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Option Pricing with Regime Switching
Tempered Stable Processes

Zuodong Lin, Svetlozar T. Rachev, Young Shin Kim, and Frank J. Fabozzi

Abstract In this paper we will introduce a hybrid option pricing model that com-
bines the classical tempered stable model and regime switching by a hidden Markov
chain. This model allows the description of some stylized phenomena about asset re-
turn distributions that are well documented in financial markets such as time-varying
volatility, skewness, and heavy tails. We will derive the option pricing formula under
the this model by means of Fourier transform method. In order to demonstrate the
superior accuracy and the capacity of capturing dynamics using the proposed model,
we will empirically test the model using call option prices where the underlying is
the S&P 500 Index.
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1 Introduction

The skewness and heavy tail property in the return distribution and the time varying
volatility of return process are two major issues for derivative pricing in finance.
Tempered stable processes have been used to capture the skewness and heavy tail
property; see Boyarchenko and Levendorskiĭ (2000), Barndorff-Nielsen and Lev-
endorskii (2001), and Carr et al. (2002). By the help of the fast Fourier transform
method, the tempered stable processes have been successfully applied to the Euro-
pean option pricing; see Carr and Madan (1999) and Lewis (2001).

The time varying volatility can be modeled by the GARCH model by Engle
(1982) and Bollerslev (1986) and the regime switching time series model by Hamil-
ton (1989). The option pricing under the GARCH model have been presented by
Duan (1995) and enhanced in literature including Kim et al. (2009), and Kim et al.
(2010). Meanwhile, Buffington and Elliott (2002) applied the regime switching
Gaussian process model to option pricing. The option pricing model of Buffington
and Elliott (2002) have been enhanced by Liu et al. (2006) and Jackson et al. (2007).
Liu et al. (2006) used fast Fourier transform method for option pricing with regime
switching model, but their model used the Gaussian process as the driving process.
Jackson et al. (2007) combined the regime switching model with Lévy driving pro-
cesses, and they numerically solved a partial integro differential equation with the
Fourier space time stepping for computing European option prices.

In this paper we will present the hybrid option pricing model combining the
regime switching model with the tempered stable driving process. We refer to the
hybrid model as the regime switching tempered stable model. Different from Jack-
son et al. (2007), We will use the fast Fourier transform method for calculating
European option prices.

The remainder of this paper is organized as follows: In Section 2, we review
the regime switching model and the tempered stable process. The regime switching
tempered stable model is present in Section 3. Section 4 provides the calibration
result of the regime switching tempered stable model for the S&P 500 index option.
Finally, Section 5 is a summary of our conclusions.

2 Regime Switching Model

We suppose the economic state of the world is described by a finite state Markov
chain and consider a risky asset with volatility depending on the state of the econ-
omy. The state space of economy is denoted as E = (Et)t≥0 with possible out-
comes {e1,e2, ...,eN}, where ek = (0, ...,0,1,0, ...,0)′ ∈ RN and the process E is
time-homogeneous and has a generator matrix Λ . The volatility is denoted as
σ = {σ1,σ2, ...,σN} with respect to the economic outcomes, where N is the number
of states. Thus, the instantaneous volatility can be written as:

σt = 〈σ ,Et〉, 0≤ t ≤ T (1)
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where T is the maturity time of the risky asset. Because the Markov process has a
countable state space, the amount of time spending on each state ek for 1 ≤ k ≤ N
from 0 to time T is given as:

Tk =
∫ T

0
〈σk,Eu〉du, Tk ∈ {T1,T2, ...,TN}, (2)

where ∑
N
k=1 Tk = T . The joint distribution of the random vector (T1,T2, ...,TN−1) is

defined by the characteristic function

E

[
exp

(
i

N−1

∑
k=1

θkTk

)]
= 〈exp[(Λ + idiagθ)T ]E0,1〉1. (3)

where θ = (θ1,θ2, ...,θN−1,0)∈RN , 1= (1,1, ...,1)′ ∈RN , and E0 is the initial state.

3 Regime Switching Tempered Stable Model

An infinitely divisible distribution is called Classical Tempered Stable (CTS) distri-
bution with parameters (α,C,λ+,λ−,m), if its characteristic function is given by

φCT S(u) = exp(ium− iuCΓ (1−α)(λ α−1
+ −λ

α−1
− )

+CΓ (−α)((λ+− iu)α −λ
α
+ +(λ−+ iu)α −λ

α
− )).

When a random variable X is CTS distributed with parameter (α,C,λ+,λ−,m), we
denote

X ∼ CTS(α,C,λ+,λ−,m),

Moreover, a Lévy process generated by the CTS distribution is the CTS process with
parameter (α,C,λ+,λ−,m). If C =(Γ (2−α)(λ α−2

+ +λ
α−2
− ))−1 and m= 0, then the

CTS distribution has unit variance and zero mean. In this case the CTS distribution
is referred to as the standard CTS distribution. Moreover, a Lévy process generated
by the standard CTS distribution is referred to as the standard CTS process with
parameter (α,λ+,λ−).

