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A Me
hanism for Booms and Bustsin Housing Pri
es�Marten Hillebrandy Tomoo Kiku
hizApril 15, 2012
Abstra
tWe study an ex
hange e
onomy with overlapping generations of 
onsumers whoderive utility from 
onsuming a non-durable 
ommodity and housing. A bankingse
tor o�ers loans to �nan
e housing. We provide a 
omplete 
hara
terization ofthe equilibrium dynami
s whi
h alternates between an expansive regime wherehousing pri
es in
rease and banks expand loans and a 
ontra
tive regime asso
i-ated with de
reasing housing values and shrinking 
redit volume. Regime swit
heso

ur even under small but persistent in
ome 
hanges giving rise to large and re-
urrent booms and busts in housing pri
es not re
e
ting 
hanges in fundamentals.JEL 
lassi�
ation: C62, E32, G21Keywords: OLG, Housing pri
es, Credit volume, Boom-bust s
enarios, Regime swit
hing
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1 Introdu
tionFor more than a de
ade, from 1997 to 2007, U.S. residential values had 
ontinually in-
reased with housing pri
es in July 2007 being almost three times as high as in 1996. Inmid 2007, this in
rease 
ame to an abrupt halt and housing pri
es dropped by almost17% until June 2008 and by more than 30% between June 2007 and June 2009.1 In ret-rospe
t, most resear
hers today seem to agree that houses were overvalued in 2006/2007(
f. Ko
herlakota (2011)), i.e., the in
reases in housing values were not ba
ked by fun-damentals. A 
loser inspe
tion of the potential reasons also reveals that the build-up ofthe housing bubble was a

ompanied by a 
ontinual in
rease in mortgage loans and anever in
reasing mortgage debt whi
h dropped sharply after the burst in 2007 (
f. Chen& Winter (2011) and He, Wright, & Zhu (2011)). This observation points to a potentiallinkage between the lending a
tivities of banks and the evolution of housing pri
es.While the US episode 
ertainly motivates a number of theoreti
al questions, the fo-
us of the present paper is on the 
o-movement between mortgage loans and housingpri
es. We develop a theoreti
al model, whi
h explains large movements in housingpri
es a

ompanied by 
orresponding 
hanges in 
redit volume. Our analysis un
ov-ers a simple me
hanism through whi
h small but persistent in
ome 
hanges generatelarge movements in housing values and the aggregate 
redit volume. Remarkably, thesemovements o

ur in the absen
e of any sort of fri
tions. The me
hanism generatingthese boom-bust 
y
les is a swit
h between two regimes ea
h asso
iated with a 
ertainin
ome level. In the �rst regime, 
onsumers are eager to borrow and willing to pay ahigh interest on loans su
h that banks expand their 
redit volume over time and hous-ing pri
es in
rease without bound. In the se
ond regime, 
onsumers are only willing toborrow at a lower interest for whi
h the 
redit volume shrinks over time and housingpri
es de
rease to a lower bound. A swit
h between these two regimes o

urs underquite moderate in
ome 
hanges. If the 
hange is persistent, the system tends to stay inone regime for a number of periods generating large movements in housing pri
es andthe 
redit volume. During boom phases, 
onsumers buy houses at pri
es they 
ouldnever have a�orded and take loans they would be unable to repay from their in
omealone. Thus, the �nan
ial side essentially de
ouples from the real side of the e
onomy.On the methodologi
al side, our paper belongs to the literature on the pure ex
hangeoverlapping generations e
onomy. The seminal work by Samuelson (1958) sets up thefoundation of the analysis of �at money in the pure ex
hange overlapping generationse
onomy. Gale (1973) studies the dynami
 formulation of the Samuelson model and ourpaper 
an best be seen as a straightforward extension of his work modi�ed to in
ludeinside money in the form of mortgage loans, and a durable good (housing) instead of�at money. Fiat money in Samuelson (1958) and Gale (1973) is in �xed supply andthus its relative value is bounded by the fundamentals in the e
onomy. By 
ontrast, the1These �gures are taken from the Casey-Shiller housing index 
omposed over 10 areas.1



inside money in our model 
an fuel the housing pri
e inde�nitely.In its e
onomi
 theme, our paper is related to the theoreti
al literature on housingmarket dynami
s. As in our paper, Ortalo-Magn�e & Rady (2006) and Ar
e & L�opez-Salido (2011) study pure ex
hange overlapping generations models with a durable good(housing). Ortalo-Magn�e & Rady (2006) studies a four period overlapping generationsmodel of the housing market with two types of homes, \starter" and \trade-up" homes,and a down-payment 
onstraint on borrowing. They show that the volatility in thein
ome of young households plays a 
riti
al role for the \ex
ess" volatility of housingpri
es. Ar
e & L�opez-Salido (2011) develops a three period overlapping generationsmodel, where bubbles solve the problem of insuÆ
ient asset supply in the presen
eof �nan
ial fri
tion. They analyze how loan supply sho
ks 
an eliminate bubbles andpush the e
onomy into a low-valuation regime in whi
h the volume of debt and thehousing pri
e are lower in the presen
e of multiple steady states. They also show theexisten
e of multiple equilibria of pure and housing bubbles. Our model shares a 
ommonfeature with Ortalo-Magn�e & Rady (2006) and Ar
e & L�opez-Salido (2011) that housinggenerates utility and serves to 
ollateralize loans. However, borrowing is limited to afra
tion of the value of the housing sto
k in their models while our model does notassume any kind of �nan
ial fri
tions.He, Wright, & Zhu (2011) studies an in�nite-horizon e
onomy where houses, in additionto providing utility, also fa
ilitate transa
tions in imperfe
t 
redit markets. They showthat even when fundamentals are 
onstant and agents are fully rational, house pri
es 
anbe pri
ed above the present value of the marginal utility from living in the house. Theirhousing dynami
s is driven by beliefs, i.e. a self-ful�lling prophe
y in the e
onomy withmultiple equilibria as well as by deterministi
 
y
les and 
haos. There are no multipleequilibria in our model nor does it exhibit deterministi
 
y
les or 
haos. In this respe
t,the me
hanism in our model is 
loser to the one in Ortalo-Magn�e & Rady (2006) wherein
ome sho
ks of the young household drives the housing pri
e overrea
tion.This paper is also related to the re
ent literature that fo
uses on the role of housing and,more generally, of durable 
onsumption goods for the ma
roe
onomy (e.g. Bajari, Chan,Krueger & Miller (2010) and Chen & Winter (2011)). Chen & Winter (2011) evaluatesthe quantitative impa
t of the 
hange in housing �nan
ing on the 
onsumption boom.Bajari, Chan, Krueger & Miller (2010) estimates a dynami
 stru
tural model of housingdemand and uses it to simulate how 
onsumer behavior responds to house pri
e andin
ome de
lines as well as tightening 
redit 
onstraints.The paper is organized as follows. Se
tion 2 introdu
es the model. Se
tion 3 derives theforward-re
ursive stru
ture of equilibria while Se
tion 4 studies the equilibrium dynami
sunder 
onstant in
omes. Se
tion 5 generalizes the deterministi
 stru
ture to the 
asewith random in
omes and analyzes the s
ope for boom-bust s
enarios to emerge due topersistent in
ome 
hanges. We also show that a large 
omponent of housing pri
es is apure bubble de�ned as a deviation from the fundamental value. The theoreti
al �ndings2



