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Abstract

We study an exchange economy with overlapping generations of consumers who
derive utility from consuming a non-durable commodity and housing. A banking
sector offers loans to finance housing. We provide a complete characterization of
the equilibrium dynamics which alternates between an expansive regime where
housing prices increase and banks expand loans and a contractive regime associ-
ated with decreasing housing values and shrinking credit volume. Regime switches
occur even under small but persistent income changes giving rise to large and re-
current booms and busts in housing prices not reflecting changes in fundamentals.
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1 Introduction

For more than a decade, from 1997 to 2007, U.S. residential values had continually in-
creased with housing prices in July 2007 being almost three times as high as in 1996. In
mid 2007, this increase came to an abrupt halt and housing prices dropped by almost
17% until June 2008 and by more than 30% between June 2007 and June 2009.! In ret-
rospect, most researchers today seem to agree that houses were overvalued in 2006/2007
(cf. Kocherlakota (2011)), i.e., the increases in housing values were not backed by fun-
damentals. A closer inspection of the potential reasons also reveals that the build-up of
the housing bubble was accompanied by a continual increase in mortgage loans and an
ever increasing mortgage debt which dropped sharply after the burst in 2007 (cf. Chen
& Winter (2011) and He, Wright, & Zhu (2011)). This observation points to a potential
linkage between the lending activities of banks and the evolution of housing prices.

While the US episode certainly motivates a number of theoretical questions, the fo-
cus of the present paper is on the co-movement between mortgage loans and housing
prices. We develop a theoretical model, which explains large movements in housing
prices accompanied by corresponding changes in credit volume. Our analysis uncov-
ers a simple mechanism through which small but persistent income changes generate
large movements in housing values and the aggregate credit volume. Remarkably, these
movements occur in the absence of any sort of frictions. The mechanism generating
these boom-bust cycles is a switch between two regimes each associated with a certain
income level. In the first regime, consumers are eager to borrow and willing to pay a
high interest on loans such that banks expand their credit volume over time and hous-
ing prices increase without bound. In the second regime, consumers are only willing to
borrow at a lower interest for which the credit volume shrinks over time and housing
prices decrease to a lower bound. A switch between these two regimes occurs under
quite moderate income changes. If the change is persistent, the system tends to stay in
one regime for a number of periods generating large movements in housing prices and
the credit volume. During boom phases, consumers buy houses at prices they could
never have afforded and take loans they would be unable to repay from their income
alone. Thus, the financial side essentially decouples from the real side of the economy.

On the methodological side, our paper belongs to the literature on the pure exchange
overlapping generations economy. The seminal work by Samuelson (1958) sets up the
foundation of the analysis of fiat money in the pure exchange overlapping generations
economy. Gale (1973) studies the dynamic formulation of the Samuelson model and our
paper can best be seen as a straightforward extension of his work modified to include
inside money in the form of mortgage loans, and a durable good (housing) instead of
fiat money. Fiat money in Samuelson (1958) and Gale (1973) is in fixed supply and
thus its relative value is bounded by the fundamentals in the economy. By contrast, the

! These figures are taken from the Casey-Shiller housing index composed over 10 areas.



inside money in our model can fuel the housing price indefinitely.

In its economic theme, our paper is related to the theoretical literature on housing
market dynamics. As in our paper, Ortalo-Magné & Rady (2006) and Arce & Lépez-
Salido (2011) study pure exchange overlapping generations models with a durable good
(housing). Ortalo-Magné & Rady (2006) studies a four period overlapping generations
model of the housing market with two types of homes, “starter” and “trade-up” homes,
and a down-payment constraint on borrowing. They show that the volatility in the
income of young households plays a critical role for the “excess” volatility of housing
prices. Arce & Lépez-Salido (2011) develops a three period overlapping generations
model, where bubbles solve the problem of insufficient asset supply in the presence
of financial friction. They analyze how loan supply shocks can eliminate bubbles and
push the economy into a low-valuation regime in which the volume of debt and the
housing price are lower in the presence of multiple steady states. They also show the
existence of multiple equilibria of pure and housing bubbles. Our model shares a common
feature with Ortalo-Magné & Rady (2006) and Arce & Lépez-Salido (2011) that housing
generates utility and serves to collateralize loans. However, borrowing is limited to a
fraction of the value of the housing stock in their models while our model does not
assume any kind of financial frictions.

He, Wright, & Zhu (2011) studies an infinite-horizon economy where houses, in addition
to providing utility, also facilitate transactions in imperfect credit markets. They show
that even when fundamentals are constant and agents are fully rational, house prices can
be priced above the present value of the marginal utility from living in the house. Their
housing dynamics is driven by beliefs, i.e. a self-fulfilling prophecy in the economy with
multiple equilibria as well as by deterministic cycles and chaos. There are no multiple
equilibria in our model nor does it exhibit deterministic cycles or chaos. In this respect,
the mechanism in our model is closer to the one in Ortalo-Magné & Rady (2006) where
income shocks of the young household drives the housing price overreaction.

This paper is also related to the recent literature that focuses on the role of housing and,
more generally, of durable consumption goods for the macroeconomy (e.g. Bajari, Chan,
Krueger & Miller (2010) and Chen & Winter (2011)). Chen & Winter (2011) evaluates
the quantitative impact of the change in housing financing on the consumption boom.
Bajari, Chan, Krueger & Miller (2010) estimates a dynamic structural model of housing
demand and uses it to simulate how consumer behavior responds to house price and
income declines as well as tightening credit constraints.

The paper is organized as follows. Section 2 introduces the model. Section 3 derives the
forward-recursive structure of equilibria while Section 4 studies the equilibrium dynamics
under constant incomes. Section 5 generalizes the deterministic structure to the case
with random incomes and analyzes the scope for boom-bust scenarios to emerge due to
persistent income changes. We also show that a large component of housing prices is a
pure bubble defined as a deviation from the fundamental value. The theoretical findings



are illustrated and quantified in Section 6 with the help of numerical simulations. Section
7 concludes. Proofs for all results can be found in the mathematical appendix.

2 The Model

We consider an exchange economy with discrete time periods ¢ > 0 and a durable and
a non-durable commodity. We refer to the durable commodity as ‘housing’ and the
non-durable good as ‘the consumption good’. The latter is chosen as the numeraire.

