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1 IntrodutionFor more than a deade, from 1997 to 2007, U.S. residential values had ontinually in-reased with housing pries in July 2007 being almost three times as high as in 1996. Inmid 2007, this inrease ame to an abrupt halt and housing pries dropped by almost17% until June 2008 and by more than 30% between June 2007 and June 2009.1 In ret-rospet, most researhers today seem to agree that houses were overvalued in 2006/2007(f. Koherlakota (2011)), i.e., the inreases in housing values were not baked by fun-damentals. A loser inspetion of the potential reasons also reveals that the build-up ofthe housing bubble was aompanied by a ontinual inrease in mortgage loans and anever inreasing mortgage debt whih dropped sharply after the burst in 2007 (f. Chen& Winter (2011) and He, Wright, & Zhu (2011)). This observation points to a potentiallinkage between the lending ativities of banks and the evolution of housing pries.While the US episode ertainly motivates a number of theoretial questions, the fo-us of the present paper is on the o-movement between mortgage loans and housingpries. We develop a theoretial model, whih explains large movements in housingpries aompanied by orresponding hanges in redit volume. Our analysis unov-ers a simple mehanism through whih small but persistent inome hanges generatelarge movements in housing values and the aggregate redit volume. Remarkably, thesemovements our in the absene of any sort of fritions. The mehanism generatingthese boom-bust yles is a swith between two regimes eah assoiated with a ertaininome level. In the �rst regime, onsumers are eager to borrow and willing to pay ahigh interest on loans suh that banks expand their redit volume over time and hous-ing pries inrease without bound. In the seond regime, onsumers are only willing toborrow at a lower interest for whih the redit volume shrinks over time and housingpries derease to a lower bound. A swith between these two regimes ours underquite moderate inome hanges. If the hange is persistent, the system tends to stay inone regime for a number of periods generating large movements in housing pries andthe redit volume. During boom phases, onsumers buy houses at pries they ouldnever have a�orded and take loans they would be unable to repay from their inomealone. Thus, the �nanial side essentially deouples from the real side of the eonomy.On the methodologial side, our paper belongs to the literature on the pure exhangeoverlapping generations eonomy. The seminal work by Samuelson (1958) sets up thefoundation of the analysis of �at money in the pure exhange overlapping generationseonomy. Gale (1973) studies the dynami formulation of the Samuelson model and ourpaper an best be seen as a straightforward extension of his work modi�ed to inludeinside money in the form of mortgage loans, and a durable good (housing) instead of�at money. Fiat money in Samuelson (1958) and Gale (1973) is in �xed supply andthus its relative value is bounded by the fundamentals in the eonomy. By ontrast, the1These �gures are taken from the Casey-Shiller housing index omposed over 10 areas.1



inside money in our model an fuel the housing prie inde�nitely.In its eonomi theme, our paper is related to the theoretial literature on housingmarket dynamis. As in our paper, Ortalo-Magn�e & Rady (2006) and Are & L�opez-Salido (2011) study pure exhange overlapping generations models with a durable good(housing). Ortalo-Magn�e & Rady (2006) studies a four period overlapping generationsmodel of the housing market with two types of homes, \starter" and \trade-up" homes,and a down-payment onstraint on borrowing. They show that the volatility in theinome of young households plays a ritial role for the \exess" volatility of housingpries. Are & L�opez-Salido (2011) develops a three period overlapping generationsmodel, where bubbles solve the problem of insuÆient asset supply in the preseneof �nanial frition. They analyze how loan supply shoks an eliminate bubbles andpush the eonomy into a low-valuation regime in whih the volume of debt and thehousing prie are lower in the presene of multiple steady states. They also show theexistene of multiple equilibria of pure and housing bubbles. Our model shares a ommonfeature with Ortalo-Magn�e & Rady (2006) and Are & L�opez-Salido (2011) that housinggenerates utility and serves to ollateralize loans. However, borrowing is limited to afration of the value of the housing stok in their models while our model does notassume any kind of �nanial fritions.He, Wright, & Zhu (2011) studies an in�nite-horizon eonomy where houses, in additionto providing utility, also failitate transations in imperfet redit markets. They showthat even when fundamentals are onstant and agents are fully rational, house pries anbe pried above the present value of the marginal utility from living in the house. Theirhousing dynamis is driven by beliefs, i.e. a self-ful�lling prophey in the eonomy withmultiple equilibria as well as by deterministi yles and haos. There are no multipleequilibria in our model nor does it exhibit deterministi yles or haos. In this respet,the mehanism in our model is loser to the one in Ortalo-Magn�e & Rady (2006) whereinome shoks of the young household drives the housing prie overreation.This paper is also related to the reent literature that fouses on the role of housing and,more generally, of durable onsumption goods for the maroeonomy (e.g. Bajari, Chan,Krueger & Miller (2010) and Chen & Winter (2011)). Chen & Winter (2011) evaluatesthe quantitative impat of the hange in housing �naning on the onsumption boom.Bajari, Chan, Krueger & Miller (2010) estimates a dynami strutural model of housingdemand and uses it to simulate how onsumer behavior responds to house prie andinome delines as well as tightening redit onstraints.The paper is organized as follows. Setion 2 introdues the model. Setion 3 derives theforward-reursive struture of equilibria while Setion 4 studies the equilibrium dynamisunder onstant inomes. Setion 5 generalizes the deterministi struture to the asewith random inomes and analyzes the sope for boom-bust senarios to emerge due topersistent inome hanges. We also show that a large omponent of housing pries is apure bubble de�ned as a deviation from the fundamental value. The theoretial �ndings2