are illustrated and quanti�ed in Se
tion 6 with the help of numeri
al simulations. Se
tion7 
on
ludes. Proofs for all results 
an be found in the mathemati
al appendix.2 The ModelWe 
onsider an ex
hange e
onomy with dis
rete time periods t � 0 and a durable anda non-durable 
ommodity. We refer to the durable 
ommodity as `housing' and thenon-durable good as `the 
onsumption good'. The latter is 
hosen as the numeraire.Consumption se
torThe 
onsumption se
tor 
onsists of overlapping generations of homogeneous, two-periodlived 
onsumers. Ea
h member of the generation born in t � 0 is endowed with eyt > 0units of the 
onsumption 
ommodity when young and eot+1 > 0 units when old. Thefollowing assumption spe
i�es the probabilisti
 nature of their in
omes.2Assumption 1The pro
ess fetgt�0 where et := (eyt ; eot+1) 
onsists of random variables de�ned on a
ommon probability spa
e (
;F ;P) with values in E := [eymin; eymax℄� [eomin; eomax℄ � R2++ .The pro
ess is adapted to some �ltration fFtgt�0 su
h that et : 
! E is Ft{measurable.A 
onsequen
e of Assumption 1 is that young 
onsumers observe their �rst and se
ondperiod in
ome when they make de
isions. Thus, our analysis abstra
ts from in
omeun
ertainty. Instead, we demonstrate below that predi
table in
ome shifts suÆ
e togenerate large movements in housing pri
es.HousingHouses are retradable and in 
onstant supply normalized to unity. The young pur
hasehouses at the end of period t at the pri
e pt > 0, for whi
h they in
ur a �xed 
ost � > 0per unit to be paid in the following period t + 1. This parameter 
an be interpretedas a 
ost asso
iated with holding houses su
h as maintenan
e and remodeling 
ostsor insuran
e payments. Housing investment provides a possibility to transfer wealthintertemporally and yields utility in the following period.Banking se
torThe banking se
tor 
onsists of a large number of banks whi
h o�er loans at a risklessinterest fa
tor Rt > 0. Let bt � 0 denote the aggregate 
redit volume 
orresponding tothe resour
e available to the banking se
tor at time t. This resour
e is provided as loansto the young and �nan
ed by the loan repayment of the old su
h thatbt = Rt�1bt�1; t � 1: (1)2The notion of an adapted sto
hasti
 pro
ess f�tgt�0 implies that ea
h random variable �t is Ft-measurable and, therefore, 
an only depend on in
omes e� observed during periods � � t. As anotational 
onvention, inequalities involving random variables are understood to hold in the P-almostsure sense without expli
it noti
e. 3



The initial value b0 � 0 is given histori
ally.3 Stru
turally, the 
ontra
ts supplied bybanks 
an be interpreted as inside money (see Gale (1973) for an interpretation ofnegative inside money).Consumer demandThe young 
hoose (
y; 
o; h) to maximize their expe
ted lifetime utility based on somevon-Neumann Morgenstern utility fun
tion U , whi
h is additively separable over time,i.e., U(
y; 
o; h) = u(
y) + v(
o; h): (2)The fun
tion u is taken to be of the isoelasti
 formu(
) = 
1��1� �; � > 0 (3)with the usual interpretation that u(
) = log 
 if � = 1. Se
ond period utility v isthe 
omposition of u and an aggregator fun
tion g : R2++ ! R+ whi
h aggregatesdurable and non-durable 
onsumption to a 
omposite 
ommodity g(
t; ht). FollowingBajari, Chan, Krueger & Miller (2010) or Lustig & Nieuwerburgh (2005), we use a CESaggregator g(
; h) = [�
� + (1� �)h�℄ 1� ; 0 < � < 1; � < 1:The young dis
ount se
ond-period utility by 
 > 0 and thus v takes the formv(
; h) = 
 u(g(
; h)) = 
 [�
� + (1� �)h�℄ 1���1� � : (4)If � = 0, v is Cobb-Douglas while it is additively separable in housing and 
onsumptionif � = 1� �.Given pt > 0, Rt > 0, and pt+1 > 0, the budget 
onstraints are
y = eyt + b� pt h and 
o = eot+1 � Rt b + (pt+1 � �) h: (5)where b and h are the loan demand and housing investment respe
tively. Let E t [�℄ :=E [� j Ft℄ denote the expe
tations operator 
onditional on the information available attime t. Using (5), the young 
onsumers' obje
tive fun
tion at time t isVt(b; h) := E thU(eyt + b� pt h; eot+1 �Rt b + (pt+1 � �) h; h)i: (6)Note that the housing pri
e pt+1 is the only potential sour
e of un
ertainty. The 
on-sumers' de
ision problem readsmaxb;h nVt(b; h) j pt h � eyt + b; eot+1 � bRt + h(pt+1 � �) � 0; h � 0o: (7)3An initial value b0 < 0 would 
orrespond to the 
ase where banks take deposits. As our interest ison banks granting mortgage loans we do not study this 
ase.4



Note that no sign restri
tion on b is imposed at the individual level.Equilibrium.The following de�nition of equilibrium re
on
iles market 
learing and individual opti-mality under rational expe
tations.De�nition 1Let in
omes satisfy Assumption 1. Given an initial 
redit volume b0 � 0, an equilibriumis an adapted sto
hasti
 pro
ess fbt; ht; Rt; ptgt�0, whi
h satis�es pt > 0, Rt > 0, andthe following 
onditions for ea
h t � 0:(i) The de
ision (bt; ht) solves (7) given pri
es and in
omes.(ii) Markets 
lear, i.e., ht = 1 and bt evolves a

ording to (1).Note that Walras' law implies 
onsumption good market 
learing, i.e, 
yt +
ot = eyt +eot��for all t � 0.3 Re
ursive Equilibrium Stru
turePredi
table housing pri
esTo study the existen
e and dynami
 properties of equilibria, we 
onsider the 
ase wherehousing pri
es are predi
table, i.e., their realization 
an be predi
ted one period inadvan
e. This assumption enables us to obtain an analyti
ally tra
table equilibrium. Itimposes no restri
tions in the 
ase when in
omes are deterministi
. Formally, we assumethat the housing pri
e pt+1 is Ft-measurable. Under this hypothesis, the young at timet solve a de
ision problem under 
ertainty su
h that the expe
tations operator in (6)
an be dropped.Re
ursive equilibriumAs a �rst step, we unveil the forward-re
ursive stru
ture of equilibrium and the statedynami
s of the model. Essentially, we will show that the dynami
s is driven by theevolution of the variable qt := pt � bt; t � 0; (8)whi
h, we show, 
an be interpreted as the fundamental housing pri
e. We fo
us onequilibria where qt > 0 for all t � 0 su
h that loans are fully ba
ked by housing values.This may be interpreted as a 
ollateral 
onstraint. Sin
e housing pri
es are predi
tableand banks o�er riskless interest rates, the pro
ess fqtgt�0 is predi
table as well.Sin
e no sign-restri
tion is imposed on b at the individual level, the �rst order 
ondi-tions of the young 
onsumers' de
ision problem (7) must be satis�ed in equilibrium.5



