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Abstract 

“Approximate truth” refers to the principle that border cases should be analyzed by solving 
generic cases and solving border cases as limits of generic ones (Brennan et al., 2008). Our study 
experimentally explores whether this conceptual principle is also behaviorally appealing. To do 
so, we focus on perfectness (Selten, 1975) and use his example game with (no) multiplicity of 
(perfect) equilibria. Distinguishing three uniform perturbation levels, we check for monotonicity 
(all players react monotonically to the perturbation level) and then explore the behavioral 
relevance of “approximate truth.” 
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1. Introduction 

In economics but also in its neighboring disciplines, there is a long tradition of solving ideal 
cases directly rather than by first solving generic cases and then solving the ideal or border cases 
by determining the limits of solutions of generic ones (Brennan, Güth, and Kliemt, 2008). This 
principle is more or less explicitly propagated by Harsanyi (1973), Selten (1975), and Harsanyi 
and Selten (1988). Examples of studies violating this principle are discussed in Brennan et al. 
(2008), whose list is, of course far from being exhaustive. Here we focus on the ideal case of 
unperturbed games and perfectness as a requirement of approximate truth (Selten, 1975). 

In an unperturbed game, players can perfectly realize their intended activities, i.e., an unintended  
action is impossible. The consequence of such ideal power of command are unreached 
information sets in extensive form games or, analogously, impossible strategy vectors in normal 
form games. In a generic, i.e., perturbed game, the power to command one’s actions is limited: 
for all players any action has possibly a very small, but strictly positive probability of being used 
unintentionally. 

This obviously avoids unreached information sets in extensive form games and ensures that 
Bayes’ rule (see Bayes, 1763) is always applicable. Similarly, all possible strategy vectors are 
realized with positive probability in normal form games. A specific consequence of the latter 
phenomenon is that whatever strategy is weakly dominated in the unperturbed game will be 
strictly dominated in a perturbed game. This obviously eliminates equilibria in weakly 
dominated strategies as candidates for perfect or “approximately true” equilibria.1 

We experimentally implement Selten’s (1975) example of a three-person game with multiple 
equilibria only one of which is perfect, however. In line with an abstract solution requirement2 
(see Harsanyi and Selten, 1988), and to avoid demand effects of asymmetric minimum choice 
probabilities we induce constant minimum choice probability for all choices of all players. We 
thus explore the “approximate truth” of uniformly perfect equilibria by exogenously imposing 
constant minimum choice probabilities which vary between treatments. 

In section 2 we describe the experimental protocol. Section 3 analyzes the experimental data. 
Section 4 concludes. 

                                                            
1 In Industrial Organization such equilibria are nevertheless propagated, e.g., as the solution for price competition 
in asymmetric homogeneous markets with constant unit costs as originally suggested by Bertrand (1883). Here the 
market is extreme not only in the sense of perfect product homogeneity but also by letting prices vary 
continuously.  
2 By denying any rationality in making mistakes (see, e.g., Myerson, 1978, who postulates such rationality), all 
actions should have the same positive minimum probability of being used. 
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2. Experimental Protocol 

Our experimental workhorse is the three-person game in Figure 1 (see Selten, 1975) with players 

1, 2,3i   who have to decide between iR  and iL . Since R3 is weakly dominated, the  equilibrium  

R = (R1, R2, R3) is not perfect in spite of its attractivity (R is, e.g., payoff undominated). Thus the 
“approximately true” solution is the perfect equilibrium L = (L1, L2, L3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The extensive form game with players   1, 2,3i   and choices iL  and iR . In the   

experimental instruction for 1, 2,3i  , the choices are color labeled. By connecting the two 
decision notes of player 3, it is indicated that they lie in one information set.  