are illustrated and quanti�ed in Setion 6 with the help of numerial simulations. Setion7 onludes. Proofs for all results an be found in the mathematial appendix.2 The ModelWe onsider an exhange eonomy with disrete time periods t � 0 and a durable anda non-durable ommodity. We refer to the durable ommodity as `housing' and thenon-durable good as `the onsumption good'. The latter is hosen as the numeraire.Consumption setorThe onsumption setor onsists of overlapping generations of homogeneous, two-periodlived onsumers. Eah member of the generation born in t � 0 is endowed with eyt > 0units of the onsumption ommodity when young and eot+1 > 0 units when old. Thefollowing assumption spei�es the probabilisti nature of their inomes.2Assumption 1The proess fetgt�0 where et := (eyt ; eot+1) onsists of random variables de�ned on aommon probability spae (
;F ;P) with values in E := [eymin; eymax℄� [eomin; eomax℄ � R2++ .The proess is adapted to some �ltration fFtgt�0 suh that et : 
! E is Ft{measurable.A onsequene of Assumption 1 is that young onsumers observe their �rst and seondperiod inome when they make deisions. Thus, our analysis abstrats from inomeunertainty. Instead, we demonstrate below that preditable inome shifts suÆe togenerate large movements in housing pries.HousingHouses are retradable and in onstant supply normalized to unity. The young purhasehouses at the end of period t at the prie pt > 0, for whih they inur a �xed ost � > 0per unit to be paid in the following period t + 1. This parameter an be interpretedas a ost assoiated with holding houses suh as maintenane and remodeling ostsor insurane payments. Housing investment provides a possibility to transfer wealthintertemporally and yields utility in the following period.Banking setorThe banking setor onsists of a large number of banks whih o�er loans at a risklessinterest fator Rt > 0. Let bt � 0 denote the aggregate redit volume orresponding tothe resoure available to the banking setor at time t. This resoure is provided as loansto the young and �naned by the loan repayment of the old suh thatbt = Rt�1bt�1; t � 1: (1)2The notion of an adapted stohasti proess f�tgt�0 implies that eah random variable �t is Ft-measurable and, therefore, an only depend on inomes e� observed during periods � � t. As anotational onvention, inequalities involving random variables are understood to hold in the P-almostsure sense without expliit notie. 3



The initial value b0 � 0 is given historially.3 Struturally, the ontrats supplied bybanks an be interpreted as inside money (see Gale (1973) for an interpretation ofnegative inside money).Consumer demandThe young hoose (y; o; h) to maximize their expeted lifetime utility based on somevon-Neumann Morgenstern utility funtion U , whih is additively separable over time,i.e., U(y; o; h) = u(y) + v(o; h): (2)The funtion u is taken to be of the isoelasti formu() = 1��1� �; � > 0 (3)with the usual interpretation that u() = log  if � = 1. Seond period utility v isthe omposition of u and an aggregator funtion g : R2++ ! R+ whih aggregatesdurable and non-durable onsumption to a omposite ommodity g(t; ht). FollowingBajari, Chan, Krueger & Miller (2010) or Lustig & Nieuwerburgh (2005), we use a CESaggregator g(; h) = [�� + (1� �)h�℄ 1� ; 0 < � < 1; � < 1:The young disount seond-period utility by  > 0 and thus v takes the formv(; h) =  u(g(; h)) =  [�� + (1� �)h�℄ 1���1� � : (4)If � = 0, v is Cobb-Douglas while it is additively separable in housing and onsumptionif � = 1� �.Given pt > 0, Rt > 0, and pt+1 > 0, the budget onstraints arey = eyt + b� pt h and o = eot+1 � Rt b + (pt+1 � �) h: (5)where b and h are the loan demand and housing investment respetively. Let E t [�℄ :=E [� j Ft℄ denote the expetations operator onditional on the information available attime t. Using (5), the young onsumers' objetive funtion at time t isVt(b; h) := E thU(eyt + b� pt h; eot+1 �Rt b + (pt+1 � �) h; h)i: (6)Note that the housing prie pt+1 is the only potential soure of unertainty. The on-sumers' deision problem readsmaxb;h nVt(b; h) j pt h � eyt + b; eot+1 � bRt + h(pt+1 � �) � 0; h � 0o: (7)3An initial value b0 < 0 would orrespond to the ase where banks take deposits. As our interest ison banks granting mortgage loans we do not study this ase.4



Note that no sign restrition on b is imposed at the individual level.Equilibrium.The following de�nition of equilibrium reoniles market learing and individual opti-mality under rational expetations.De�nition 1Let inomes satisfy Assumption 1. Given an initial redit volume b0 � 0, an equilibriumis an adapted stohasti proess fbt; ht; Rt; ptgt�0, whih satis�es pt > 0, Rt > 0, andthe following onditions for eah t � 0:(i) The deision (bt; ht) solves (7) given pries and inomes.(ii) Markets lear, i.e., ht = 1 and bt evolves aording to (1).Note that Walras' law implies onsumption good market learing, i.e, yt +ot = eyt +eot��for all t � 0.3 Reursive Equilibrium StruturePreditable housing priesTo study the existene and dynami properties of equilibria, we onsider the ase wherehousing pries are preditable, i.e., their realization an be predited one period inadvane. This assumption enables us to obtain an analytially tratable equilibrium. Itimposes no restritions in the ase when inomes are deterministi. Formally, we assumethat the housing prie pt+1 is Ft-measurable. Under this hypothesis, the young at timet solve a deision problem under ertainty suh that the expetations operator in (6)an be dropped.Reursive equilibriumAs a �rst step, we unveil the forward-reursive struture of equilibrium and the statedynamis of the model. Essentially, we will show that the dynamis is driven by theevolution of the variable qt := pt � bt; t � 0; (8)whih, we show, an be interpreted as the fundamental housing prie. We fous onequilibria where qt > 0 for all t � 0 suh that loans are fully baked by housing values.This may be interpreted as a ollateral onstraint. Sine housing pries are preditableand banks o�er riskless interest rates, the proess fqtgt�0 is preditable as well.Sine no sign-restrition is imposed on b at the individual level, the �rst order ondi-tions of the young onsumers' deision problem (7) must be satis�ed in equilibrium.5