Exploiting this, (2), and (8), the following Euler equations have to hold for ea
h periodt � 0: u0(eyt � qt) = Rt v
(eot+1 � � + qt+1; 1) (9a)pt u0(eyt � qt) = (pt+1 � �) v
(eot+1 � �+ qt+1; 1) + vh(eot+1 � �+ qt+1; 1): (9b)From (9a) and (9b) we infer that the interest fa
tor Rt must be higher than the returnfrom housing (pt+1 � �)=pt. This is be
ause the old derive utility from housing. Givene = (ey; eo) 2 E , let F (�; �; e) : (�� e0;1) � (�1; ey)! R whereF (q1; q; e) := q u0(ey � q)� v
(eo � � + q1; 1) (q1 � �)� vh(eo � �+ q1; 1): (10)Then, adding (9a) and (9b) using (1) and (8) gives the following equilibrium 
onditionF (qt+1; qt; et) = 0 (11)whi
h has to hold at ea
h time t � 0. Condition (11) determines the value qt+1 impli
itlyas a fun
tion of qt and et. The following result states ne
essary and suÆ
ient 
onditionsunder whi
h a unique solution to (11) 
an be determined.Lemma 1Suppose � � 0 and � < 1. Then, for ea
h e = (ey; eo) 2 E and q < ey there exists aunique value q1 > �� eo, whi
h satis�es F (q1; q; e) = 0.Lemma 1 permits to de�ne a map f(�; e) : (�1; ey) ! (� � eo;1) whi
h determinesthe unique zero of F (�; q; e) = 0 for ea
h q < ey.4 Thus, whenever qt < eyt , the solutionto (11) 
an be written as qt+1 = f(qt; et): (12)The next result establishes properties of f .Lemma 2Suppose � � 0 and � < 1. Then, for ea
h e = (ey; e0) 2 E the map f = f(�; e) is
ontinuously di�erentiable with derivative f 0(q) > 0 for all q < ey.Using the result from (12) in (9a) and (9b), the equilibrium interest fa
tor and nextperiod's (expe
ted) housing pri
e are determined from et 2 E , qt < eyt and pt byRt = R(qt; et) := u0(eyt � qt)v
(eot+1 � �+ f(qt; eyt ); 1) (13)pt+1 = P(pt; qt; et) := R(qt; et)pt + �� vh(eot+1 � �+ f(qt; et); 1)v
(eot+1 � � + f(qt; et); 1) (14)4The restri
tions � � 0 and � < 1 are ne
essary and suÆ
ient for lim
!1 v
(
; 1) 
 = 1 whi
h is
ru
ial for existen
e of a solution to (11) for arbitrary qt and et. Although the restri
tion � < 1 ex
ludesa logarithmi
 fun
tion u used in Bajari, Chan, Krueger & Miller (2010), this 
ase 
an be approximatedas the limiting 
ase �! 1 in our setup. 6



while loans bt+1 follow from (1). Equation (13) equates the equilibrium interest fa
torto the intertemporal marginal rate of substitution in 
onsumption. One also infers from(14) that the equilibrium housing return (pt+1��)=pt must be smaller than Rt due to thepositive marginal rate of substitution between housing and se
ond period 
onsumption.Also, note that qt > 0 ensures that pt > 0 by (8).4 Housing Pri
e Dynami
sDynami
s under 
onstant in
omesBased on the previous results, we are now ready to study the dynami
s of the modeland establish 
onditions for the existen
e of equilibrium. To this end, note that (12)does not yet de�ne a dynami
al system be
ause we have not determined a suitable statespa
e Q on whi
h the dynami
s 
an live. While this se
tion studies the equilibriumdynami
s under 
onstant �rst-period in
ome, the next se
tion will extend this to the
ase where �rst-period in
ome is random. Let us �rst �x et � e = (ey; eo) 2 E for allt � 0. For notational 
onvenien
e, the dependen
e of variables and fun
tions on e willbe suppressed. We seek to determine an interval Q � [0; ey) whi
h is self-supportingfor the map f = f(�; e), i.e., f(q) 2 Q for all q 2 Q . By the properties of f establishedin Lemma 2, �xed points, i.e., values q whi
h satisfy q = f(q), are natural boundarypoints of intervals whi
h are self-supporting under f . Thus, we begin by studying �xedpoints of f and their properties. Sin
e f maps (�1; ey) into (�� eo;1), it is 
lear thatany su
h �xed point must lie in the open interval (� � eo; ey). Therefore, a ne
essarypre
ondition for �xed points to exist is ey + eo > �. This 
ondition simply says that theresour
es available in ea
h period are large enough to 
over housing 
osts. Below, weeven require a stronger 
ondition that eo > �. It follows from (10) that �xed-points off obtain as zeros of the map G : (�� eo; ey)! R whereG(q) := F (q; q; e) (15)= q u0(ey � q)� v
(eo � �+ q; 1) (q � �)� vh(eo � � + q; 1):The following result states properties of the map G.Lemma 3Suppose � � 0 and � < 1. Then, for ea
h e = (ey; e0) 2 E satisfying ey + eo > � themap G = G(�; e) is a stri
tly 
onvex fun
tion and the derivative satis�es the boundarybehavior limq!ey G0(q) = � limq!��eo G0(q) =1.A 
onsequen
e of the lemma is the existen
e of a unique value qmin 2 (� � eo; ey) atwhi
h G0(qmin) = 0 and G attains its global minimum. Based on this insight, the nextresult states 
onditions for �xed points to exist and 
hara
terizes their properties.7



Lemma 4Suppose � � 0 and � < 1. Let in
omes e = (ey; e0) 2 E be given and assume thatey + eo > � and G(qmin) < 0. Then,(i) The map f has pre
isely two �xed points �q 2 (�� eo; qmin) and ��q 2 (qmin; ey).(ii) The �xed point ��q is lo
ally unstable while �q is asymptoti
ally stable. Moreover,f(q) > q for all q 2 (�1; �q ) [ ( ��q; ey) and f(q) < q for all q 2 (�q; ��q).Setting aside the non-generi
 
ase where G(qmin) = 0, the boundary behavior of Gimplies that the 
ondition G(qmin) < 0 is not only suÆ
ient but also ne
essary for �xedpoints to exist. Moreover, it 
an be shown that G(qmin) > 0 would imply f(q; e) > qfor all q. In this 
ase, for any q0 < ey a repeated iteration of the forward-re
ursion (12)would produ
e a value qt > ey after �nitely many periods t � 1. Thus, G(qmin) < 0 isalso a ne
essary 
ondition for the dynami
s to be viable. The �nding from Lemma 4 isillustrated in the following �gures whi
h depi
t the map f and the �xed point map G.Note that the zeros of G in Figure 1(b) 
orrespond to interse
tions of (the graph of) fwith the prin
ipal diagonal in Figure 1(a).
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PSfrag repla
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G(q) q(a) The map f -0.05 0.05 0.1 0.15 0.2 0.25

