distribution, and for Theorem 1′ in

the case of a continuous distribution with convex support, we can conclude that

CW(Π) = T ∗(µ). Together with the preceding observation we thus obtain, CW(Π) =

CW(Π) = T ∗(µ).

Proof of Fact 6.1. Let N = {1, ..., n}. Part (i) follows since any x must guarantee

d∗(θ−i) within N \ {i} to guarantee d∗(θ−i) + 1 in N . Likewise, the second inclusion

of (iii) obtains since any x must guarantee d∗(θ−i) − 1 within N\{i} to guarantee

d∗(θ−i) in N . The first inclusion of (iii) obtains since any x ∈ T (θ−i) guarantees

d∗(θ−i) = d∗(θi, θ−i). Part (ii) is straightforward.
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