Exploiting this, (2), and (8), the following Euler equations have to hold for eah periodt � 0: u0(eyt � qt) = Rt v(eot+1 � � + qt+1; 1) (9a)pt u0(eyt � qt) = (pt+1 � �) v(eot+1 � �+ qt+1; 1) + vh(eot+1 � �+ qt+1; 1): (9b)From (9a) and (9b) we infer that the interest fator Rt must be higher than the returnfrom housing (pt+1 � �)=pt. This is beause the old derive utility from housing. Givene = (ey; eo) 2 E , let F (�; �; e) : (�� e0;1) � (�1; ey)! R whereF (q1; q; e) := q u0(ey � q)� v(eo � � + q1; 1) (q1 � �)� vh(eo � �+ q1; 1): (10)Then, adding (9a) and (9b) using (1) and (8) gives the following equilibrium onditionF (qt+1; qt; et) = 0 (11)whih has to hold at eah time t � 0. Condition (11) determines the value qt+1 impliitlyas a funtion of qt and et. The following result states neessary and suÆient onditionsunder whih a unique solution to (11) an be determined.Lemma 1Suppose � � 0 and � < 1. Then, for eah e = (ey; eo) 2 E and q < ey there exists aunique value q1 > �� eo, whih satis�es F (q1; q; e) = 0.Lemma 1 permits to de�ne a map f(�; e) : (�1; ey) ! (� � eo;1) whih determinesthe unique zero of F (�; q; e) = 0 for eah q < ey.4 Thus, whenever qt < eyt , the solutionto (11) an be written as qt+1 = f(qt; et): (12)The next result establishes properties of f .Lemma 2Suppose � � 0 and � < 1. Then, for eah e = (ey; e0) 2 E the map f = f(�; e) isontinuously di�erentiable with derivative f 0(q) > 0 for all q < ey.Using the result from (12) in (9a) and (9b), the equilibrium interest fator and nextperiod's (expeted) housing prie are determined from et 2 E , qt < eyt and pt byRt = R(qt; et) := u0(eyt � qt)v(eot+1 � �+ f(qt; eyt ); 1) (13)pt+1 = P(pt; qt; et) := R(qt; et)pt + �� vh(eot+1 � �+ f(qt; et); 1)v(eot+1 � � + f(qt; et); 1) (14)4The restritions � � 0 and � < 1 are neessary and suÆient for lim!1 v(; 1)  = 1 whih isruial for existene of a solution to (11) for arbitrary qt and et. Although the restrition � < 1 exludesa logarithmi funtion u used in Bajari, Chan, Krueger & Miller (2010), this ase an be approximatedas the limiting ase �! 1 in our setup. 6



while loans bt+1 follow from (1). Equation (13) equates the equilibrium interest fatorto the intertemporal marginal rate of substitution in onsumption. One also infers from(14) that the equilibrium housing return (pt+1��)=pt must be smaller than Rt due to thepositive marginal rate of substitution between housing and seond period onsumption.Also, note that qt > 0 ensures that pt > 0 by (8).4 Housing Prie DynamisDynamis under onstant inomesBased on the previous results, we are now ready to study the dynamis of the modeland establish onditions for the existene of equilibrium. To this end, note that (12)does not yet de�ne a dynamial system beause we have not determined a suitable statespae Q on whih the dynamis an live. While this setion studies the equilibriumdynamis under onstant �rst-period inome, the next setion will extend this to thease where �rst-period inome is random. Let us �rst �x et � e = (ey; eo) 2 E for allt � 0. For notational onveniene, the dependene of variables and funtions on e willbe suppressed. We seek to determine an interval Q � [0; ey) whih is self-supportingfor the map f = f(�; e), i.e., f(q) 2 Q for all q 2 Q . By the properties of f establishedin Lemma 2, �xed points, i.e., values q whih satisfy q = f(q), are natural boundarypoints of intervals whih are self-supporting under f . Thus, we begin by studying �xedpoints of f and their properties. Sine f maps (�1; ey) into (�� eo;1), it is lear thatany suh �xed point must lie in the open interval (� � eo; ey). Therefore, a neessarypreondition for �xed points to exist is ey + eo > �. This ondition simply says that theresoures available in eah period are large enough to over housing osts. Below, weeven require a stronger ondition that eo > �. It follows from (10) that �xed-points off obtain as zeros of the map G : (�� eo; ey)! R whereG(q) := F (q; q; e) (15)= q u0(ey � q)� v(eo � �+ q; 1) (q � �)� vh(eo � � + q; 1):The following result states properties of the map G.Lemma 3Suppose � � 0 and � < 1. Then, for eah e = (ey; e0) 2 E satisfying ey + eo > � themap G = G(�; e) is a stritly onvex funtion and the derivative satis�es the boundarybehavior limq!ey G0(q) = � limq!��eo G0(q) =1.A onsequene of the lemma is the existene of a unique value qmin 2 (� � eo; ey) atwhih G0(qmin) = 0 and G attains its global minimum. Based on this insight, the nextresult states onditions for �xed points to exist and haraterizes their properties.7