PSfrag repla
ementsf(q)
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q(b) Fixed point map GFigure 1: Time-one map of state dynami
sLemma 4(ii) reveals that the set (�1; ��q℄ is self-supporting under f . Thus, the map frestri
ted to this set be
omes the time-one map of a one-dimensional dynami
al systemin dis
rete time.5 Moreover, for any initial value q0 2 (�1; ��q) the sequen
e fqtgt�0de�ned re
ursively as qt+1 = f(qt), t � 0 
onverges monotoni
ally to �q. By 
ontrast, forany initial value q0 2 (��q; ey) the forward-re
ursion qt+1 = f(qt) ex
eeds ey after �nitelymany periods. Thus, the forward dynami
s is well-de�ned if and only if q0 2 (�1; ��q℄.In the sequel, we will ex
lude ��q from the state spa
e in order to rule out degenerateequilibria.6 To ensure qt � 0, we assume that the smaller �xed point satis�es �q > 0.Then, Lemma 4(ii) in 
onjun
tion with Lemma 2 imply that the interval Q := [0; ��q) is5For 
onvenien
e, we denote the restri
tion of f to a subset Q � (�1; ey) by f as well.6In the sto
hasti
 
ase to be studied in the next se
tion, this imposes no additional restri
tionregarding the long run behavior of the system. 8



self-supporting under f as well. Thus, restri
ting f to Q de�nes a dis
rete dynami
alsystem whi
h governs the evolution of the variable qt 2 Q over time. The long-runbehavior is now 
hara
terized in the following result, whi
h requires in addition eo > �.Lemma 5Suppose � � 0 and � < 1. Let in
omes e = (ey; e0) 2 E be given and assume that eo > �and G(qmin) < 0 < �q. Then,(i) The restri
ted map f : Q ! Q has �q as its unique �xed point.(ii) This �xed point is globally stable and for ea
h q0 2 Q the sequen
e fqtgt�0 de�nedre
ursively as qt+1 = f(qt; ey), t � 0 
onverges monotoni
ally to �q.In addition to the parameter restri
tions � � 0 and � < 1, the previous �ndings showthat the main restri
tions needed for the dynami
s to be well-de�ned are that G(qmin) <0 and, in addition, �q > 0. The latter is ne
essary and suÆ
ient for the dynami
s to livein a subset of R++ and satis�ed if and only if G0(0) < 0 < G(0). Using (4) in (15),dire
t 
omputations giveG(0) > 0 , � > vh(eo � �; 1)v
(eo � �; 1) = 1� �� [eo � �℄1�� (16a)G0(0) < 0 , u0(ey) < (1� �)v
(eo � �; 1)� eov

(eo � �; 1): (16b)Condition (16a) shows that G(0) > 0 is violated for � = 0 and, therefore, requireshousing 
osts to ex
eed a 
riti
al level whi
h depends on eo.7 As this 
ondition isindependent of �rst-period in
ome, the value ey 
an always be 
hosen suÆ
iently largeto satisfy the se
ond 
ondition (16b). Noti
e, however, that the 
ondition G(qmin) < 0depends on these 
hoi
es as well. Given that qmin is only impli
itly de�ned by G0(q) =0, it is diÆ
ult to fully 
hara
terize the underlying parameter sets. The numeri
alsimulation of the following se
tion, however, shows that all three 
onditions are satis�edfor a broad range of e
onomi
ally reasonable parameterizations.Equilibrium under 
onstant in
omesWe are now in a position to 
hara
terize the 
omplete equilibrium dynami
s for a �xedin
ome pro
ess et � e = (ey; eo) 2 E for whi
h all hypotheses of Lemma 5 are satis�ed.Fix an initial value (p0; b0) whi
h satis�es b0 � 0, p0 > 0, and q0 = p0 � b0 2 Q . Then,
ombining our previous results with (1), (8), (13), and (14) one obtains the following7As argued above, the housing return must be lower than the interest fa
tor at equilibrium. If � = 0,then pt+1=pt < bt+1=bt = Rt. This implies that the loan volume grows faster than the housing pri
eand thus, within �nite time the old will not be able to repay their debt. A similar 
on
lusion holds ina modi�ed version of our model where housing is repla
ed by a Lu
as' tree traded at pri
e pt, whi
hyields a positive dividend in ea
h period. The s
enario with zero dividend payments 
orresponds to the
ase with �at money where the e
onomy 
onverges to an autarky steady state.9



system whi
h governs the evolution of all equilibrium variables:qt+1 = f(qt; e) (17a)bt+1 = R(qt; e)bt (17b)pt+1 = f(qt; e) +R(qt; e)bt: (17
)The dynami
s (17a) of qt is de
oupled from the other two variables and 
onverge mono-toni
ally to a unique steady state �q by Lemma 5. Moreover, this pro
ess de�nes theindu
ed 
onsumption allo
ation as
yt = eyt � qt (18a)
ot = e0t � �+ qt: (18b)It is evident from (17b) and (17
) that the qualitative long-run dynami
 behavior ofthe 
redit volume bt and housing pri
es pt depend on the steady state interest fa
torR(�q; e). If R(�q; e) < 1, the 
redit volume asymptoti
ally 
onverges to zero while by (8)pri
es 
onverge to �p = �q. Conversely, if R(�q; e) > 1 and b0 > 0, both the 
redit volumeand housing pri
es grow without bound and 
onverge to in�nity. Noti
e, however, thatthe equilibrium dynami
s is well-de�ned in either 
ase. The following �nal theorem ofthis se
tion summarizes these insights and establishes the existen
e and properties ofequilibrium.Theorem 1Suppose � � 0 and � < 1. Let in
omes e = (ey; e0) 2 E be given and assume that eo > �and G(qmin) < 0 < �q. Then,(i) Ea
h p0 > 0 and b0 � 0 for whi
h p0 � b0 2 Q de�nes an equilibrium where theevolution of the equilibrium variables follows (17a{
) and limt!1 qt = �q.(ii) If b0 > 0 and R(�q; e) > 1, then limt!1 pt = limt!1 bt =1.(iii) If b0 = 0 or R(�q; e) < 1, then limt!1 pt = �q while limt!1 bt = 0.5 Housing Booms and BustsDynami
s under random in
omesWe now analyze the 
ase where in
omes 
u
tuate randomly over time. For ease ofexposition, we will 
on�ne attention to the 
ase where only �rst-period in
omes 
hangeover time while se
ond-period in
omes are assumed to be 
onstant. Thus, assume asin the previous se
tion that eot � eo > � while eyt 
u
tuates over time taking values inthe set Ey := [eymin; eymax℄ � R++ . In the sequel, we will therefore drop the argumenteo writing e.g. f(q; ey) instead of f(q; ey; eo). Consider �rst how the pro
ess fqtgt�010