Consumption sector

The consumption sector consists of overlapping generations of homogeneous, two-period
lived consumers. Each member of the generation born in ¢ > 0 is endowed with e/ > 0
units of the consumption commodity when young and ef,; > 0 units when old. The
following assumption specifies the probabilistic nature of their incomes.?

Assumption 1

The process {e;};>9 where e, := (e}, e, ) consists of random variables defined on a
common probability space (Q, F,P) with values in € := [e};, €% . ] X [e2:, €%a] CRE, .
The process is adapted to some filtration {F,;},>o such that e, : Q — & is F,—measurable.

A consequence of Assumption 1 is that young consumers observe their first and second
period income when they make decisions. Thus, our analysis abstracts from income
uncertainty. Instead, we demonstrate below that predictable income shifts suffice to
generate large movements in housing prices.

Housing

Houses are retradable and in constant supply normalized to unity. The young purchase
houses at the end of period ¢ at the price p; > 0, for which they incur a fixed cost x > 0
per unit to be paid in the following period ¢ 4+ 1. This parameter can be interpreted
as a cost associated with holding houses such as maintenance and remodeling costs
or insurance payments. Housing investment provides a possibility to transfer wealth
intertemporally and yields utility in the following period.

Banking sector

The banking sector consists of a large number of banks which offer loans at a riskless
interest factor R, > 0. Let b, > 0 denote the aggregate credit volume corresponding to
the resource available to the banking sector at time ¢. This resource is provided as loans
to the young and financed by the loan repayment of the old such that

bt = Rt—lbt—la t Z 1. (].)

2The notion of an adapted stochastic process {& }+>o implies that each random variable & is F-
measurable and, therefore, can only depend on incomes e, observed during periods 7 < ¢. As a
notational convention, inequalities involving random variables are understood to hold in the P-almost
sure sense without explicit notice.



The initial value by > 0 is given historically.® Structurally, the contracts supplied by
banks can be interpreted as inside money (see Gale (1973) for an interpretation of
negative inside money).

Consumer demand
The young choose (¢, ¢’, h) to maximize their expected lifetime utility based on some
von-Neumann Morgenstern utility function U, which is additively separable over time,

ie.,
U(c?,c® h) =u(c?) +v(c, h). (2)
The function u is taken to be of the isoelastic form
Cl—a
= 0 3
o) =11 o> @

with the usual interpretation that u(c) = loge if & = 1. Second period utility v is
the composition of u and an aggregator function g : R, — R, which aggregates
durable and non-durable consumption to a composite commodity ¢(c;, hy). Following
Bajari, Chan, Krueger & Miller (2010) or Lustig & Nieuwerburgh (2005), we use a CES
aggregator

gle,h) =[BcP + (1 — B)h?]s, 0< B <1, p< L.

The young discount second-period utility by v > 0 and thus v takes the form

[Be? + (1 — B)he] 7

1l -«

v(e,h) =yu(g(e, h)) =7 (4)

If p =0, v is Cobb-Douglas while it is additively separable in housing and consumption
ifp=1-a.

Given p, > 0, R; > 0, and p;1 > 0, the budget constraints are
& =e/+b—ph and " =ef —Rb+ (py1 —K)h. (5)

where b and h are the loan demand and housing investment respectively. Let E;[-] :=
E[- | F;] denote the expectations operator conditional on the information available at
time ¢. Using (5), the young consumers’ objective function at time ¢ is

Vi(b, h) = E, [U(ef b= prhy €%y — Rib+ (proy — k) b, h)]. (6)

Note that the housing price p;,.; is the only potential source of uncertainty. The con-
sumers’ decision problem reads

r%%x{vt(b, h) | pih < el +b, €y — bR+ h(pry — k) > 0, h > o}. (7)

3 An initial value by < 0 would correspond to the case where banks take deposits. As our interest is
on banks granting mortgage loans we do not study this case.
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Note that no sign restriction on b is imposed at the individual level.

Equilibrium.
The following definition of equilibrium reconciles market clearing and individual opti-
mality under rational expectations.

Definition 1

Let incomes satisfy Assumption 1. Given an initial credit volume by > 0, an equilibrium
is an adapted stochastic process {by, hy, Ry, p}i>0, which satisfies p, > 0, R, > 0, and
the following conditions for each t > 0:

(i) The decision (b, hy) solves (7) given prices and incomes.

(ii) Markets clear, i.e., hy = 1 and b; evolves according to (1).

Note that Walras’ law implies consumption good market clearing, i.e, ¢f +¢? = e/ +¢e) —k
for all £ > 0.

3 Recursive Equilibrium Structure

Predictable housing prices

To study the existence and dynamic properties of equilibria, we consider the case where
housing prices are predictable, i.e., their realization can be predicted one period in
advance. This assumption enables us to obtain an analytically tractable equilibrium. It
imposes no restrictions in the case when incomes are deterministic. Formally, we assume
that the housing price p;,; is F;-measurable. Under this hypothesis, the young at time
t solve a decision problem under certainty such that the expectations operator in (6)
can be dropped.

Recursive equilibrium
As a first step, we unveil the forward-recursive structure of equilibrium and the state
dynamics of the model. Essentially, we will show that the dynamics is driven by the
evolution of the variable

q=p—by, >0, (8)

which, we show, can be interpreted as the fundamental housing price. We focus on
equilibria where ¢; > 0 for all £ > 0 such that loans are fully backed by housing values.
This may be interpreted as a collateral constraint. Since housing prices are predictable
and banks offer riskless interest rates, the process {¢ };>o is predictable as well.

Since no sign-restriction is imposed on b at the individual level, the first order condi-
tions of the young consumers’ decision problem (7) must be satisfied in equilibrium.



Exploiting this, (2), and (8), the following Euler equations have to hold for each period
t>0:

u'(e] —q) = Rive(ef,; — K+ g, 1) (9a)
pe'(ef — @) = (ps1 — ) ve(€lys — K+ 1, 1) + vn(efyy — £+ g, 1), (9b)

From (9a) and (9b) we infer that the interest factor R; must be higher than the return
from housing (pi+1 — k)/pi. This is because the old derive utility from housing. Given
e= (e, e’) €&, let F(-,;e): (k— e’ 00) x (—00,€e¥) — R where

F(q,qe) == qu'(e —q) —ve(e” — 6+ g1, 1) (1 — k) —vp(e” — K + @1, 1). (10)
Then, adding (9a) and (9b) using (1) and (8) gives the following equilibrium condition

F(Qt+1,Qt; et) =0 (11)

which has to hold at each time ¢ > 0. Condition (11) determines the value g, implicitly
as a function of ¢; and e;. The following result states necessary and sufficient conditions
under which a unique solution to (11) can be determined.