Participants were randomly and anonymously matched into groups of three participants to play 
the game in Figure 1. Player 1 (2, 3) determines the probability that the play will proceed with 

Player 1 

L1 R1 

Player 2 
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R2L2

R3R3 L3L3
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move L1 (L2, L3) respectively
 
R1 ( R2, R3).  For 1, 2,3i  , the probability for iL , respectively iR  is 

determined by the following urn: in the 25 free balls game with altogether 27 balls, only one (of 

them) is predetermined as red (for iL ) and one as black (for iR ). As for the remaining 25 balls, 

player i can freely determine how many of them are red or black. Once the urn is composed by 
determining the color of all 27 balls, a ball will be randomly drawn from it. If a red ball is drawn, 

the game will proceed with route iL . If a black ball is drawn, the game will proceed with route 

iR . Similarly, in the 21 free balls game, there are 3 red balls, and 3 predetermined black balls, 

and player i determines the color of the remaining 21 free balls.  In the 9 free balls game, 9 red 
balls and 9 black balls have a predetermined color, meaning that player i determines the color of 
only 9 balls.   

Note that even in the  9 free ball game, the avoidance of R3 as far as possible, i.e., player 3 plays 
L3 with probability 2/3 and R3 with probability 1/3, suffices to render L2 uniquely optimal for 
player 2 (since L2 yields 35/3 and R2 only 10). Anticipating that both, player 2 and player 3, use 
their L-strategy with maximal probability 2/3 in the 9 free balls game, finally implies that for 
player 1 the choice of L1, yielding 60/9, is better than R1, yielding only 55/3. Thus even the 
largest uniform perturbance level allows for no ambiguity of (sequential) rationality. For all 
perturbance levels all three players i = 1, 2, 3 should therefore use the perfect equilibrium 
strategy L1 with maximal probability.  

For the sake of more informative data, and to encourage more thorough deliberations on what to 
do in the various roles (1, 2, and 3), choices were elicited using the strategy vector method. That 

is, participants specified their choice 1 2 3, ,  and s s s  via determining the urns with red and black 

balls to govern the choice of player 1, 2, and 3. Given these choices, the computer randomly 
determined the roles, implemented the decisions, and computed the payoffs accordingly. For 
example, if L1 and L3 are realized, each player receives 5 euros. 

To investigate within-subject differences across treatments, subjects participated in all three 
games, differing only in their uniform trembles where the order was varied between subjects. 
The three treatments can be distinguished by the sequence of the numbers of “free balls”: 

 

 

For example, in the 25-21-9 treatment, subjects first played the 25 free balls game, then the 21 
free balls game, and finally the 9 free balls game. Subjects were not informed that they would 
play the second (third) game when they played the first (second) game in the sequence. They  
learned about payoffs only after playing all three games and additionally reported their beliefs 
concerning the choice behavior of others.  

 Treatments 
 25-21- 9 21-21-21 9-21-25  
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A total of 135 subjects participated in the computerized (via z-tree, Fischbacher, 2007) 
experiment. They were randomly recruited from a poll of approximately 2,500 subjects using an 
e-mail recruitment system (ORSEE, see Greiner, 2004). All subjects were university students 
from Jena, Germany. The experiments were conducted in German. In the beginning, subjects 
were given paper instructions. They were informed that their decisions would be anonymous and 
that they would receive a show-up fee of 2.5 euros in addition to what they earned by playing the 
games.  Then each subject was asked to key in her decisions.  

3. Experimental Results 

Let us begin by analyzing first-play behavior, i.e., we use the combined first choices 

 of  “25 free balls” from treatment 25-21-9 

 of  “21 free balls” from treatment 21-21-21 

 of  “9 free balls” from treatment 9-21-25 

where we concentrate on the proportion of “free balls” allocated to iR  and iL , respectively. 

Since only the equilibrium L = (L1,L2,L3)  is perfect, we check monotonicity by testing 

Hypothesis M: Monotonic convergence to L. 

For 1, 2,3i   the tendency to voluntarily use iL  increases with more “free balls.” 

Table 1. Average probability 
allocated 

   Average Number of Allocated Balls  

(Std.) 