de�ned in (8) evolves over time. It is 
lear from (12) that this pro
ess is well-de�ned ifand only if qt < eyt for all t � 0 P{a.s., i.e., qt < eymin for all t � 0 P{a.s. Suppose this
an be satis�ed. Then, the forward-re
ursive stru
ture of the model is well-de�ned andgenerated by randomly mixing the family of mappings (f �; ey)ey2Ey . That is, given qt,the value eyt 2 E realized at time t 'sele
ts' a parti
ular map f(�; eyt ) whi
h determinesthe next value qt+1 = f(qt; eyt ). For this forward-re
ursion to be well-de�ned, we seekto determine a stable interval Q � [0; eymin) whi
h is self supporting under the family(f �; ey)ey2Ey , i.e., q 2 Q implies f(q; ey) 2 Q for all ey 2 Ey.While the underlying 
onstru
tion prin
iple is the same as in the previous se
tion, thepresent 
ase must in
orporate that the map f and its �xed points vary with the in
omepro
ess. Let us assume that the hypotheses of Lemma 5 are satis�ed for all ey 2 Ey.Then, ea
h map f(�; ey) has pre
isely two �xed points in (0; ey) whi
h we denote by�q(ey) and ��q(ey), respe
tively. The next result des
ribes how these �xed points vary within
ome.Lemma 6Let the hypotheses of Lemma 5 be satis�ed for ea
h ey 2 Ey. Then,(i) For ea
h q > 0 the map ey 7! f(q; ey) is 
ontinuously di�erentiable (on the interiorof Ey) and stri
tly de
reasing.(ii) The �xed point maps ey 7! �q(ey) and ey 7! ��q(ey) are both 
ontinuously di�eren-tiable. Moreover, �q(�) is stri
tly de
reasing while ��q(�) is stri
tly in
reasing.Using the previous result, de�ne�qmin := miney2Eyn�q(ey)o = �q(eymax) (19a)�qmax := maxey2Eyn�q(ey)o = �q(eymin) (19b)��qmin := miney2Eyn��q(ey)o = ��q(eymin): (19
)Note that the values de�ned in (19a{
) satisfy 0 < �qmin < �qmax < ��qmin. Thus, de�ning�Q := [�qmin; �qmax℄ and Q := [0; ��qmin) we have the in
lusions ; 6= �Q $ Q . The followingresult essentially extends Lemma 5 to the more general sto
hasti
 
ase.Lemma 7Let the hypotheses of Lemma 5 be satis�ed for ea
h ey 2 Ey. Then,(i) Both intervals �Q and Q are self-supporting for the family (f � : ey)ey2Ey .(ii) For ea
h q0 2 Q , the dynami
s generated by randomly mixing (f �; ey)ey2Ey 
onvergeto the set �Q P{a.s.. 11



It follows from Lemma 7 that asymptoti
ally, the pro
ess fqtgt�0 will take values in theset �Q . Thus, if feyt gt�0 is suÆ
iently regular, e.g., follows a Markov pro
ess, standardresults from the literature (
f. Bro
k & Mirman (1972) and Wang (1993)) imply theexisten
e of a unique invariant distribution supported on �Q whi
h governs the long-run probabilisti
 behavior of the pro
ess fqtgt�0. In parti
ular, this pro
ess will beasymptoti
ally stationary.8 Figure 2 illustrates the �nding from Lemma 7 for the 
asewith two sho
ks where eyt 2 feymin; eymaxg for all t.
f(·; ey

min
) f(·; ey

max
)f(·; ey)

q̄min q̄max q¯̄qminFigure 2: Time-one maps generating the dynami
s under two sho
ksEquilibrium under random in
omesBased on the previous result, the following theorem generalizes the existen
e result fromTheorem 1(i) to the 
ase with sto
hasti
 �rst-period in
omes. Note that Theorem 1(i)obtains as a spe
ial 
ase where eymin = eymax = ey.Theorem 2Let the hypotheses of Lemma 5 be satis�ed for ea
h ey 2 Ey. Then, ea
h p0 > 0 andb0 � 0 for whi
h q0 := p0 � b0 2 Q de�nes an equilibrium pro
ess generated by (12),(13), and (14).Sin
e we are interested in the long-run properties of equilibrium, we 
an 
on�ne attentionto the set �Q by virtue of Lemma 7(ii). Analogously to the previous se
tion, the sign ofthe interest rate is 
ru
ial for the long-run behavior of equilibrium housing pri
es andthe 
redit volume. The following result 
hara
terizes how the interest fa
tor 
hangesalong with the sho
ks and the value of q.8Lemma 4(ii) and the de�nitions (19a{
) imply that the family f = (f � : ey)ey2E restri
ted to theinterval Q possesses a stable �xed-point 
on�guration in the sense of Bro
k & Mirman (1972). Thus,the assertion follows from their results, see also Wang (1993).
12



Lemma 8Let the hypotheses of Lemma 5 be satis�ed for ea
h ey 2 Ey. Then, the map R de�nedin (13) is 
ontinuously di�erentiable with partial derivatives Rey(q; ey) < 0 < Rq(q; ey)for all ey > 0 and q < ey.Let Rmin := minfR(q; ey) j q 2 �Q ; ey 2 Eg = R(�qmin; eymax) (20a)Rmax := maxfR(q; ey) j q 2 �Q ; ey 2 Eg = R(�qmax; eymin): (20b)We now have the following result whi
h extends the 
hara
terization of equilibrium fromTheorem 1(ii) and (iii) to the general sto
hasti
 
ase.Theorem 3Let the hypotheses of Lemma 5 be satis�ed for ea
h ey 2 Ey. Then,(i) If b0 > 0 and Rmin > 1, then limt!1 pt = limt!1 bt =1, P{a.s.(ii) If b0 = 0 or Rmax < 1, then limt!1 bt = 0 P{a.s. while limt!1 jpt � qtj = 0 P{a.s.Theorem 3 shows that the long-run behavior of housing pri
es and the 
redit volume iseither expansive (i) or stationary (ii). We observe that if b0 = 0, i.e., in the absen
e of abanking se
tor, the housing pri
e 
oin
ides with the pro
ess fqtgt�0 whi
h is stationaryand well-behaved. Thus, any potential non-stationarity in housing pri
es is ex
lusivelydue to the banking se
tor. Ex
luding the non-generi
 
ases of either Rmin = 1 orRmax = 1, re
urrent housing booms and busts 
an emerge only if Rmin < 1 < Rmax.The me
hanism for booms and bustsTo illustrate a me
hanism that generates booms and busts of housing pri
es, 
onsiderthe simplest 
ase where ey takes two values eymin and eymax with positive probability. Letb0 > 0 and Rmin < 1 < Rmax. Suppose that in
omes initially take the lower valueeyt = eymin. Then, the dynami
s generated by the map f(�; eymin) start 
onverging tothe asso
iated steady state �q(eymin) = �qmax and we have Rt > 1 for t suÆ
iently largeas R(�qmax; eymin) = Rmax > 1. By (1), the 
redit volume starts to expand and so dohousing pri
es while their di�eren
e qt is stationary. Intuitively, the low �rst periodin
ome in
reases the need for 
onsumption smoothing and the demand for 
redit, forwhi
h the young are willing to pay a high interest rate. Although the supply of 
reditexpands over time as well, this is absorbed by a 
orresponding higher demand due toin
reasing housing pri
es. Thus, we see that as long as the low in
ome regime prevails,both housing pri
e and 
redit volume in
rease whereas their di�eren
e 
onverges to �qmax.Now, suppose that at some time ~t > 0, in
omes swit
h to the higher value eymax. The
orresponding dynami
s is now generated by the map f(�; eymax) whi
h has �qmin as itsunique steady state to whi
h the variable qt starts 
onverging. For suÆ
iently large13