Lemma 1
Suppose p > 0 and o < 1. Then, for each e = (e¥,e°) € £ and q < €Y there exists a
unique value ¢, > r — e°, which satisfies F(qi,q;e) = 0.

Lemma 1 permits to define a map f(-;e) : (—o00,e¥) — (k — €°,00) which determines
the unique zero of F(-,q;e) = 0 for each ¢ < ¢¥.* Thus, whenever ¢; < e}, the solution
to (11) can be written as

qi+1 = f(CIt; €t)- (12)
The next result establishes properties of f.

Lemma 2
Suppose p > 0 and o < 1. Then, for each e = (¢¥,¢%) € £ the map f = f(-;e) is
continuously differentiable with derivative f'(q) > 0 for all ¢ < e¥.

Using the result from (12) in (9a) and (9b), the equilibrium interest factor and next
period’s (expected) housing price are determined from e, € £, ¢, < €] and p; by
u'(ef — a)
Rt = R(qt, €t) = (13)
ve(efpr — K+ flaef), 1)

un(ety — £+ flas e), 1)
ve(efy, — K+ flas e), 1)
4The restrictions p > 0 and a < 1 are necessary and sufficient for lim._, v.(¢,1) ¢ = oo which is

crucial for existence of a solution to (11) for arbitrary ¢; and e;. Although the restriction o < 1 excludes
a logarithmic function u used in Bajari, Chan, Krueger & Miller (2010), this case can be approximated

Pi+1 = P(pt, qt; €t) = R(Qt, et)pt + K= (14)

as the limiting case a — 1 in our setup.



while loans by, follow from (1). Equation (13) equates the equilibrium interest factor
to the intertemporal marginal rate of substitution in consumption. One also infers from
(14) that the equilibrium housing return (p;;1 —#)/p; must be smaller than R, due to the
positive marginal rate of substitution between housing and second period consumption.
Also, note that ¢; > 0 ensures that p, > 0 by (8).

4 Housing Price Dynamics

Dynamics under constant incomes

Based on the previous results, we are now ready to study the dynamics of the model
and establish conditions for the existence of equilibrium. To this end, note that (12)
does not yet define a dynamical system because we have not determined a suitable state
space @Q on which the dynamics can live. While this section studies the equilibrium
dynamics under constant first-period income, the next section will extend this to the
case where first-period income is random. Let us first fix e, = e = (e¥,e°) € £ for all
t > 0. For notational convenience, the dependence of variables and functions on e will
be suppressed. We seek to determine an interval Q C [0,e¥) which is self-supporting
for the map f = f(-;e), i.e., f(¢) € Q for all ¢ € Q. By the properties of f established
in Lemma 2, fixed points, i.e., values ¢ which satisfy ¢ = f(g), are natural boundary
points of intervals which are self-supporting under f. Thus, we begin by studying fixed
points of f and their properties. Since f maps (—oo, €¥) into (k — e°, 00), it is clear that
any such fixed point must lie in the open interval (k — €°,e¥). Therefore, a necessary
precondition for fixed points to exist is e¥ 4+ ¢e° > k. This condition simply says that the
resources available in each period are large enough to cover housing costs. Below, we
even require a stronger condition that e > k. It follows from (10) that fixed-points of
f obtain as zeros of the map G : (k — €° ¢¥) — R where

Glq) = Flg qe) (15)
= qu'(ey —q)—v(e’ —k+¢q1)(¢g—r) —vp(e’ — Kk +q,1).

The following result states properties of the map G.

Lemma 3

Suppose p > 0 and a < 1. Then, for each e = (¢¥,¢") € £ satisfying eV + €° > k the
map G = G(-;e) is a strictly convex function and the derivative satisfies the boundary
behavior lim,_,¢v G'(¢) = — limy_,x—c0 G'(q) = 0.

A consequence of the lemma is the existence of a unique value ¢min € (k — €°,¢¥) at
which G'(gmin) = 0 and G attains its global minimum. Based on this insight, the next
result states conditions for fixed points to exist and characterizes their properties.



Lemma 4
Suppose p > 0 and o < 1. Let incomes e = (e¥,¢e’) € € be given and assume that
eV +e° > k and G(qumin) < 0. Then,

(i) The map f has precisely two fixed points § € (k — €°, Gmin) and q € (Gmin, €).

(ii) The fixed point ¢ is locally unstable while § is asymptotically stable. Moreover,
fla) > q for all g € (—o0,q) U (q,¢¥) and f(q) < q for all q € (¢, q).

Setting aside the non-generic case where G(¢min) = 0, the boundary behavior of G
implies that the condition G(gmin) < 0 is not only sufficient but also necessary for fixed
points to exist. Moreover, it can be shown that G(¢min) > 0 would imply f(g;e) > ¢
for all ¢. In this case, for any ¢y < e¥ a repeated iteration of the forward-recursion (12)
would produce a value ¢ > €Y after finitely many periods ¢ > 1. Thus, G(¢min) < 0 is
also a necessary condition for the dynamics to be viable. The finding from Lemma 4 is
illustrated in the following figures which depict the map f and the fixed point map G.
Note that the zeros of G in Figure 1(b) correspond to intersections of (the graph of) f
with the principal diagonal in Figure 1(a).

f(q) G(q)

-0.05 0.05 0.1 0.15 0. 0.25 q

-0,05— 0.05 0.1 0.15 0.2 0.25 q

(a) The map f (b) Fixed point map G

Figure 1: Time-one map of state dynamics

Lemma 4(ii) reveals that the set (—oo, | is self-supporting under f. Thus, the map f
restricted to this set becomes the time-one map of a one-dimensional dynamical system
in discrete time.” Moreover, for any initial value ¢y € (—o0,q) the sequence {g;};>o
defined recursively as ¢;11 = f(q;), t > 0 converges monotonically to g. By contrast, for
any initial value gy € (q,e¥) the forward-recursion ¢;11 = f(q;) exceeds eV after finitely
many periods. Thus, the forward dynamics is well-defined if and only if ¢y € (—o0, .
In the sequel, we will exclude ¢ from the state space in order to rule out degenerate
equilibria.® To ensure ¢, > 0, we assume that the smaller fixed point satisfies ¢ > 0.
Then, Lemma 4(ii) in conjunction with Lemma 2 imply that the interval Q := [0, q) is

For convenience, we denote the restriction of f to a subset Q C (—o0,e¥) by f as well.
6Tn the stochastic case to be studied in the next section, this imposes no additional restriction

regarding the long run behavior of the system.



self-supporting under f as well. Thus, restricting f to Q defines a discrete dynamical
system which governs the evolution of the variable ¢, € Q over time. The long-run
behavior is now characterized in the following result, which requires in addition e® > k.