Lemma 4Suppose � � 0 and � < 1. Let inomes e = (ey; e0) 2 E be given and assume thatey + eo > � and G(qmin) < 0. Then,(i) The map f has preisely two �xed points �q 2 (�� eo; qmin) and ��q 2 (qmin; ey).(ii) The �xed point ��q is loally unstable while �q is asymptotially stable. Moreover,f(q) > q for all q 2 (�1; �q ) [ ( ��q; ey) and f(q) < q for all q 2 (�q; ��q).Setting aside the non-generi ase where G(qmin) = 0, the boundary behavior of Gimplies that the ondition G(qmin) < 0 is not only suÆient but also neessary for �xedpoints to exist. Moreover, it an be shown that G(qmin) > 0 would imply f(q; e) > qfor all q. In this ase, for any q0 < ey a repeated iteration of the forward-reursion (12)would produe a value qt > ey after �nitely many periods t � 1. Thus, G(qmin) < 0 isalso a neessary ondition for the dynamis to be viable. The �nding from Lemma 4 isillustrated in the following �gures whih depit the map f and the �xed point map G.Note that the zeros of G in Figure 1(b) orrespond to intersetions of (the graph of) fwith the prinipal diagonal in Figure 1(a).
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q(b) Fixed point map GFigure 1: Time-one map of state dynamisLemma 4(ii) reveals that the set (�1; ��q℄ is self-supporting under f . Thus, the map frestrited to this set beomes the time-one map of a one-dimensional dynamial systemin disrete time.5 Moreover, for any initial value q0 2 (�1; ��q) the sequene fqtgt�0de�ned reursively as qt+1 = f(qt), t � 0 onverges monotonially to �q. By ontrast, forany initial value q0 2 (��q; ey) the forward-reursion qt+1 = f(qt) exeeds ey after �nitelymany periods. Thus, the forward dynamis is well-de�ned if and only if q0 2 (�1; ��q℄.In the sequel, we will exlude ��q from the state spae in order to rule out degenerateequilibria.6 To ensure qt � 0, we assume that the smaller �xed point satis�es �q > 0.Then, Lemma 4(ii) in onjuntion with Lemma 2 imply that the interval Q := [0; ��q) is5For onveniene, we denote the restrition of f to a subset Q � (�1; ey) by f as well.6In the stohasti ase to be studied in the next setion, this imposes no additional restritionregarding the long run behavior of the system. 8



self-supporting under f as well. Thus, restriting f to Q de�nes a disrete dynamialsystem whih governs the evolution of the variable qt 2 Q over time. The long-runbehavior is now haraterized in the following result, whih requires in addition eo > �.Lemma 5Suppose � � 0 and � < 1. Let inomes e = (ey; e0) 2 E be given and assume that eo > �and G(qmin) < 0 < �q. Then,(i) The restrited map f : Q ! Q has �q as its unique �xed point.(ii) This �xed point is globally stable and for eah q0 2 Q the sequene fqtgt�0 de�nedreursively as qt+1 = f(qt; ey), t � 0 onverges monotonially to �q.In addition to the parameter restritions � � 0 and � < 1, the previous �ndings showthat the main restritions needed for the dynamis to be well-de�ned are that G(qmin) <0 and, in addition, �q > 0. The latter is neessary and suÆient for the dynamis to livein a subset of R++ and satis�ed if and only if G0(0) < 0 < G(0). Using (4) in (15),diret omputations giveG(0) > 0 , � > vh(eo � �; 1)v(eo � �; 1) = 1� �� [eo � �℄1�� (16a)G0(0) < 0 , u0(ey) < (1� �)v(eo � �; 1)� eov(eo � �; 1): (16b)Condition (16a) shows that G(0) > 0 is violated for � = 0 and, therefore, requireshousing osts to exeed a ritial level whih depends on eo.7 As this ondition isindependent of �rst-period inome, the value ey an always be hosen suÆiently largeto satisfy the seond ondition (16b). Notie, however, that the ondition G(qmin) < 0depends on these hoies as well. Given that qmin is only impliitly de�ned by G0(q) =0, it is diÆult to fully haraterize the underlying parameter sets. The numerialsimulation of the following setion, however, shows that all three onditions are satis�edfor a broad range of eonomially reasonable parameterizations.Equilibrium under onstant inomesWe are now in a position to haraterize the omplete equilibrium dynamis for a �xedinome proess et � e = (ey; eo) 2 E for whih all hypotheses of Lemma 5 are satis�ed.Fix an initial value (p0; b0) whih satis�es b0 � 0, p0 > 0, and q0 = p0 � b0 2 Q . Then,ombining our previous results with (1), (8), (13), and (14) one obtains the following7As argued above, the housing return must be lower than the interest fator at equilibrium. If � = 0,then pt+1=pt < bt+1=bt = Rt. This implies that the loan volume grows faster than the housing prieand thus, within �nite time the old will not be able to repay their debt. A similar onlusion holds ina modi�ed version of our model where housing is replaed by a Luas' tree traded at prie pt, whihyields a positive dividend in eah period. The senario with zero dividend payments orresponds to thease with �at money where the eonomy onverges to an autarky steady state.9



system whih governs the evolution of all equilibrium variables:qt+1 = f(qt; e) (17a)bt+1 = R(qt; e)bt (17b)pt+1 = f(qt; e) +R(qt; e)bt: (17)The dynamis (17a) of qt is deoupled from the other two variables and onverge mono-tonially to a unique steady state �q by Lemma 5. Moreover, this proess de�nes theindued onsumption alloation asyt = eyt � qt (18a)ot = e0t � �+ qt: (18b)It is evident from (17b) and (17) that the qualitative long-run dynami behavior ofthe redit volume bt and housing pries pt depend on the steady state interest fatorR(�q; e). If R(�q; e) < 1, the redit volume asymptotially onverges to zero while by (8)pries onverge to �p = �q. Conversely, if R(�q; e) > 1 and b0 > 0, both the redit volumeand housing pries grow without bound and onverge to in�nity. Notie, however, thatthe equilibrium dynamis is well-de�ned in either ase. The following �nal theorem ofthis setion summarizes these insights and establishes the existene and properties ofequilibrium.Theorem 1Suppose � � 0 and � < 1. Let inomes e = (ey; e0) 2 E be given and assume that eo > �and G(qmin) < 0 < �q. Then,(i) Eah p0 > 0 and b0 � 0 for whih p0 � b0 2 Q de�nes an equilibrium where theevolution of the equilibrium variables follows (17a{) and limt!1 qt = �q.(ii) If b0 > 0 and R(�q; e) > 1, then limt!1 pt = limt!1 bt =1.(iii) If b0 = 0 or R(�q; e) < 1, then limt!1 pt = �q while limt!1 bt = 0.5 Housing Booms and BustsDynamis under random inomesWe now analyze the ase where inomes utuate randomly over time. For ease ofexposition, we will on�ne attention to the ase where only �rst-period inomes hangeover time while seond-period inomes are assumed to be onstant. Thus, assume asin the previous setion that eot � eo > � while eyt utuates over time taking values inthe set Ey := [eymin; eymax℄ � R++ . In the sequel, we will therefore drop the argumenteo writing e.g. f(q; ey) instead of f(q; ey; eo). Consider �rst how the proess fqtgt�010