t > ~t, we will have Rt < 1 implying that both the 
redit volume and housing pri
ewill 
ontra
t. Although this indu
es a {perfe
tly foreseen{ 
apital loss, the demand forhousing is still positive as it yields utility.Combining these observations, it is 
lear that under a random in
ome pro
ess, the sys-tem will alternate between an expansionary regime and a 
ontra
tive regime. These
hanges are most profound if R(q; eymin) > 1 and R(q; eymax) < 1 for all q 2 �Q . The�rst requirement is equivalent to R(�qmin; eymin) > 1 and implies that the 
redit volumestarts expanding immediately when et = eymin. The se
ond 
ondition is equivalent toR(�qmax; eymax) < 1 and implies that the 
redit volume starts 
ontra
ting immediatelywhen et = eymin. Now if the in
ome pro
ess is persistent, then long periods of 
redit ex-pansion will follow long periods of 
redit 
ontra
tion. This me
hanism o�ers a potentialto generate large movements in housing pri
es simply due to persistent in
ome 
hanges.The previous me
hanism straightforwardly generalizes to the 
ase where in
omes are
ontinuously distributed on the interval [eymin; eymax℄ as long as the dynami
s alternatesbetween the expansive regime f(q; e) 2 �Q �Ey j R(q; e) > 1g and the 
ontra
tive regimef(q; e) 2 �Q � Ey j R(q; e) < 1g.Bubbles and fundamental housing pri
esIt is worthwhile to relate our previous results to the emergen
e of a bubble whi
h iswidely dis
ussed in the literature. In these models the notion of bubbles 
orrespondsto an intrinsi
ally valueless asset that is traded at a positive pri
e. In our model, the
redit volume supplied by the banking se
tor is not ba
ked by any resour
es and satis�esthis de�nition. Consequently, the bubble-less equilibrium in our e
onomy 
orrespondsto the initial 
hoi
e b0 = 0 whi
h implies bt � 0 and pt = qt for all t. Therefore, we shall
all qt the fundamental housing pri
e. We know from our previous results that for anyq0 > 0, the fundamental housing pri
e pro
ess fqtgt�0 is well-behaved and 
onverges toa unique stable interval [qmin; qmax℄ � (0; eymin) whi
h shrinks to a point �q if in
omes aredeterministi
.Under this interpretation, it follows dire
tly from (8) that for an arbitrary b0 � 0, theequilibrium housing pri
e pt may be written as the sum of its fundamental value qt andthe bubbly 
omponent bt. Given a �xed initial fundamental pri
e q0, any inje
tion of
redit b0 > 0 therefore merely in
reases the bubbly 
omponent of the housing pri
e.With the initial fundamental pri
e q0 un
hanged, one also observes from (17a) and(18a,b) that the resulting 
onsumption allo
ation is not a�e
ted by the presen
e of abubble. Thus, any inje
tion of 
redit is fully neutral with respe
t to 
onsumer welfare.Housing investment is in part �nan
ed by �rst period in
ome and selling revenue ex
eedsthe loan repayment. Thus, at equilibrium there is an e�e
tive transfer of resour
es fromthe young to old. If in
omes alternate between the expansive and 
ontra
tive state, largemovements in housing pri
es o

ur whi
h 
an almost ex
lusively be attributed to thebubbly 
omponent with the fundamental pri
e being bounded by the in
ome pro
ess.14



6 A Quantitative ExampleWe employ numeri
al simulations to show that the boom-bust s
enario studied previ-ously o

urs under reasonable parameter 
hoi
es and the swit
h between the two regimesis triggered by relatively small in
ome 
hanges.ParametersBajari, Chan, Krueger & Miller (2010) use a logarithmi
 fun
tion u whi
h we approx-imate in our setup by 
hoosing � 
lose to unity. They also devise an elasti
ity ofsubstitution between housing and se
ond-period 
onsumption slightly larger than unity(about 1:3) 
orresponding to � = 0:24. For simpli
ity, we follow Li & Yao (2007) by
on�ning ourselves to the 
ase of unit elasti
ity setting � = 0 whi
h yields a Cobb-Douglas fun
tion for se
ond-period utility. For this 
hoi
e, the parameter 1� � 
an beinterpreted as the share of housing expenditure in 
onsumer in
ome and Bajari, Chan,Krueger & Miller (2010) 
hoose a value of � � :77. Given that housing is 
on�ned tothe se
ond period of life in our setup, we 
hoose a smaller value � = :67. As in Hurd(1989), 
onsumers' annual time dis
ount is taken to be 1/1.011 implying a dis
ountfa
tor 
 = 0:70 � (1=1:011)35. We normalize in
omes by setting eo = 1 and assume that�rst period in
omes feyt gt�0 follows a symmetri
 two-state Markov pro
ess with valuesin Ey = feymin = 1:425; eymax = 1:5g and a time-invariant transition probability � = 0:2.Thus the pro
ess is highly persistent with an 80% 
han
e of retaining its 
urrent stateand a 20% 
han
e of swit
hing to the opposite state. The fa
t that in
omes are higher inthe �rst than in the se
ond period seems broadly 
onsistent with empiri
al eviden
e, 
f.Table 3 in Bajari, Chan, Krueger & Miller (2010).9 Finally, our 
hoi
e for � = 1=3 im-plies that housing 
osts make up slightly more than 10% of 
onsumers' lifetime in
ome.The initial values are set to p0 = b0 = 1. Under this parametrization, the hypothesesof Lemma 4 hold for all ey 2 Ey. Thus, for ea
h �xed in
ome stream eyt � ey 2 Ey, thedynami
s (17a) 
onverges to a unique steady state �q(ey) > 0.10 In parti
ular, the aboveparametrization implies that Rmin = R(�q(eymax); eymax) < 1 < R(�q(eymin); eymin) = Rmaxsu
h that the ne
essary 
onditions for booms and busts of housing pri
es to o

ur aresatis�ed.Simulation resultsWe simulate the model for T = 6000 periods and display the time series in Figure 3starting in t = 3000 to 
apture the long run 
hara
teristi
s of the model. The leftpanel shows a time window of the housing pri
e pt and the 
redit volume bt. To relatemovements in these variables to the `fundamentals' of the e
onomy we also depi
t the9This is also 
onsistent if we were to repla
e the pure ex
hange setting by a produ
tion e
onomywhere the young earn labor in
ome and the old 
apital in
ome. Empiri
al eviden
e then suggests thatthe former is about twi
e as large as the latter.10We remark that the 
hosen parametrization guarantees positivity of steady states, whi
h may failto exist at all or �q(ey) < 0 for some ey 2 Ey under other parametrization.15



aggregate net in
ome eyt + eo � � whi
h represents the total resour
es available in pe-riod t net of housing 
osts. The right panel depi
ts the leverage ratio bt=(eyt + eoR�1t )whi
h measures the per
entage share of loans ba
ked by 
onsumers' dis
ounted lifetimein
omes.