Lemma 5
Suppose p > 0 and o < 1. Let incomes e = (e¥,€°) € € be given and assume that e° > k
and G(qmin) < 0 < q. Then,

(i) The restricted map f : Q — Q has q as its unique fixed point.

(ii) This fixed point is globally stable and for each ¢, € Q the sequence {q; },>o defined
recursively as q.1 = f(qi;€¥), t > 0 converges monotonically to q.

In addition to the parameter restrictions p > 0 and « < 1, the previous findings show
that the main restrictions needed for the dynamics to be well-defined are that G (guin) <
0 and, in addition, § > 0. The latter is necessary and sufficient for the dynamics to live
in a subset of Ry, and satisfied if and only if G'(0) < 0 < G(0). Using (4) in (15),
direct computations give

vp(e® —k,1)  1—-0

G0)>0 & k> = e 16
() o B = e o] (16a)
G'(0) <0 & (') <(1—a)ve(e® —K,1) — €vee(e® — K, 1). (16b)
Condition (16a) shows that G(0) > 0 is violated for k = 0 and, therefore, requires
housing costs to exceed a critical level which depends on e°.” As this condition is

independent of first-period income, the value e can always be chosen sufficiently large
to satisfy the second condition (16b). Notice, however, that the condition G(gmi,) < 0
depends on these choices as well. Given that gm, is only implicitly defined by G'(¢q) =
0, it is difficult to fully characterize the underlying parameter sets. The numerical
simulation of the following section, however, shows that all three conditions are satisfied
for a broad range of economically reasonable parameterizations.

Equilibrium under constant incomes

We are now in a position to characterize the complete equilibrium dynamics for a fixed
income process e; = e = (e¥,¢°) € £ for which all hypotheses of Lemma 5 are satisfied.
Fix an initial value (pg, by) which satisfies by > 0, py > 0, and g = po — by € Q. Then,
combining our previous results with (1), (8), (13), and (14) one obtains the following

7As argued above, the housing return must be lower than the interest factor at equilibrium. If = 0,
then pry1/pe < bey1 /by = Ry. This implies that the loan volume grows faster than the housing price
and thus, within finite time the old will not be able to repay their debt. A similar conclusion holds in
a modified version of our model where housing is replaced by a Lucas’ tree traded at price p;, which
yields a positive dividend in each period. The scenario with zero dividend payments corresponds to the
case with fiat money where the economy converges to an autarky steady state.



system which governs the evolution of all equilibrium variables:

a1 = flase) (17a)
biy1 = R(Qt; €)bt (17b)
pir1 = [flase) +R(q;e)b. (17¢)

The dynamics (17a) of ¢, is decoupled from the other two variables and converge mono-
tonically to a unique steady state ¢ by Lemma 5. Moreover, this process defines the
induced consumption allocation as

o = el —q (18a)
& = €& —k+q. (18b)

It is evident from (17b) and (17c¢) that the qualitative long-run dynamic behavior of
the credit volume b; and housing prices p; depend on the steady state interest factor
R(g;e). If R(g;e) < 1, the credit volume asymptotically converges to zero while by (8)
prices converge to p = . Conversely, if R(g;e) > 1 and by > 0, both the credit volume
and housing prices grow without bound and converge to infinity. Notice, however, that
the equilibrium dynamics is well-defined in either case. The following final theorem of
this section summarizes these insights and establishes the existence and properties of
equilibrium.

Theorem 1
Suppose p > 0 and o < 1. Let incomes e = (e¥,¢°) € £ be given and assume that e° > &
and G(qmin) < 0 < q. Then,

(i) Each py > 0 and by > 0 for which py — by € Q defines an equilibrium where the
evolution of the equilibrium variables follows (17a—c) and lim;_,», ¢ = §.

(ii) If by > 0 and R(q;e) > 1, then lim; o p; = limy_, o, b = 0.

(iii) If by = 0 or R(q;e) < 1, then lim;_,, p; = § while lim; ., b; = 0.

5 Housing Booms and Busts

Dynamics under random incomes

We now analyze the case where incomes fluctuate randomly over time. For ease of
exposition, we will confine attention to the case where only first-period incomes change
over time while second-period incomes are assumed to be constant. Thus, assume as
in the previous section that e = e° > x while e} fluctuates over time taking values in
the set &Y = [e¥, ,e¥ ] C Ry;. In the sequel, we will therefore drop the argument

e’ writing e.g. f(q;e¥) instead of f(¢;eY,e?). Consider first how the process {g }i>o

10



defined in (8) evolves over time. It is clear from (12) that this process is well-defined if
and only if ¢; < €] for all t > 0 P-a.s., i.e., ¢, < e’ for all £ > 0 P-a.s. Suppose this
can be satisfied. Then, the forward-recursive structure of the model is well-defined and
generated by randomly mixing the family of mappings (f-;€¥)evecev. That is, given ¢,
the value e} € & realized at time ¢ ’selects’ a particular map f(-;e]) which determines
the next value q;.1 = f(q;€f). For this forward-recursion to be well-defined, we seek
to determine a stable interval Q C [0,e”. ) which is self supporting under the family

(f+;€¥)eveev, 1., ¢ € Q implies f(q;e¥) € Q for all e¥ € £Y.

While the underlying construction principle is the same as in the previous section, the
present case must incorporate that the map f and its fixed points vary with the income
process. Let us assume that the hypotheses of Lemma 5 are satisfied for all e¥ € &Y.
Then, each map f(-;e¥) has precisely two fixed points in (0,e¥) which we denote by
g(e¥) and q(e¥), respectively. The next result describes how these fixed points vary with
income.