Treatment  L1  L2  L3 

25 Free Balls  5.63  5.30  20.81 

(9.01)  (8.29)  (6.27) 

21 Free Balls  5.80  11.47  19.03 

(8.43)  (9.79)  (4.73) 

9 Free Balls  3.00  2.47  7.87 

   (3.34)  (3.25)  (2.11) 

Average Probability Allocated 

(Std.) 

25 Free Balls  0.25  0.23  0.81 

(0.33)  (0.31)  (0.23) 

21 Free Balls  0.33  0.54  0.82 

(0.31)  (0.36)  (0.18) 

9 Free Balls  0.44  0.42  0.62 

   (0.12)  (0.12)  (0.08) 
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Notes: 25 Free Balls refers to the first round in the 25‐21‐9 treatment. 21 Free  
Balls refers to the first round in the 21‐21‐21 treatment. 9 Free Balls refers to 
the first round in the 9‐21‐25 treatment.  

Table 1 shows voluntary probability of iL  as depending on the number of “free balls,” separately 

for each player 1, 2,3i  . 

Clearly, the weakly dominating move L3 is realized with higher probability than L1 and L2, which 
could be expected as the non-rationality of L3 is more obvious. Concerning the effect of variation 
in the number of free balls, the change from 25 to 21 “free balls” is minor, compared to the one 
from 25 or 21 to 9 “free balls.” The intermediate treatment of “21 free balls” was mainly 
introduced to check only minor “perturbance differences.” As can be seen from Table 1, due to 
noisy choice behavior, one cannot expect monotone reactions to minor changes in the 
perturbance level. However, the differences between 25 or 21 “free balls” and 9 “free balls” are 
statistically significant for all three player roles, see Table 2.3  

Table 2. Comparisons of Probability Allocated for L 

Average Probability 
Allocated for L  Mean Differences  t‐Test 

L1 

25 vs. 9  0.20  3.04*** 

21 vs. 9  0.12  1.93* 

L2 

25 vs. 9  0.19  3.16***

21 vs. 9  ‐0.11  ‐1.59

L3 

25 vs. 21  ‐0.18  ‐4.08*** 

21 vs. 9  ‐0.19  ‐5.46*** 

Notes: *, **, and *** represent significance at 10, 5, and 1  
percent levels, respectively. 

The average probabilities observed in 25 “free balls” for L1 and L2 are significantly lower than in 
the 9 “free balls,” whereas the reverse is observed with L3. We thus can conclude the following: 

Observation 1: When the number of “free balls” decreases, the voluntary probabilities of relying 
on the perfect equilibrium strategies L1 and L2  increases where the effects when comparing 25 or 
21 “free balls” with 9 “free balls” are statistically significant. For L3   an opposite effect is 
observed. 

                                                            
3 Except the case of 21 vs. 9 in L2.  
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The observation for L1 and L2 contradicts hypothesis M, whereas the observation for L3 is in line 
with hypothesis M. As in every perturbed game R3 is strictly dominated, one might expect the 
strongest avoidance of R3, whose non-optimality is more obvious. The probability allocated for 
L3 is significantly higher than L1 and L2 (p-value = 0.00). There is no significant difference 
between L1 and L2.   

Observation 2: For all numbers of “free balls” player 3 avoids the dominated choice R3 
significantly more often than the two other players, 1 and 2, for whom the incentive to avoid Ri 
anticipates that player 3 avoids R3 to such an extent that L2 and then also L1 become optimal. 

Let us finally investigate how earlier experience with another “perturbance” level affects 
behavior. Table 3 below tabulates the probability allocated by players in respective treatments. 
Contrary to the expectation that any earlier experience should strengthen the tendency of 

voluntarily using iL  rather than iR , 1, 2,3i  , there is no significant difference.  

Observation 3: When for 1, 2,3i   comparing the first and third play 

 of 25 “free balls” (i.e., using the 1st (3rd) play data of treatments 25-21-9 (9-21-25), the 

use of iL  is not significantly stronger,  

 of 9 “free balls” (i.e., using the 1st (3rd) play data of treatments 9-21-25 (25-21-9), the use 

of iL  is not significantly stronger. 