Let r is the risk-free rate of return. Assume stock price process S is referred to as
the Regime Switching tempered stable model if S = (St)t≥0 is given by

St = S0ert exp
(∫ t

0〈σ ,Es〉dZs
)

E[exp
(∫ t

0〈σ ,Es〉dZs
)
]

where E = (Et)t≥0 is the time-homogeneous finite state Markov chain defined in
Section 2 and (Zt)t≥0 is the standard CTS process with parameters (α,λ+,λ−) under
the risk neutral measure. Suppose (ε j(∆ t)) j=1,2,...,M is a sequence independent and

1 See the proof in Buffington and Elliott (2002)
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identically distributed random variables with

ε j(∆ t)∼ CTS(α,∆ tC(α,λ+,λ−),λ+,λ−,0),

and C(α,λ+,λ−) = (Γ (2−α)(λ α−2
+ +λ

α−2
− ))−1 under Q. Then we have

YT =
∫ T

0
〈σ ,Et〉dZt = lim

M→∞

(
M−1

∑
j=0
〈σ ,Et j〉ε j(∆ t)

)
,

with ∆ t = T/M and t j = ∆ t · j. By the property of the hidden Markov chain process,
we have

YT = lim
M→∞

(
N−1

∑
k=1

(σk−σN)X(Mk)+σNX(MN)

)
,

where Mk = #{t j|〈σ ,Et j〉 = σk, j = 0, · · · ,M− 1} and X(Mk) = ∑
Mk
j=1 ε j for k =

1,2, · · · ,N. Since we have

X(Mk)∼CT S(α,T M
k C(α,λ+,λ−),λ+,λ−,0),

where T M
k = Mk ·∆ t, the characteristic function X(Mk) is equal to

φX(Mk)(u) = E[eiuX(Mk)] = exp(T M
k ψ(u;α,λ+,λ−))

where

ψ(u;α,λ+,λ−) =−iuC(α,λ+,λ−)Γ (1−α)(λ α−1
+ −λ

α−1
− )

+C(α,λ+,λ−)Γ (−α)((λ+− iu)α −λ
α
+ +(λ−+ iu)α −λ

α
− )).

Moreover, we have

lim
M→∞

T M
k = Tk =

∫ T

0
〈σk,Eu〉du, k = 1, · · · ,N,

and hence

lim
M→∞

φX(Mk)(u) = exp(Tkψ(u;α,λ+,λ−)), k = 1, · · · ,N.

Therefore we have

YT =
N−1

∑
k=1

(σk−σN)X(Tk)+σNX(T ),

where
X(t)∼CT S(α, tC(α,λ+,λ−),λ+,λ−,0).

The characteristic function of YT is equal to
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φYT (u) = E

[
exp

(
iu

N−1

∑
k=1

(σk−σN)X(Tk)+ iuσNX(T )

)]

= E

[
exp

(
N−1

∑
k=1

θk(u)Tk

)]
exp(T ψ(σNu;α,λ+,λ−)) ,

where θk(u) = ψ((σk−σN)u;α,λ+,λ−). By (3), we have

φYT (u) = 〈exp[(Λ + idiag(θ(u)))T ]E0,1〉 · exp(T ψ(σNu)), (4)

where θ(u) = (θ1(u), · · · ,θN−1(u),0).

4 Calibration of Regime Switching Tempered Stable Model to
the S&P 500 Index Option

In order to see whether the new model can survive from the volatile market, the data
set2 of option prices is used from S&P 500 index at the close of market on September
15, 2008 on which Lehman Brothers announced bankruptcy, and we also compare
the new model with CTS model and standard Black-Scholes Model. The 13-week
Treasury bill index (IRX) is used for risk-free rate of return. The dividend of the
S&P 500 is not considered. Due to the call-put parity, we only test the model with
call option, which has its prices between $5 and $180, and 0.8≤M ≤ 1.2, where M
is moneyness defined by M = K/S0. The day-to-maturity, which does not include
weekends, is between 5 days and 150 days.

To calculate the European option, we use the Fourier transform method presented
by Carr and Madan (1999) and Lewis (2001). Under the Fourier transform method,
the European call option pricing formula is given by

Ct =
K1+ρ e−r(T−t)

πSρ

t
ℜ

∫
∞

0
e−iu log(K/St )

Φ(u+ iρ)
(ρ− iu)(1+ρ− iu)

du, (5)

where Φ(u) is the characteristic function of log(ST/St) and ρ is real number such
that ρ <−1 and Φ(u+ iρ)< ∞ for all u ∈ R.

Additionally, we assume that ρ = −1.75 and initial state is X0 = e2 = {0,1,0},
so there are three states that the volatility can switch in the Markov chain. If the
middle-state volatility is set to σ2, then the other two volatilities are assumed to be
σ1 = 0.75σ2 and σ3 = 1.25σ2, respectively, such as,

Λ =

σ1 −λm λm 0
σ2 λm −2λm λm
σ3 0 λm −λm

 , (6)

2 The data are obtained from Option Metrics’s IvyDB in the Wharton Research Data Services.
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The calibration parameters are shown in the Table 1. In the table, we also present
calibrated parameters for the Black-Scholes model and the exponential CTS model.
The stock price process S = (St)t≥0 of the exponential CTS model is defined by
St = S0ert+Xt/E[eXt ] for all t ≥ 0 where the process (Xt)t≥0 is the CTS process with
parameter (α , C, λ+, λ−, 0). The call option price in the exponential CTS model is
also obtained by (5).

To evaluates the performance of three models, we use four error estimators: av-
erage prediction error (APE), average absolute error (AAE), root mean-square error
(RMSE), and average relative pricing error (ARPE).3 The four error estimators are
shown in Table 1. By the table, we observe that the regime switching tempered sta-
ble model has the smallest errors. The implied volatility curves for the three models
are presented in Figure 1. This figure shows that the regime switching tempered
stable model matches the market price better than exponential CTS model, in this
investigation.

5 Conclusion

In this talk we have discussed the regime switching model with the tempered sta-
ble driving process together with option pricing. Fast Fourier transform algorithm
is playing an advance role in computing option prices under the model. The char-
acteristic function of time occupation in the regime switching model also shows its
potential ability to implement in the integration of a wide range of other models.
Furthermore, the calibration results for this new model are considered with satisfac-
tory accuracy.
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Table 1 Results for the calibration of the risk-neutral parameters on September 15, 2008
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Fig. 1 Implied Volatility on September 15, 2008
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