Lemma 6
Let the hypotheses of Lemma 5 be satisfied for each eV € £Y. Then,

(i) For each q¢ > 0 the map e — f(q;¢eY) is continuously differentiable (on the interior
of £Y) and strictly decreasing.

(ii) The fixed point maps e — q(e¥) and €Y — ¢(e¥) are both continuously differen-
tiable. Moreover, ¢(+) is strictly decreasing while {(-) is strictly increasing.

Using the previous result, define

. - — 3 7( Y — qleY
Qmin = erynelgly{q(e )} - q(emax) (193“)
7 - 7( oY — (Y
Gmax = gleagg{q(e )b = aleln) (19b)
= . L . = Y _ = y.
Gmin = erynelg{q(e )} = q(emin)- (19¢)

Note that the values defined in (19a—c) satisfy 0 < Gmin < Gmax < Gmin- Thus, defining
Q = [Gmin, Gmax] and Q := [0, Gmin) We have the inclusions () # Q S Q. The following
result essentially extends Lemma 5 to the more general stochastic case.

Lemma 7
Let the hypotheses of Lemma 5 be satisfied for each eV € £Y. Then,

(i) Both intervals Q and Q are self-supporting for the family (f-: €¥)evcev.

(ii) For each qy € Q, the dynamics generated by randomly mixing (f-; €¥)evecev converge
to the set Q P-a.s..

11



It follows from Lemma 7 that asymptotically, the process {¢; }:>o will take values in the
set Q. Thus, if {ef}i>0 is sufficiently regular, e.g., follows a Markov process, standard
results from the literature (cf. Brock & Mirman (1972) and Wang (1993)) imply the
existence of a unique invariant distribution supported on Q which governs the long-
run probabilistic behavior of the process {¢;}i>0. In particular, this process will be
asymptotically stationary.® Figure 2 illustrates the finding from Lemma 7 for the case
with two shocks where e] € {el. ,e¥ 1 for all t.

f(~:Aey) FCsehin) Feha)

Gmin Gmax Gmin

=y

Figure 2: Time-one maps generating the dynamics under two shocks

Equilibrium under random incomes

Based on the previous result, the following theorem generalizes the existence result from
Theorem 1(i) to the case with stochastic first-period incomes. Note that Theorem 1(i)
=eY.

. . Yy _ Ly
obtains as a special case where e; . =e¥

Theorem 2

Let the hypotheses of Lemma 5 be satisfied for each ¢V € £Y. Then, each p, > 0 and
bp > 0 for which qy := py — by € Q defines an equilibrium process generated by (12),
(13), and (14).

Since we are interested in the long-run properties of equilibrium, we can confine attention
to the set Q by virtue of Lemma 7(ii). Analogously to the previous section, the sign of
the interest rate is crucial for the long-run behavior of equilibrium housing prices and
the credit volume. The following result characterizes how the interest factor changes
along with the shocks and the value of q.

8Lemma 4(ii) and the definitions (19a—c) imply that the family f = (f- : €¥)evce restricted to the
interval QQ possesses a stable fized-point configuration in the sense of Brock & Mirman (1972). Thus,
the assertion follows from their results, see also Wang (1993).
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Lemma 8

Let the hypotheses of Lemma 5 be satisfied for each ¢¥ € £Y. Then, the map R defined
in (13) is continuously differentiable with partial derivatives Rev(q;e¥) < 0 < R,(q;¢eY)
for all eV > 0 and q < €Y.

Let

Rmin = min{R(g;e")|q € Q,e’ € £} = R(Gumin; €%, (20a)
Ruax = max{R(g;e¥)|q € Q,e¥ € £} = R(Gumax; €2, (20Db)

We now have the following result which extends the characterization of equilibrium from
Theorem 1(ii) and (iii) to the general stochastic case.

Theorem 3
Let the hypotheses of Lemma 5 be satisfied for each eV € £Y. Then,

(i) If by > 0 and Ry, > 1, then limy_, o py = limy_, o by = 00, P-a.s.

(ii) If by = 0 or Rpax < 1, then limy_,o by = 0 P—a.s. while limy o |p; — ¢;| = 0 P-a.s.

Theorem 3 shows that the long-run behavior of housing prices and the credit volume is
either expansive (i) or stationary (ii). We observe that if by = 0, i.e., in the absence of a
banking sector, the housing price coincides with the process {g;};>o which is stationary
and well-behaved. Thus, any potential non-stationarity in housing prices is exclusively
due to the banking sector. Excluding the non-generic cases of either R,;, = 1 or
Rynax = 1, recurrent housing booms and busts can emerge only if Ryin < 1 < Rinax-

The mechanism for booms and busts

To illustrate a mechanism that generates booms and busts of housing prices, consider
the simplest case where e¥ takes two values e’ . and €% with positive probability. Let
bp > 0 and Ry, < 1 < Rpax. Suppose that incomes initially take the lower value
y

e/ = e’. . Then, the dynamics generated by the map f(-;e”. ) start converging to
the associated steady state g(el;,) = Gmax and we have R, > 1 for ¢ sufficiently large
as R(qmax, €2:) = Rmax > 1. By (1), the credit volume starts to expand and so do
housing prices while their difference ¢; is stationary. Intuitively, the low first period
income increases the need for consumption smoothing and the demand for credit, for
which the young are willing to pay a high interest rate. Although the supply of credit
expands over time as well, this is absorbed by a corresponding higher demand due to
increasing housing prices. Thus, we see that as long as the low income regime prevails,

both housing price and credit volume increase whereas their difference converges to ¢max.

Now, suppose that at some time ¢ > 0, incomes switch to the higher value e¥, . The

corresponding dynamics is now generated by the map f(-;¢e%..) which has G, as its
unique steady state to which the variable ¢, starts converging. For sufficiently large
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t > t, we will have R, < 1 implying that both the credit volume and housing price
will contract. Although this induces a —perfectly foreseen— capital loss, the demand for
housing is still positive as it yields utility.

Combining these observations, it is clear that under a random income process, the sys-
tem will alternate between an expansionary regime and a contractive regime. These
changes are most profound if R(g;e’,.) > 1 and R(g;e¥,. ) < 1 for all ¢ € Q. The

max
first requirement is equivalent to R(Gmin, €’;,) > 1 and implies that the credit volume

Y ... The second condition is equivalent to

R (Gmax €%,,) < 1 and implies that the credit volume starts contracting immediately
y

min*

starts expanding immediately when e¢; = e
when e, = e Now if the income process is persistent, then long periods of credit ex-
pansion will follow long periods of credit contraction. This mechanism offers a potential
to generate large movements in housing prices simply due to persistent income changes.