de�ned in (8) evolves over time. It is lear from (12) that this proess is well-de�ned ifand only if qt < eyt for all t � 0 P{a.s., i.e., qt < eymin for all t � 0 P{a.s. Suppose thisan be satis�ed. Then, the forward-reursive struture of the model is well-de�ned andgenerated by randomly mixing the family of mappings (f �; ey)ey2Ey . That is, given qt,the value eyt 2 E realized at time t 'selets' a partiular map f(�; eyt ) whih determinesthe next value qt+1 = f(qt; eyt ). For this forward-reursion to be well-de�ned, we seekto determine a stable interval Q � [0; eymin) whih is self supporting under the family(f �; ey)ey2Ey , i.e., q 2 Q implies f(q; ey) 2 Q for all ey 2 Ey.While the underlying onstrution priniple is the same as in the previous setion, thepresent ase must inorporate that the map f and its �xed points vary with the inomeproess. Let us assume that the hypotheses of Lemma 5 are satis�ed for all ey 2 Ey.Then, eah map f(�; ey) has preisely two �xed points in (0; ey) whih we denote by�q(ey) and ��q(ey), respetively. The next result desribes how these �xed points vary withinome.Lemma 6Let the hypotheses of Lemma 5 be satis�ed for eah ey 2 Ey. Then,(i) For eah q > 0 the map ey 7! f(q; ey) is ontinuously di�erentiable (on the interiorof Ey) and stritly dereasing.(ii) The �xed point maps ey 7! �q(ey) and ey 7! ��q(ey) are both ontinuously di�eren-tiable. Moreover, �q(�) is stritly dereasing while ��q(�) is stritly inreasing.Using the previous result, de�ne�qmin := miney2Eyn�q(ey)o = �q(eymax) (19a)�qmax := maxey2Eyn�q(ey)o = �q(eymin) (19b)��qmin := miney2Eyn��q(ey)o = ��q(eymin): (19)Note that the values de�ned in (19a{) satisfy 0 < �qmin < �qmax < ��qmin. Thus, de�ning�Q := [�qmin; �qmax℄ and Q := [0; ��qmin) we have the inlusions ; 6= �Q $ Q . The followingresult essentially extends Lemma 5 to the more general stohasti ase.Lemma 7Let the hypotheses of Lemma 5 be satis�ed for eah ey 2 Ey. Then,(i) Both intervals �Q and Q are self-supporting for the family (f � : ey)ey2Ey .(ii) For eah q0 2 Q , the dynamis generated by randomly mixing (f �; ey)ey2Ey onvergeto the set �Q P{a.s.. 11



It follows from Lemma 7 that asymptotially, the proess fqtgt�0 will take values in theset �Q . Thus, if feyt gt�0 is suÆiently regular, e.g., follows a Markov proess, standardresults from the literature (f. Brok & Mirman (1972) and Wang (1993)) imply theexistene of a unique invariant distribution supported on �Q whih governs the long-run probabilisti behavior of the proess fqtgt�0. In partiular, this proess will beasymptotially stationary.8 Figure 2 illustrates the �nding from Lemma 7 for the asewith two shoks where eyt 2 feymin; eymaxg for all t.
f(·; ey

min
) f(·; ey

max
)f(·; ey)

q̄min q̄max q¯̄qminFigure 2: Time-one maps generating the dynamis under two shoksEquilibrium under random inomesBased on the previous result, the following theorem generalizes the existene result fromTheorem 1(i) to the ase with stohasti �rst-period inomes. Note that Theorem 1(i)obtains as a speial ase where eymin = eymax = ey.Theorem 2Let the hypotheses of Lemma 5 be satis�ed for eah ey 2 Ey. Then, eah p0 > 0 andb0 � 0 for whih q0 := p0 � b0 2 Q de�nes an equilibrium proess generated by (12),(13), and (14).Sine we are interested in the long-run properties of equilibrium, we an on�ne attentionto the set �Q by virtue of Lemma 7(ii). Analogously to the previous setion, the sign ofthe interest rate is ruial for the long-run behavior of equilibrium housing pries andthe redit volume. The following result haraterizes how the interest fator hangesalong with the shoks and the value of q.8Lemma 4(ii) and the de�nitions (19a{) imply that the family f = (f � : ey)ey2E restrited to theinterval Q possesses a stable �xed-point on�guration in the sense of Brok & Mirman (1972). Thus,the assertion follows from their results, see also Wang (1993).
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Lemma 8Let the hypotheses of Lemma 5 be satis�ed for eah ey 2 Ey. Then, the map R de�nedin (13) is ontinuously di�erentiable with partial derivatives Rey(q; ey) < 0 < Rq(q; ey)for all ey > 0 and q < ey.Let Rmin := minfR(q; ey) j q 2 �Q ; ey 2 Eg = R(�qmin; eymax) (20a)Rmax := maxfR(q; ey) j q 2 �Q ; ey 2 Eg = R(�qmax; eymin): (20b)We now have the following result whih extends the haraterization of equilibrium fromTheorem 1(ii) and (iii) to the general stohasti ase.Theorem 3Let the hypotheses of Lemma 5 be satis�ed for eah ey 2 Ey. Then,(i) If b0 > 0 and Rmin > 1, then limt!1 pt = limt!1 bt =1, P{a.s.(ii) If b0 = 0 or Rmax < 1, then limt!1 bt = 0 P{a.s. while limt!1 jpt � qtj = 0 P{a.s.Theorem 3 shows that the long-run behavior of housing pries and the redit volume iseither expansive (i) or stationary (ii). We observe that if b0 = 0, i.e., in the absene of abanking setor, the housing prie oinides with the proess fqtgt�0 whih is stationaryand well-behaved. Thus, any potential non-stationarity in housing pries is exlusivelydue to the banking setor. Exluding the non-generi ases of either Rmin = 1 orRmax = 1, reurrent housing booms and busts an emerge only if Rmin < 1 < Rmax.The mehanism for booms and bustsTo illustrate a mehanism that generates booms and busts of housing pries, onsiderthe simplest ase where ey takes two values eymin and eymax with positive probability. Letb0 > 0 and Rmin < 1 < Rmax. Suppose that inomes initially take the lower valueeyt = eymin. Then, the dynamis generated by the map f(�; eymin) start onverging tothe assoiated steady state �q(eymin) = �qmax and we have Rt > 1 for t suÆiently largeas R(�qmax; eymin) = Rmax > 1. By (1), the redit volume starts to expand and so dohousing pries while their di�erene qt is stationary. Intuitively, the low �rst periodinome inreases the need for onsumption smoothing and the demand for redit, forwhih the young are willing to pay a high interest rate. Although the supply of reditexpands over time as well, this is absorbed by a orresponding higher demand due toinreasing housing pries. Thus, we see that as long as the low inome regime prevails,both housing prie and redit volume inrease whereas their di�erene onverges to �qmax.Now, suppose that at some time ~t > 0, inomes swith to the higher value eymax. Theorresponding dynamis is now generated by the map f(�; eymax) whih has �qmin as itsunique steady state to whih the variable qt starts onverging. For suÆiently large13