Table 3. The Effect of Sequence of Play on Probability Allocated 

  Probability Allocated  
25 Free Balls  9 Free Balls 

25‐21‐9  9‐21‐25  25‐21‐9  9‐21‐25 

Player 1  0.25 0.27 0.43  0.44  
(0.06) (0.06) (0.03) (0.02) 

Player 2  0.23  0.39  0.40  0.42  
(0.06) (0.07) (0.02) (0.02) 

Player 3  0.81  0.85  0.62  0.62  
  (0.04) (0.05) (0.02) (0.01) 

 

Observation 3 that former experiences do not strengthen the use of perfect equilibrium strategies 
is additionally supported by the 21-21-21-treatment.  

Observation 4: The voluntary probabilities of using iL  rather than iR  does not increase 

significantly with the round of play of the 21-21-21-treatment, even when the game, captured by 
the noise level, remains constant.  
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Table 4. Probability Allocated to Li in Treatment 21‐21‐21 

  First Round  Second Round  Third Round 

Player 1  0.33 0.41 0.44 
(0.06) (0.06) (0.06) 

Player 2  0.54 0.46 0.52 
(0.07) (0.06) (0.06) 

Player 3  0.82 0.80 0.78 
  (0.03) (0.03) (0.03) 

 

4. Conclusion 

It would have been naïve to expect that the unique perfect equilibrium prediction could be 
experimentally confirmed. One might have hoped that less perturbance would shift behavior 
toward its benchmark. But this could be confirmed only for player 3 whose behavior is much 
closer to the predicted choice (of L3) but not for player 1 and player 2. In our view, the non-
optimality of L3  is much more obvious than that of L1 and L2 rendering the choices by players 1 
and 2 much more noisy. This explains that minor changes in perturbance (21 versus 25 “free 
balls”) have little effect and that the use of L1 respectively L2 is far from being close to what was 
predicted. Altogether, we have not consistently proved that the principle of approximate truth is 
in line with the experimental evidence collected. Equilibrium refinements relying on this 
principle are therefore only philosophically but not psychologically appealing.  

One may object to our analysis that we assume common(ly known) material opportunism in the 
sense that each player only cares for his own monetary payoff expectation. Since the imperfect 
equilibrium R payoff dominates the perfect equilibrium L, assuming efficiency concerns would 
allow to justify R rather than L as solution. However, this would require some common 
knowledge of such “social preferences,” which seems highly unrealistic. But the fact that R 
payoff dominates L means that our experimental game is a worst-case scenario for confirming 
the principle of approximate truth. Across the board, our results indicate that the principle 
obviously does not have behavioral appeal. If at all, it needs more favorable conditions than 
those provided by our experimental game. 
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Appendix  

We present the experimental instructions for one urn experiment only (with 25 free balls). It is 
easy to reconstruct the experimental instructions for the remaining cases.   

 

Experimental Instructions (25 free balls) 

Welcome to our experimental study on decision-making. You will receive a show-up fee of 
Euro2.5. In addition, you can gain more money as a result of your decisions in the 
experiment.  

You will be given a subject ID number. Please keep it confidentially. Your decisions will be 
anonymous and kept confidential. Thus, other participants won’t be able to link your 
decisions with your identity. You will be paid in private, using your subject ID, and in cash at 
the end of the experiment. 

When you have any questions, please feel free to ask by raising your hand, one of our 
assistants will come to answer your questions. Please DO NOT communicate with any other 
participants.  

 

  



The Game 

You will be randomly and anonymously paired with two other participants to play the 
following game. In this game, there are three players: player 1, player 2, and player 3. You 
will need to make your decisions under each role. More specifically, you will need to specify 
your decisions as if you are player 1, as if you are player 2, and as if you are player 3. In the 
end of the experiment, the computer will randomly determine your role, implement your 
decisions under that role, and pay you accordingly.  