The previous mechanism straightforwardly generalizes to the case where incomes are
continuously distributed on the interval [¢?.  e¥ ] as long as the dynamics alternates
between the expansive regime {(q,e) € Q x £Y|R(q;e) > 1} and the contractive regime
{(g,¢) € Q@ x & | R(g; ) < 1}.

Bubbles and fundamental housing prices

It is worthwhile to relate our previous results to the emergence of a bubble which is
widely discussed in the literature. In these models the notion of bubbles corresponds
to an intrinsically valueless asset that is traded at a positive price. In our model, the
credit volume supplied by the banking sector is not backed by any resources and satisfies
this definition. Consequently, the bubble-less equilibrium in our economy corresponds
to the initial choice by = 0 which implies b, = 0 and p; = ¢; for all . Therefore, we shall
call ¢; the fundamental housing price. We know from our previous results that for any
¢o > 0, the fundamental housing price process {¢;};>¢ is well-behaved and converges to
a unique stable interval [¢min, ¢max] C (0, €”. ) which shrinks to a point ¢ if incomes are
deterministic.

Under this interpretation, it follows directly from (8) that for an arbitrary by > 0, the
equilibrium housing price p, may be written as the sum of its fundamental value ¢; and
the bubbly component b;. Given a fixed initial fundamental price gy, any injection of
credit by > 0 therefore merely increases the bubbly component of the housing price.
With the initial fundamental price ¢y unchanged, one also observes from (17a) and
(18a,b) that the resulting consumption allocation is not affected by the presence of a
bubble. Thus, any injection of credit is fully neutral with respect to consumer welfare.
Housing investment is in part financed by first period income and selling revenue exceeds
the loan repayment. Thus, at equilibrium there is an effective transfer of resources from
the young to old. If incomes alternate between the expansive and contractive state, large
movements in housing prices occur which can almost exclusively be attributed to the
bubbly component with the fundamental price being bounded by the income process.

14



6 A Quantitative Example

We employ numerical simulations to show that the boom-bust scenario studied previ-
ously occurs under reasonable parameter choices and the switch between the two regimes
is triggered by relatively small income changes.

Parameters

Bajari, Chan, Krueger & Miller (2010) use a logarithmic function u which we approx-
imate in our setup by choosing « close to unity. They also devise an elasticity of
substitution between housing and second-period consumption slightly larger than unity
(about 1.3) corresponding to p = 0.24. For simplicity, we follow Li & Yao (2007) by
confining ourselves to the case of unit elasticity setting p = 0 which yields a Cobb-
Douglas function for second-period utility. For this choice, the parameter 1 — 3 can be
interpreted as the share of housing expenditure in consumer income and Bajari, Chan,
Krueger & Miller (2010) choose a value of § & .77. Given that housing is confined to
the second period of life in our setup, we choose a smaller value = .67. As in Hurd
(1989), consumers’ annual time discount is taken to be 1/1.011 implying a discount
factor v = 0.70 ~ (1/1.011)3°. We normalize incomes by setting e = 1 and assume that
first period incomes {e} };>o follows a symmetric two-state Markov process with values
in &Y = {e?, = 1425 = 1.5} and a time-invariant transition probability 7 = 0.2.
Thus the process is highly persistent with an 80% chance of retaining its current state
and a 20% chance of switching to the opposite state. The fact that incomes are higher in
the first than in the second period seems broadly consistent with empirical evidence, cf.
Table 3 in Bajari, Chan, Krueger & Miller (2010).° Finally, our choice for k = 1/3 im-
plies that housing costs make up slightly more than 10% of consumers’ lifetime income.
The initial values are set to pg = by = 1. Under this parametrization, the hypotheses
of Lemma 4 hold for all eV € £Y. Thus, for each fixed income stream e = ¢ € £Y, the
dynamics (17a) converges to a unique steady state g(e?) > 0.'° In particular, the above
parametrization implies that Rmin = R(G(€¥,,), €%a) < 1 < R(G(e%..),€”..) = Rmax
such that the necessary conditions for booms and busts of housing prices to occur are
satisfied.

Stmulation results

We simulate the model for 7' = 6000 periods and display the time series in Figure 3
starting in ¢ = 3000 to capture the long run characteristics of the model. The left
panel shows a time window of the housing price p; and the credit volume b;. To relate
movements in these variables to the ‘fundamentals’ of the economy we also depict the

9This is also consistent if we were to replace the pure exchange setting by a production economy
where the young earn labor income and the old capital income. Empirical evidence then suggests that
the former is about twice as large as the latter.

10We remark that the chosen parametrization guarantees positivity of steady states, which may fail
to exist at all or g(e¥) < 0 for some e¥ € £Y under other parametrization.
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aggregate net income e + e° — k which represents the total resources available in pe-
riod t net, of housing costs. The right panel depicts the leverage ratio b,/(ef + e’R;")
which measures the percentage share of loans backed by consumers’ discounted lifetime
incomes.
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Y 100% 'V v
0 T T T T T 0% T T T T T
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Figure 3: A boom-bust scenario

The figures confirm that the mechanism identified in the previous sections generates
large and persistent movements in the housing price and the credit volume. These
two variables are intimately interconnected and are almost impossible to distinguish in
Figure 3(a). By our previous results, we know that p; — b, follows a stationary stochastic
process. We also see that for most time periods both the housing investment and the
credit volume exceed the aggregate income by an order of magnitude.

To provide a quantitative illustration of these phenomena, consider the situation in
period tg = 4662 where the bubble reaches a temporary peak. In this period, the young
are in the low-income state receiving e;, = 1.425 such that aggregate net income is
ej, +e° — Kk = 2.09. The credit volume supplied by banks is b, = 17.23 and the interest
on loans is 2.7%, i.e., R;, = 1.027. The young buy houses at the price p;, = 17.24 which
is financed by taking a loan equal to by,. This corresponds to a leverage ratio of 710%.
Moreover, the loan repayment R; b, is about eighteen time as large as second-period
non-housing income e’. However, the next period’s housing price p;,+1 = 17.71 allows
consumers to repay their loan from the revenues of selling their houses at the end of
period ty + 1. This confirms our earlier insight that a credit volume exceeding real
incomes by an order of magnitude can still be sustained by a corresponding increase in
housing values. In fact, the net flow from the young to old consumers, which is equal to
the fundamental price of housing, is only ¢, = p;, — by, = 0.01.