0

5

10

15

20

3000 3500 4000 4500 5000 5500 6000(a) pt, bt, and eyt + eo � � 0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

3000 3500 4000 4500 5000 5500 6000(b) bteyt+eoR�1t � 100%Figure 3: A boom-bust s
enarioThe �gures 
on�rm that the me
hanism identi�ed in the previous se
tions generateslarge and persistent movements in the housing pri
e and the 
redit volume. Thesetwo variables are intimately inter
onne
ted and are almost impossible to distinguish inFigure 3(a). By our previous results, we know that pt�bt follows a stationary sto
hasti
pro
ess. We also see that for most time periods both the housing investment and the
redit volume ex
eed the aggregate in
ome by an order of magnitude.To provide a quantitative illustration of these phenomena, 
onsider the situation inperiod t0 = 4662 where the bubble rea
hes a temporary peak. In this period, the youngare in the low-in
ome state re
eiving eyt0 = 1:425 su
h that aggregate net in
ome iseyt0 + eo� � = 2:09. The 
redit volume supplied by banks is bt0 = 17:23 and the intereston loans is 2:7%, i.e., Rt0 = 1:027. The young buy houses at the pri
e pt0 = 17:24 whi
his �nan
ed by taking a loan equal to bt0 . This 
orresponds to a leverage ratio of 710%.Moreover, the loan repayment Rt0bt0 is about eighteen time as large as se
ond-periodnon-housing in
ome eo. However, the next period's housing pri
e pt0+1 = 17:71 allows
onsumers to repay their loan from the revenues of selling their houses at the end ofperiod t0 + 1. This 
on�rms our earlier insight that a 
redit volume ex
eeding realin
omes by an order of magnitude 
an still be sustained by a 
orresponding in
rease inhousing values. In fa
t, the net 
ow from the young to old 
onsumers, whi
h is equal tothe fundamental pri
e of housing, is only qt0 = pt0 � bt0 = 0:01.We remark that the same qualitative results were observed when �rst period in
omehas an absolutely-
ontinuous and state dependent probability distribution, whi
h alter-16



nates between a high in
ome distribution and a low in
ome distribution with the sametransition probability as before. Hen
e, the simplifying assumption of in
ome followinga two-state pro
ess is not essential for our numeri
al results.7 Con
lusionsIn the absen
e of a banking se
tor the only intergenerational transfer of 
ommodities inour model is from the young to old through the housing market. Consequently, housingvalues are bounded by young 
onsumers' in
omes. Introdu
ing a banking se
tor addsan additional 
hannel of intergenerational trade in the form of a 
redit market, whi
hmediates a 
ommodity transfer from the old to young. The 
ombination of these 
hannelspermits ea
h 
ow of intergenerational transfers to be
ome arbitrarily large as long as thenet 
ow remains bounded by 
onsumers' in
omes. This stru
ture ampli�es small butpersistent in
ome 
hanges into large movements of housing pri
es and 
redit volumes,whi
h are both non-stationary while a linear 
ombination of them follows a stationarysto
hasti
 pro
ess. The presen
e of su
h a 
ointegration relationship is therefore animpli
ation of the model that is testable empiri
ally.In our model, the boom in housing pri
es a

ompanied by expanding loan volumes o
-
urs when the interest fa
tor ex
eeds unity. Hen
e, the stationary endowment pro
essimplies that the interest rate is greater than the growth rate of the e
onomy when bub-bles emerge, a feature of the model shared by Ar
e & L�opez-Salido (2011), Caballero,Farhi, & Hammour (2006), Martin & Ventura (2012), and Ventura (2012). The boom
omes to a halt when a higher in
ome of the young 
auses the interest fa
tor to dropbelow unity. This 
omovement between the interest rate and the 
redit volume o

ursnaturally in a model with inside money but may be at odds with the empiri
al observa-tion that the 
ost of re�nan
ing is relatively low in many bubble episodes. An interestingquestion that we leave for future resear
h is whether this relationship reverses when themodel in
ludes outside money. Su
h an extension would also permit to investigate howmonetary poli
ies intera
t with the banking se
tor and the housing market.Another feature of our ex
hange e
onomy is that bubbles do not a�e
t produ
tive invest-ment and hen
e 
onsumer in
omes. Whether bubbles in our framework remain welfareneutral in the presen
e of 
apital a

umulation is also an interesting question to beexplored.
17



A Mathemati
al ProofsA.1 Proof of Lemma 1Let e = (ey; eo) 2 E and q < ey be arbitrary but �xed. For brevity, set q := �� eo andH(q1) := v
(q1 � q; 1) (q1 � �) + vh(q1 � q; 1); q1 > q: (A.1)Sin
e v in (4) is homogeneous of degree 1��, Euler's theorem for homogeneous fun
tionsimplies v
(
; 1) 
+ vh(
; 1) = (1� �)v(
; 1) for all 
 > 0 permitting us to writeH(q1) = (1� �) v(q1 � q; 1)� v
(q1 � q; 1) eo; q1 > q: (A.2)Sin
e � � 0, the fun
tion v satis�es the Inada 
ondition lim
!0 v
(
; 1) =1. Thus,limq1!qH(q1) = (1� �) v(0; 1)� eo limq1!q v
(q1 � q; 1) = �1: (A.3)Furthermore, the restri
tions � � 0 and � < 1 together imply lim
!1 
 v
(
; 1) = 1.Using this in (A.1) yields the right limit aslimq1!1H(q1) � limq1!1 v
(q1 � q; 1) (q1 � �) =1: (A.4)Existen
e of the desired solution thus follows from (A.3), (A.4), and 
ontinuity of H.Uniqueness is a 
onsequen
e of (A.2) and the 
on
avity of v whi
h give the derivativeH 0(q1) = (1� �)v
(q1 � q; 1)� v

(q1 � q; 1) eo > 0: (A.5)�A.2 Proof of Lemma 2Sin
e Fq1(q1; q; e) = �H 0(q1) < 0 by (10) and (A.5) and F is 
ontinuously di�erentiable,so is the impli
it fun
tion f by the Impli
it Fun
tion Theorem. The partial derivativeof (10) with respe
t to q 
omputesFq(q1; q; e) = u0(ey � q)� qu00(ey � q) = (ey � q)�� ey � (1� �)qey � q > 0: (A.6)By the impli
it fun
tion theorem f 0(q) = � Fq(q1;q;e)Fq1 (q1;q;e) > 0 where q1 = f(q; e). �
18



A.3 Proof of Lemma 3By (15), the fun
tion G 
an be written as G(q) = D(q)�H(q) with H being de�ned asin (A.2) and D(q) := qu0(ey � q) = q(ey � q)��; q < ey.Consider �rst the behavior of the fun
tion D whose derivatives satisfyD0(q) = ey � (1� �)q(ey � q)1+� > (1� �) ey � q(ey � q)1+� = 1� �(ey � q)� > 0 (A.7)D00(q) = �(ey � q)2+��2ey � (1� �)q� > �(1� �)(ey � q)2+��ey � q� > 0: (A.8)The se
ond inequality shows that D is a stri
tly 
onvex fun
tion while the �rst oneimplies that D is stri
tly in
reasing with boundary behavior limq!ey D0(q) =1.As shown in the proof of Lemma 1, the derivative of H is given by (A.5) and, therefore,satis�es H 0(q) > 0 and limq!��eo H 0(q) � (1 � �) limq!��eo v
(eo � � + q; 1) = 1. We
laim that H 0 is a stri
tly de
reasing fun
tion implying that �H is stri
tly 
onvex. The�rst term in (A.5) is stri
tly de
reasing by stri
t 
on
avity of v. It therefore suÆ
es toshow that 
 7! �v

(
; 1) is de
reasing as well. De�ning g as in (2), dire
t 
al
ulationsreveal that the se
ond derivative of v 
an be written as�v

(
; 1) = v
(
; 1)
 �1� �� (1� �� �) �
�g(
; 1)��= v
(
; 1) � �
1�� �g(
; 1)� + 1� �
 � (1� �)g(
; 1)� � : (A.9)Re
alling that 1 � � � 0, all three terms in (A.9) are positive and stri
tly de
reasingfun
tions of 
 whi
h implies that 
 7! �v