The game has three stages.   

 
 
 
 
 
 
 
 
 
 
 
 
 
                     
 
 
 
 
Stage 1 

Player 1 makes a choice which will determine the probability that the game will proceed with 
route R or B. There are 27 balls, and 1 of them is red and 1 of them is black. For the 
remaining 25 balls, player 1 will determine the number of red and black balls, i.e., how many 
of the remaining 25 balls will be red or black. Then a ball will be randomly drawn from the 
urn with altogether 27 red and black balls. If a red ball is drawn, the game will proceed with 
route R. If a black ball is drawn, the game will proceed with route B. 

Stage 2 

Player 2 makes a choice which will determine the probability that the game will proceed with 
route P or Y. There are 27 balls, and 1 of them is pink and 1 of them is yellow. For the 
remaining 25 balls, player 2 will determine the number of pink and yellow balls, i.e., how 
many of the remaining 25 balls will be pink or yellow. Then a ball will be randomly drawn 
from the urn with altogether 27 pink and yellow balls. If a pink ball is drawn, the game will 
proceed with route P. If a yellow ball is drawn, the game will proceed with route Y. Player 2 
will make the decision without knowing the color of the ball drawn in stage 1.  

Player 2 

B 

Player 1 

R 

G
Player 3 

Player 1: 5 
Player 2: 5 
Player 3: 5 

15
10
15

5 
5 
5 

0 
15
10

10 
0 
0 

O OG 

P Y



Stage 3 

Player 3 makes a choice which will determine the probability that the game will proceed with 
route O or G. There are 27 balls, and 1 of them is orange and 1 of them is grey. For the 
remaining 25 balls, player 3 will determine the number of red and black balls i.e., how many 
of the remaining 25 balls will be orange or grey. Then a ball will be randomly drawn from the 
urn with altogether 27 orange and grey balls. If an orange ball is drawn, the game will proceed 
with route O. If a grey ball is drawn, the game will proceed with route G. Player 3 will make 
the decision without knowing the color of the ball drawn in stage 1 and stage 2.  

Payoffs 

If route R and route O are implemented, each player will receive 5 Euro. 

If route R and route G are implemented, player 1 will receive 10 Euro. Player 2 and 3 will 
both receive 0 Euro. 

If route B, route P, and route O are implemented, player 1 will receive 0 Euro, while player 2 
will receive 15 Euro, and player 3 will receive 10 Euro. 

If route B, route P, and route G are implemented, each player will receive 5 Euro. 

If route B and route Y are implemented, player 1 will receive 15 Euro, while player 2 will 
receive 10 Euro, and player 3 will receive 15 Euro. 

Please decide now! 

If you are player 1  

If I am player 1, I want _______of the remaining balls to be red and _______balls be black.   

If you are player 2  

If I am player 1, I want _______of the remaining balls to be pink and _______balls be yellow.   

If you are player 3  

If I am player 1, I want _______of the remaining balls to be orange and _______balls be 
black grey.    



Questionnaire 

Now we have some questions for you. Please answer them carefully. Your answers will not 
influence your final payoff. 

 

1. In your estimation, how many percent of player 1 (other than yourself) have chosen to 
allocate a positive number of black balls? 

________% 

2. In your estimation, what is the average number of black balls (out of 25) chosen by other 
participants (player 1)? 

________black balls 

 

3. In your estimation, how many percent of player 2 (other than yourself) have chosen to 
allocate a positive number of yellow balls? 

________% 

 

4. In your estimation, what is the average number of yellow balls (out of 25) chosen by other 
participants (player 2)? 

________ yellow balls 

 

5. In your estimation, how many percent of player 3 (other than yourself) have chosen to 
allocate a positive number of grey balls? 

________% 

 

6. In your estimation, what is the average number of grey balls (out of 25) chosen by other 
participants (player 3)? 

________ grey  balls 
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