We remark that the same qualitative results were observed when first period income
has an absolutely-continuous and state dependent probability distribution, which alter-
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nates between a high income distribution and a low income distribution with the same
transition probability as before. Hence, the simplifying assumption of income following
a two-state process is not essential for our numerical results.

7 Conclusions

In the absence of a banking sector the only intergenerational transfer of commodities in
our model is from the young to old through the housing market. Consequently, housing
values are bounded by young consumers’ incomes. Introducing a banking sector adds
an additional channel of intergenerational trade in the form of a credit market, which
mediates a commodity transfer from the old to young. The combination of these channels
permits each flow of intergenerational transfers to become arbitrarily large as long as the
net flow remains bounded by consumers’ incomes. This structure amplifies small but
persistent income changes into large movements of housing prices and credit volumes,
which are both non-stationary while a linear combination of them follows a stationary
stochastic process. The presence of such a cointegration relationship is therefore an
implication of the model that is testable empirically.

In our model, the boom in housing prices accompanied by expanding loan volumes oc-
curs when the interest factor exceeds unity. Hence, the stationary endowment process
implies that the interest rate is greater than the growth rate of the economy when bub-
bles emerge, a feature of the model shared by Arce & Loépez-Salido (2011), Caballero,
Farhi, & Hammour (2006), Martin & Ventura (2012), and Ventura (2012). The boom
comes to a halt when a higher income of the young causes the interest factor to drop
below unity. This comovement between the interest rate and the credit volume occurs
naturally in a model with inside money but may be at odds with the empirical observa-
tion that the cost of refinancing is relatively low in many bubble episodes. An interesting
question that we leave for future research is whether this relationship reverses when the
model includes outside money. Such an extension would also permit to investigate how
monetary policies interact with the banking sector and the housing market.

Another feature of our exchange economy is that bubbles do not affect productive invest-
ment and hence consumer incomes. Whether bubbles in our framework remain welfare
neutral in the presence of capital accumulation is also an interesting question to be
explored.
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A Mathematical Proofs

A.1 Proof of Lemma 1
Let e = (e¥,e°) € £ and g < €Y be arbitrary but fixed. For brevity, set q:=r—e” and

H(qi) = velgr — ¢,1) (1 — &) Fonlqn — ¢, 1), @ >q. (A.1)

Since v in (4) is homogeneous of degree 1—c, Euler’s theorem for homogeneous functions
implies v.(c,1) c+vp(c,1) = (1 — @)v(e, 1) for all ¢ > 0 permitting us to write

H(q)=(1—a)v(q — q, 1) —ve(qu — q, e, q > q. (A.2)
Since p > 0, the function v satisfies the Inada condition lim._,q v.(c,1) = co. Thus,

lim H(q) = (1 —a)v(0,1) — e’ lim v.(q; — g, 1) = —o0. (A.3)

q1—4q q—q

Furthermore, the restrictions p > 0 and « < 1 together imply lim, , cv.(c, 1) = oc.
Using this in (A.1) yields the right limit as

lim H(q) > q}i_r)noo ve(qi — ¢, 1) (1 — k) = oo. (A.4)

q1—0o0

Existence of the desired solution thus follows from (A.3), (A.4), and continuity of H.
Uniqueness is a consequence of (A.2) and the concavity of v which give the derivative

H'(q) = (1 = a)velgr — ¢, 1) = vee(qn — ¢, 1) ° > 0. (A.5)

A.2 Proof of Lemma 2

Since Fy, (q1,q;e) = —H'(¢q1) < 0 by (10) and (A.5) and F is continuously differentiable,
so is the implicit function f by the Implicit Function Theorem. The partial derivative
of (10) with respect to ¢ computes

7o¢ey - (1 _ Oé)q

Fyla, ge) = u'(e” —q) — qu” (e’ — q) = (¢ — q) o—qg 0 (A-6)
By the implicit function theorem f’(¢q) = —% > 0 where ¢; = f(q;e). [
1 sy
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A.3 Proof of Lemma 3

By (15), the function G' can be written as G(q) = D(q) — H(q) with H being defined as
in (A.2) and D(q) :=qu'(eV —q) =q(eV —q)™%, q<¢€v.
Consider first the behavior of the function D whose derivatives satisfy

, = (1-a)g W ¢/—q _ l-a

Dla) = (v —q)e S )(ey —pre (e —qe (A7)
" «Q y a(l B Oé) y

D (q) = W(Qe — (1 — Oé)q) > W(e — q> > 0. (AS)

The second inequality shows that D is a strictly convex function while the first one
implies that D is strictly increasing with boundary behavior lim, . D'(q) = oo.

As shown in the proof of Lemma 1, the derivative of H is given by (A.5) and, therefore,
satisfies H'(¢) > 0 and lim,,, 0o H'(¢) > (1 — o) lim,,,_co vc(® — Kk + ¢, 1) = c0. We
claim that H' is a strictly decreasing function implying that — H is strictly convex. The
first term in (A.5) is strictly decreasing by strict concavity of v. It therefore suffices to
show that ¢ — —u.(c, 1) is decreasing as well. Defining g as in (2), direct calculations
reveal that the second derivative of v can be written as

_Ucc(ca 1) = UC(? 1) |:1 —pP— (1 —pP— a)g(f,ci)p]
— e a l—p (1-5)
= (e, 1) Ll_pg(c, vt e e 1)p] . (A.9)

Recalling that 1 — p > 0, all three terms in (A.9) are positive and strictly decreasing
functions of ¢ which implies that ¢ — —wv..(c, 1) is decreasing as claimed.

Thus, —H is a strictly convex function as claimed and G being the sum of two (strictly)
convex functions is also strictly convex. The boundary behavior of G’ follows directly
from the limits computed above and the monotonicity properties of D and —H. [ |

A.4 Proof of Lemma 4

(i) Using (15) in conjunction with (A.2), a routine calculation shows that lim, .. G(¢q) =
limg_x—e0 G(q) = 00. Thus, G(gmin) < 0 implies that G has a fixed point in each of the
intervals (k — €°, ¢min) and (¢min, €¥). By strict convexity and the boundary behavior of
the first derivative (cf. Lemma 3), the map G is strictly decreasing on (k — €°, ¢min) and
strictly increasing on (gmin, €¥). Thus, there can be at most one fixed point in each of
the two intervals.