t > ~t, we will have Rt < 1 implying that both the redit volume and housing priewill ontrat. Although this indues a {perfetly foreseen{ apital loss, the demand forhousing is still positive as it yields utility.Combining these observations, it is lear that under a random inome proess, the sys-tem will alternate between an expansionary regime and a ontrative regime. Thesehanges are most profound if R(q; eymin) > 1 and R(q; eymax) < 1 for all q 2 �Q . The�rst requirement is equivalent to R(�qmin; eymin) > 1 and implies that the redit volumestarts expanding immediately when et = eymin. The seond ondition is equivalent toR(�qmax; eymax) < 1 and implies that the redit volume starts ontrating immediatelywhen et = eymin. Now if the inome proess is persistent, then long periods of redit ex-pansion will follow long periods of redit ontration. This mehanism o�ers a potentialto generate large movements in housing pries simply due to persistent inome hanges.The previous mehanism straightforwardly generalizes to the ase where inomes areontinuously distributed on the interval [eymin; eymax℄ as long as the dynamis alternatesbetween the expansive regime f(q; e) 2 �Q �Ey j R(q; e) > 1g and the ontrative regimef(q; e) 2 �Q � Ey j R(q; e) < 1g.Bubbles and fundamental housing priesIt is worthwhile to relate our previous results to the emergene of a bubble whih iswidely disussed in the literature. In these models the notion of bubbles orrespondsto an intrinsially valueless asset that is traded at a positive prie. In our model, theredit volume supplied by the banking setor is not baked by any resoures and satis�esthis de�nition. Consequently, the bubble-less equilibrium in our eonomy orrespondsto the initial hoie b0 = 0 whih implies bt � 0 and pt = qt for all t. Therefore, we shallall qt the fundamental housing prie. We know from our previous results that for anyq0 > 0, the fundamental housing prie proess fqtgt�0 is well-behaved and onverges toa unique stable interval [qmin; qmax℄ � (0; eymin) whih shrinks to a point �q if inomes aredeterministi.Under this interpretation, it follows diretly from (8) that for an arbitrary b0 � 0, theequilibrium housing prie pt may be written as the sum of its fundamental value qt andthe bubbly omponent bt. Given a �xed initial fundamental prie q0, any injetion ofredit b0 > 0 therefore merely inreases the bubbly omponent of the housing prie.With the initial fundamental prie q0 unhanged, one also observes from (17a) and(18a,b) that the resulting onsumption alloation is not a�eted by the presene of abubble. Thus, any injetion of redit is fully neutral with respet to onsumer welfare.Housing investment is in part �naned by �rst period inome and selling revenue exeedsthe loan repayment. Thus, at equilibrium there is an e�etive transfer of resoures fromthe young to old. If inomes alternate between the expansive and ontrative state, largemovements in housing pries our whih an almost exlusively be attributed to thebubbly omponent with the fundamental prie being bounded by the inome proess.14