(
; 1) is de
reasing as 
laimed.Thus, �H is a stri
tly 
onvex fun
tion as 
laimed and G being the sum of two (stri
tly)
onvex fun
tions is also stri
tly 
onvex. The boundary behavior of G0 follows dire
tlyfrom the limits 
omputed above and the monotoni
ity properties of D and �H. �A.4 Proof of Lemma 4(i) Using (15) in 
onjun
tion with (A.2), a routine 
al
ulation shows that limq!ey G(q) =limq!��eo G(q) =1. Thus, G(qmin) < 0 implies that G has a �xed point in ea
h of theintervals (�� eo; qmin) and (qmin; ey). By stri
t 
onvexity and the boundary behavior ofthe �rst derivative (
f. Lemma 3), the map G is stri
tly de
reasing on (�� eo; qmin) andstri
tly in
reasing on (qmin; ey). Thus, there 
an be at most one �xed point in ea
h ofthe two intervals.(ii) It is obvious from (i) that G0(�q) < 0 < G0(��q). Utilizing the result from Lemma2 and the de�nitions of D and H given in the proof of Lemma 4, this implies thatG0(�q) = D0(�q)�H 0(�q) < 0 and G0(��q) = D0(��q)�H 0(��q) > 0. Therefore,0 < f 0(�q) = D0(�q)H 0(�q) < 1 < D0(��q)H 0(��q) = f 0(��q) (A.10)19



whi
h implies the lo
al stability properties asserted. The remaining inequalities followfrom this and the uniqueness of the �xed points on the respe
tive intervals. �A.5 Proof of Lemma 5Assertion (i) follows immediately from Lemma 4(i). The result in (ii) is a 
onsequen
eof lo
al stability of �q and Lemma 4(ii). Monotoni
ity of the sequen
e fqtgt�0 followsfrom this and Lemma 2. �A.6 Proof of Theorem 1(i) Lemma 5 and q0 2 Q imply that qt 2 Q for all t and limt!1 qt = �q. By (1) and (13),b0 > 0 implies bt > 0 and, by (8) pt > 0 for all t proving (i).(ii) If R(�q; e) > 1, then there exists t0 � 0 su
h that R(qt; e) > 1 for all t � t0 bystability of �q. In fa
t, sin
e q 7! R(q; e) is stri
tly in
reasing (
f. Lemma 8) and fqtgt�0
onverges monotoni
ally, we have R(qt; e) � Rt0 := R(qt0 ; e) > 1 for all t � t0. Thus,limt!1 bt � bt0 limt!1Rt�t0t0 =1 and pt = qt + bt > bt for all t gives limt!1 pt =1.(iii) If b0 = 0, then bt = 0 and qt = pt for all t and the 
laim follows from (i). If b0 > 0and R(�q; e) < 1, the same arguments as in (ii) yield R(qt; e) � Rt0 := R(qt0 ; e) < 1 fort � t0. Thus, 0 � limt!1 bt � bt0 limt!1Rt�t0t0 = 0 and limt!1 pt = limt!1 qt = �q. �A.7 Proof of Lemma 6(i) The proof of Lemma 2 revealed that Fq1(q1; q; e) < 0 with F de�ned in (10). Sin
eFey(q1; q; e) = q u00(ey � q) < 0, q > 0, the 
laim follows from the Impli
it Fun
tionTheorem.(ii) Re
all that �xed points are solutions to G(q; e) = F (q; q; e) = 0. By (i), Gey(q; e) =Fey(q; q; e) < 0. As limq!��eo G(q; e) = limq!ey G(q; e) = 1 implies Gq(�q; e) < 0 <Gq(��q; e), the 
laim follows again from the Impli
it Fun
tion Theorem. �A.8 Proof of Lemma 7(i) We �rst show that �Q is self-supporting. Let q 2 �Q be arbitrary. Then, using Lemma4(ii) and the monotoni
ity properties of f together with the de�nitions (19a{
) we havefor ea
h ey 2 E :�qmin = f(�qmin; eymax) � f(�qmin; ey) � f(q; ey) � f(�qmax; ey) � f(�qmax; eymin)) = �qmax:(A.11)Thus, f(q; ey) 2 �Q . To prove that Q is self-supporting, let q 2 Q and ey 2 Ey bearbitrary. The 
ase q 2 �Q is evident, so suppose �rst that q 2 (�qmax; ��qmin). Then,20



by (19a{
), �q(ey) � �qmax < q < ��qmin � ��q(ey) whi
h implies, by Lemma 4(ii) andmonotoni
ity of f that �q(ey) < f(q; ey) < q. Thus, f(q; ey) 2 Q . Conversely, supposeq 2 (0; �qmin). Then, by (19a{
) 0 < q < �qmin � �q(ey) whi
h implies q < f(q; ey) < �q(ey)by Lemma 4(ii) and monotoni
ity of f . Thus, f(q; ey) 2 Q again.(ii) Let q0 2 Q be arbitrary. De�ne the sequen
es fqtgt�0 and fqtgt�0 by setting q0 =q0 = q0 and qt+1 := f(qt; eymin) and qt+1 := f(qt; eymax) for ea
h t � 0. Then, by themonotoni
ity properties of f , qt � qt � qt P{a.s. for all t � 0 and the 
laim follows fromlimt!1 qt = �q(eymax) = �qmin and limt!1 qt = �q(eymin) = �qmax. �A.9 Proof of Theorem 2Lemma 7 ensures that qt 2 Q � (0; eymin) P{a.s. for all t � 0. By (1) and (13), b0 � 0implies bt � 0 by, (8), pt � qt > 0 P{a.s. for all t � 0. �A.10 Proof of Lemma 8The 
laim follows dire
tly by taking the partial derivatives of (13) and using Lemmata2 and 6(i). �A.11 Proof of Theorem 3(i) Suppose Rmin > 1. Then, R(q; e) � Rmin > 1 for all q 2 �Q and e 2 Ey. LetR̂min be a number between 1 and Rmin. By 
ontinuity of R, we 
an 
hoose an openneighborhood Q̂ � Q of �Q su
h that R(q; e) > R̂min for all q 2 Q̂ and e 2 Ey. Letq0 2 Q be arbitrary. By Lemma 7(ii), there exists t0 > 0 su
h that qt 2 Q̂ for allt > t0 P{a.s. Hen
e, Rt > R̂min > 1 for all t > t0 P{a.s. and it follows from (1) thatlimt!1 bt � limt!1 bt0�R̂min�t�t0 = 1. Sin
e qt remains uniformly bounded, the limitof the pro
ess fptgt�0 follows from (8).(ii) Similar to the previous part, 
hoose a number R̂max between Rmax and 1 and anopen neighborhood Q̂ � Q of �Q su
h that R(q; e) < R̂max < 1 for all q 2 Q̂ ande 2 Ey. Let q0 2 Q be arbitrary. By Lemma 7(ii), there exists t0 > 0 su
h that qt 2 Q̂for all t > t0 P{a.s. Hen
e, Rt < R̂max < 1 for all t > t0 P{a.s. and it follows that0 � limt!1 bt � limt!1 bt0�R̂max�t�t0 = 0. Finally, the previous result and (8) implydire
tly that limt!1 jpt � qtj = limt!1 jbtj = 0. �Referen
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