(ii) It is obvious from (i) that G'(7) < 0 < G'(g). Utilizing the result from Lemma
2 and the definitions of D and H given in the proof of Lemma 4, this implies that
G'(q) = D'(q) — H'(79) < 0 and G'(q) = D'(q) — H'(q) > 0. Therefore,

D@ _, D@

D _ () (A.10)

0<1D =T H'(q)
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which implies the local stability properties asserted. The remaining inequalities follow
from this and the uniqueness of the fixed points on the respective intervals. [ |

A.5 Proof of Lemma 5

Assertion (i) follows immediately from Lemma 4(i). The result in (ii) is a consequence
of local stability of ¢ and Lemma 4(ii). Monotonicity of the sequence {¢;}:>o follows
from this and Lemma 2. |

A.6 Proof of Theorem 1

(i) Lemma 5 and ¢y € Q imply that ¢, € Q for all ¢ and lim;_,, ¢; = ¢. By (1) and (13),
by > 0 implies b; > 0 and, by (8) p; > 0 for all ¢ proving (i).

(ii) If R(g;e) > 1, then there exists o5 > 0 such that R(q;e) > 1 for all t > ¢, by
stability of ¢. In fact, since ¢ — R(q; e) is strictly increasing (cf. Lemma 8) and {g;}i>0
converges monotonically, we have R(g;;e) > Ry, := R(q,;€) > 1 for all ¢ > ;. Thus,
limy oo by > by, limy oo Rﬁ;to = oo and p; = q; + by > b; for all t gives lim;_,,, p; = co.
(iii) If by = 0, then by = 0 and ¢; = p; for all ¢ and the claim follows from (i). If by > 0
and R(q;e) < 1, the same arguments as in (ii) yield R(q;e) < Ry, := R(qy,;e) < 1 for
t > to. Thus, 0 < limy_e0 by < by limy0o Byo ™ = 0 and limy oo py = limy oy = ¢ M

A.7 Proof of Lemma 6

(i) The proof of Lemma 2 revealed that Fj,(qi,q;e) < 0 with F' defined in (10). Since
Fu(q,q;e) = qu”(e? —q) < 0, ¢ > 0, the claim follows from the Implicit Function
Theorem.

(ii) Recall that fixed points are solutions to G(g;e) = F(q,q;¢e) = 0. By (i), Ges(g;€) =
Fol(q,q;e) < 0. As limg,,—e0 G(g;€) = limy,ev G(g;€) = oo implies Gy (g;e) < 0 <
G4(q; e), the claim follows again from the Implicit Function Theorem. [ |

A.8 Proof of Lemma 7

(i) We first show that Q is self-supporting. Let ¢ € Q be arbitrary. Then, using Lemma,
4(ii) and the monotonicity properties of f together with the definitions (19a-c) we have
for each eV € &:

Qmin — f(Qmin; eernax) S f(Qmin; 6y) S f(q; ey) S f(Qmax; ey) S f(Qmax; 6?nin)) = Qmax-
(A.11)
Thus, f(g;eY) € Q. To prove that Q is self-supporting, let ¢ € Q and ¢/ € &Y be
arbitrary. The case ¢ € Q is evident, so suppose first that ¢ € (fmax,@min). Then,
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by (19a—<¢), G(€¥) < Gmax < ¢ < Gmin < ¢(€¥) which implies, by Lemma 4(ii) and
monotonicity of f that g(e¥) < f(¢;e¥) < q. Thus, f(q;e¥) € Q. Conversely, suppose
q € (0,Gmin)- Then, by (19a—) 0 < ¢ < Gmin < q(e¥) which implies ¢ < f(q;e¥) < q(e¥)
by Lemma 4(ii) and monotonicity of f. Thus, f(g;e¥) € Q again.

(ii) Let ¢o € Q be arbitrary. Define the sequences {q;}i>0 and {g,}:>0 by setting g, =
4, = qo and Gyyy = f(qy; €py) and 4,,, = J(4;€ha) for each ¢ > 0. Then, by the
monotonicity properties of f, 9, <@ <7q P-a.s. for all £ > 0 and the claim follows from

lirnt—)oo gt = Q(e%ax) — Qmin and lirnt—)oo Qt - Q(ezﬁn) = ijax- .

A.9 Proof of Theorem 2

Lemma 7 ensures that ¢, € Q C (0,€”. ) P-a.s. for all ¢ > 0. By (1) and (13), by > 0
implies b; > 0 by, (8), ps > ¢, > 0 P-a.s. for all ¢ > 0. [ |

A.10 Proof of Lemma 8

The claim follows directly by taking the partial derivatives of (13) and using Lemmata
2 and 6(i). |

A.11 Proof of Theorem 3

(i) Suppose Rmin > 1. Then, R(g;e) > Rmin > 1 for all ¢ € Q and e € &Y. Let

A

R be a number between 1 and R.;,. By continuity of R, we can choose an open
neighborhood Q € Q of Q such that R(q;e) > Ruin for all ¢ € Q and e € &Y. Let
¢o € Q be arbitrary. By Lemma 7(ii), there exists ¢, > 0 such that ¢, € Q for all
t >ty P-a.s. Hence, R, > Ry > 1 for all t > ¢, P-a.s. and it follows from (1) that
limy 00 by > limy 00 by, (Rmin)tfto = 00. Since ¢; remains uniformly bounded, the limit
of the process {p;}:>o follows from (8).

(ii) Similar to the previous part, choose a number Rmax between R,.. and 1 and an
open neighborhood Q ¢ Q of Q such that R(q;e) < Ruax < 1 for all ¢ € Q and
e € EY. Let gy € Q be arbitrary. By Lemma 7(ii), there exists ¢, > 0 such that ¢; € Q
for all ¢ > ty P-a.s. Hence, R; < Rmax < 1 for all t > ty P-a.s. and it follows that
0 < limy_yo0 by < limy_soq by, (Rmax)tito

directly that lim;_,o |pr — ¢:| = limy_, |b¢| = 0. [

= 0. Finally, the previous result and (8) imply
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