6 A Quantitative ExampleWe employ numerial simulations to show that the boom-bust senario studied previ-ously ours under reasonable parameter hoies and the swith between the two regimesis triggered by relatively small inome hanges.ParametersBajari, Chan, Krueger & Miller (2010) use a logarithmi funtion u whih we approx-imate in our setup by hoosing � lose to unity. They also devise an elastiity ofsubstitution between housing and seond-period onsumption slightly larger than unity(about 1:3) orresponding to � = 0:24. For simpliity, we follow Li & Yao (2007) byon�ning ourselves to the ase of unit elastiity setting � = 0 whih yields a Cobb-Douglas funtion for seond-period utility. For this hoie, the parameter 1� � an beinterpreted as the share of housing expenditure in onsumer inome and Bajari, Chan,Krueger & Miller (2010) hoose a value of � � :77. Given that housing is on�ned tothe seond period of life in our setup, we hoose a smaller value � = :67. As in Hurd(1989), onsumers' annual time disount is taken to be 1/1.011 implying a disountfator  = 0:70 � (1=1:011)35. We normalize inomes by setting eo = 1 and assume that�rst period inomes feyt gt�0 follows a symmetri two-state Markov proess with valuesin Ey = feymin = 1:425; eymax = 1:5g and a time-invariant transition probability � = 0:2.Thus the proess is highly persistent with an 80% hane of retaining its urrent stateand a 20% hane of swithing to the opposite state. The fat that inomes are higher inthe �rst than in the seond period seems broadly onsistent with empirial evidene, f.Table 3 in Bajari, Chan, Krueger & Miller (2010).9 Finally, our hoie for � = 1=3 im-plies that housing osts make up slightly more than 10% of onsumers' lifetime inome.The initial values are set to p0 = b0 = 1. Under this parametrization, the hypothesesof Lemma 4 hold for all ey 2 Ey. Thus, for eah �xed inome stream eyt � ey 2 Ey, thedynamis (17a) onverges to a unique steady state �q(ey) > 0.10 In partiular, the aboveparametrization implies that Rmin = R(�q(eymax); eymax) < 1 < R(�q(eymin); eymin) = Rmaxsuh that the neessary onditions for booms and busts of housing pries to our aresatis�ed.Simulation resultsWe simulate the model for T = 6000 periods and display the time series in Figure 3starting in t = 3000 to apture the long run harateristis of the model. The leftpanel shows a time window of the housing prie pt and the redit volume bt. To relatemovements in these variables to the `fundamentals' of the eonomy we also depit the9This is also onsistent if we were to replae the pure exhange setting by a prodution eonomywhere the young earn labor inome and the old apital inome. Empirial evidene then suggests thatthe former is about twie as large as the latter.10We remark that the hosen parametrization guarantees positivity of steady states, whih may failto exist at all or �q(ey) < 0 for some ey 2 Ey under other parametrization.15



aggregate net inome eyt + eo � � whih represents the total resoures available in pe-riod t net of housing osts. The right panel depits the leverage ratio bt=(eyt + eoR�1t )whih measures the perentage share of loans baked by onsumers' disounted lifetimeinomes.

0

5

10

15

20

3000 3500 4000 4500 5000 5500 6000(a) pt, bt, and eyt + eo � � 0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%
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nates between a high inome distribution and a low inome distribution with the sametransition probability as before. Hene, the simplifying assumption of inome followinga two-state proess is not essential for our numerial results.7 ConlusionsIn the absene of a banking setor the only intergenerational transfer of ommodities inour model is from the young to old through the housing market. Consequently, housingvalues are bounded by young onsumers' inomes. Introduing a banking setor addsan additional hannel of intergenerational trade in the form of a redit market, whihmediates a ommodity transfer from the old to young. The ombination of these hannelspermits eah ow of intergenerational transfers to beome arbitrarily large as long as thenet ow remains bounded by onsumers' inomes. This struture ampli�es small butpersistent inome hanges into large movements of housing pries and redit volumes,whih are both non-stationary while a linear ombination of them follows a stationarystohasti proess. The presene of suh a ointegration relationship is therefore animpliation of the model that is testable empirially.In our model, the boom in housing pries aompanied by expanding loan volumes o-urs when the interest fator exeeds unity. Hene, the stationary endowment proessimplies that the interest rate is greater than the growth rate of the eonomy when bub-bles emerge, a feature of the model shared by Are & L�opez-Salido (2011), Caballero,Farhi, & Hammour (2006), Martin & Ventura (2012), and Ventura (2012). The boomomes to a halt when a higher inome of the young auses the interest fator to dropbelow unity. This omovement between the interest rate and the redit volume oursnaturally in a model with inside money but may be at odds with the empirial observa-tion that the ost of re�naning is relatively low in many bubble episodes. An interestingquestion that we leave for future researh is whether this relationship reverses when themodel inludes outside money. Suh an extension would also permit to investigate howmonetary poliies interat with the banking setor and the housing market.Another feature of our exhange eonomy is that bubbles do not a�et produtive invest-ment and hene onsumer inomes. Whether bubbles in our framework remain welfareneutral in the presene of apital aumulation is also an interesting question to beexplored.
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A Mathematial ProofsA.1 Proof of Lemma 1Let e = (ey; eo) 2 E and q < ey be arbitrary but �xed. For brevity, set q := �� eo andH(q1) := v(q1 � q; 1) (q1 � �) + vh(q1 � q; 1); q1 > q: (A.1)Sine v in (4) is homogeneous of degree 1��, Euler's theorem for homogeneous funtionsimplies v(; 1) + vh(; 1) = (1� �)v(; 1) for all  > 0 permitting us to writeH(q1) = (1� �) v(q1 � q; 1)� v(q1 � q; 1) eo; q1 > q: (A.2)Sine � � 0, the funtion v satis�es the Inada ondition lim!0 v(; 1) =1. Thus,limq1!qH(q1) = (1� �) v(0; 1)� eo limq1!q v(q1 � q; 1) = �1: (A.3)Furthermore, the restritions � � 0 and � < 1 together imply lim!1  v(; 1) = 1.Using this in (A.1) yields the right limit aslimq1!1H(q1) � limq1!1 v(q1 � q; 1) (q1 � �) =1: (A.4)Existene of the desired solution thus follows from (A.3), (A.4), and ontinuity of H.Uniqueness is a onsequene of (A.2) and the onavity of v whih give the derivativeH 0(q1) = (1� �)v(q1 � q; 1)� v(q1 � q; 1) eo > 0: (A.5)�A.2 Proof of Lemma 2Sine Fq1(q1; q; e) = �H 0(q1) < 0 by (10) and (A.5) and F is ontinuously di�erentiable,so is the impliit funtion f by the Impliit Funtion Theorem. The partial derivativeof (10) with respet to q omputesFq(q1; q; e) = u0(ey � q)� qu00(ey � q) = (ey � q)�� ey � (1� �)qey � q > 0: (A.6)By the impliit funtion theorem f 0(q) = � Fq(q1;q;e)Fq1 (q1;q;e) > 0 where q1 = f(q; e). �
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A.3 Proof of Lemma 3By (15), the funtion G an be written as G(q) = D(q)�H(q) with H being de�ned asin (A.2) and D(q) := qu0(ey � q) = q(ey � q)��; q < ey.Consider �rst the behavior of the funtion D whose derivatives satisfyD0(q) = ey � (1� �)q(ey � q)1+� > (1� �) ey � q(ey � q)1+� = 1� �(ey � q)� > 0 (A.7)D00(q) = �(ey � q)2+��2ey � (1� �)q� > �(1� �)(ey � q)2+��ey � q� > 0: (A.8)The seond inequality shows that D is a stritly onvex funtion while the �rst oneimplies that D is stritly inreasing with boundary behavior limq!ey D0(q) =1.As shown in the proof of Lemma 1, the derivative of H is given by (A.5) and, therefore,satis�es H 0(q) > 0 and limq!��eo H 0(q) � (1 � �) limq!��eo v(eo � � + q; 1) = 1. Welaim that H 0 is a stritly dereasing funtion implying that �H is stritly onvex. The�rst term in (A.5) is stritly dereasing by strit onavity of v. It therefore suÆes toshow that  7! �v(; 1) is dereasing as well. De�ning g as in (2), diret alulationsreveal that the seond derivative of v an be written as�v(; 1) = v(; 1) �1� �� (1� �� �) ��g(; 1)��= v(; 1) � �1�� �g(; 1)� + 1� � � (1� �)g(; 1)� � : (A.9)Realling that 1 � � � 0, all three terms in (A.9) are positive and stritly dereasingfuntions of  whih implies that  7! �v(; 1) is dereasing as laimed.Thus, �H is a stritly onvex funtion as laimed and G being the sum of two (stritly)onvex funtions is also stritly onvex. The boundary behavior of G0 follows diretlyfrom the limits omputed above and the monotoniity properties of D and �H. �A.4 Proof of Lemma 4(i) Using (15) in onjuntion with (A.2), a routine alulation shows that limq!ey G(q) =limq!��eo G(q) =1. Thus, G(qmin) < 0 implies that G has a �xed point in eah of theintervals (�� eo; qmin) and (qmin; ey). By strit onvexity and the boundary behavior ofthe �rst derivative (f. Lemma 3), the map G is stritly dereasing on (�� eo; qmin) andstritly inreasing on (qmin; ey). Thus, there an be at most one �xed point in eah ofthe two intervals.(ii) It is obvious from (i) that G0(�q) < 0 < G0(��q). Utilizing the result from Lemma2 and the de�nitions of D and H given in the proof of Lemma 4, this implies thatG0(�q) = D0(�q)�H 0(�q) < 0 and G0(��q) = D0(��q)�H 0(��q) > 0. Therefore,0 < f 0(�q) = D0(�q)H 0(�q) < 1 < D0(��q)H 0(��q) = f 0(��q) (A.10)19



whih implies the loal stability properties asserted. The remaining inequalities followfrom this and the uniqueness of the �xed points on the respetive intervals. �A.5 Proof of Lemma 5Assertion (i) follows immediately from Lemma 4(i). The result in (ii) is a onsequeneof loal stability of �q and Lemma 4(ii). Monotoniity of the sequene fqtgt�0 followsfrom this and Lemma 2. �A.6 Proof of Theorem 1(i) Lemma 5 and q0 2 Q imply that qt 2 Q for all t and limt!1 qt = �q. By (1) and (13),b0 > 0 implies bt > 0 and, by (8) pt > 0 for all t proving (i).(ii) If R(�q; e) > 1, then there exists t0 � 0 suh that R(qt; e) > 1 for all t � t0 bystability of �q. In fat, sine q 7! R(q; e) is stritly inreasing (f. Lemma 8) and fqtgt�0onverges monotonially, we have R(qt; e) � Rt0 := R(qt0 ; e) > 1 for all t � t0. Thus,limt!1 bt � bt0 limt!1Rt�t0t0 =1 and pt = qt + bt > bt for all t gives limt!1 pt =1.(iii) If b0 = 0, then bt = 0 and qt = pt for all t and the laim follows from (i). If b0 > 0and R(�q; e) < 1, the same arguments as in (ii) yield R(qt; e) � Rt0 := R(qt0 ; e) < 1 fort � t0. Thus, 0 � limt!1 bt � bt0 limt!1Rt�t0t0 = 0 and limt!1 pt = limt!1 qt = �q. �A.7 Proof of Lemma 6(i) The proof of Lemma 2 revealed that Fq1(q1; q; e) < 0 with F de�ned in (10). SineFey(q1; q; e) = q u00(ey � q) < 0, q > 0, the laim follows from the Impliit FuntionTheorem.(ii) Reall that �xed points are solutions to G(q; e) = F (q; q; e) = 0. By (i), Gey(q; e) =Fey(q; q; e) < 0. As limq!��eo G(q; e) = limq!ey G(q; e) = 1 implies Gq(�q; e) < 0 <Gq(��q; e), the laim follows again from the Impliit Funtion Theorem. �A.8 Proof of Lemma 7(i) We �rst show that �Q is self-supporting. Let q 2 �Q be arbitrary. Then, using Lemma4(ii) and the monotoniity properties of f together with the de�nitions (19a{) we havefor eah ey 2 E :�qmin = f(�qmin; eymax) � f(�qmin; ey) � f(q; ey) � f(�qmax; ey) � f(�qmax; eymin)) = �qmax:(A.11)Thus, f(q; ey) 2 �Q . To prove that Q is self-supporting, let q 2 Q and ey 2 Ey bearbitrary. The ase q 2 �Q is evident, so suppose �rst that q 2 (�qmax; ��qmin). Then,20
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