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Abstract

Auctions are the allocation-mechanisms of choice whenever goods and in-

formation in markets are scarce. Therefore, understanding how information

affects welfare and revenues in these markets is of fundamental interest. We

introduce new statistical concepts, k- and k-m-dispersion, for understanding

the impact of information release. With these tools, we study the comparative

statics of welfare versus revenues for auctions with one or more objects and

varying numbers of bidders. Depending on which parts of a distribution of

valuations are most affected by information release, welfare may react more

strongly than revenues, or vice versa.
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1 Introduction

Auctions improve allocations in markets in which information is scarce. They are

not only applied in highly capitalized spectrum and timber markets, but also in

selling various items from used cars to fine arts. Auctions also serve as models of

competition for prizes such as college admissions, winning districts in elections, or

finishing among the first in R&D races. As they are known to allocate scarce goods

well despite a fundamental lack of information about the bidders’ costs or valuations,

it is surprising how little we know about the interaction of information, welfare and

revenues in these contexts. This is the starting point of our paper.

Generating information is typically a costly endeavor. For a welfare maximizer, the

incentives to provide information on the goods for sale may be very different from

the incentives a revenue-maximizing seller faces. The reason behind is that a wel-

fare maximizer incorporates bidders’ aggregated rents into his calculation, while a

revenue-maximizing seller focuses on the selling price. A priori, releasing informa-

tion could increase competition at the top such that bidders’ rents become smaller.

This may affect selling prices a lot, but increase overall efficiency of allocation and

thus welfare only marginally. Yet information release could also lead to a further dif-

ferentiation of the bidders with the highest valuations, thus affecting and increasing

bidders’ rents and welfare more strongly than the seller’s revenue.

Understanding how welfare and revenue incentives relate to each other requires a

thorough understanding of the behavior of order statistics. In case of a one-object

auction, the first and second order statistics, i.e. the highest and the second highest

valuations, and the difference between the two, are crucial. In multi-object auctions,

more of the highest order statistics are relevant. If several prizes, like grants or

promotions, are “auctioned off” to applicants in order to reward those who exert

the highest efforts (bids), efforts of several applicants scratching the top matter. For

example, Harvard University selected 2,000 students out of 34,000 applicants for its

class of 2018.1

The related literature so far focuses on one-object auctions and has mostly imposed

conditions on the effects of information release which guarantee that welfare reacts

more sensitively towards information than revenue (compare Ganuza and Penalva,

1See https://college.harvard.edu/admissions/admissions-statistics.
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2010). Yet the opposite conclusion can hold true as well. Bidders’ rents may de-

crease in response to information release due to fiercer competition at the top. This

implies that a revenue maximizer has stronger incentives to release information than

a welfare maximizer. For instance, this is the case when information release affects

bidders with intermediate valuations more strongly than bidders with high valua-

tions.

This paper provides criteria that determine whether information release strength-

ens or weakens competition in multi-object auctions. The previous literature has

typically modeled information release as an increase in the variability of valuations

in the sense of the dispersive order (Ganuza and Penalva, 2010). Under the disper-

sive order, additional information always weakens competition as it increases the

differences between all order statistics.

We introduce two new classes of stochastic orders that allow for a more flexible

and directed control of the behavior of order statistics, the k- and k-m-dispersion

orders. Increased variability in the sense of k-dispersion implies that the k highest

order statistics move further apart through information release. Increased variability

in the sense of k-m-dispersion implies the same conclusion when the overall number

of bidders n is sufficiently large, n > k + m. Both orders are weaker than the

dispersive order. In particular, information release can either increase or decrease

the variability of valuations in k-m-dispersion, implying either a strengthening or

a softening of competition. Consequently, a welfare maximizer may have either

stronger or weaker incentives to release information than a revenue maximizing

seller. k-m-dispersion provides a criterion to decide which of the two is the case.

We apply our theory to auctions in which information release is modeled in terms

of information partitions. Bidders do not know their true valuations, yet they know

which interval of a distribution contains their valuation. Information release renders

these intervals finer. This is a prominent model of information release in economic

theory (see Bergemann and Pesendorfer, 2007) that is not tractable with the disper-

sive order. k-m-dispersion enables us to draw clear conclusions about multi-object

auctions with sufficiently many bidders. Information release decreases bidders’ rents

if and only if information affects the bidders with the highest valuations.

In a second classical model of information release due to Lewis and Sappington

(1994), each bidder’s signal equals his valuation with some probability while it is
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pure noise otherwise. This model has been applied to auctions, e.g., by Ganuza and

Penalva (2010) and Shi (2012). k-m-dispersion allows to determine the comparative

statics of information release even if signal quality differs for bidders with higher

versus lower valuations. While information release often relaxes competition between

bidders in this setting, the opposite can happen as well. Specifically, further increases

in high signal qualities may foster competition at the top.

Our techniques also apply to other contexts such as reliability theory and risk man-

agement where worst realizations of distributions matter. Differences between order

statistics are also crucial in matching markets. Analyzing expected matches between

firms and workers, or men and women, requires to control distances between order

statistics not only at the top, but also on lower levels of a distribution. Another

field of application – beyond the scope of this paper – may be the measurement of

inequality, where distances from the poorest (or the richest) to the middle income

quantiles of a population may be of specific interest. For example, recent develop-

ments in Western countries such as the US suggest that a focus on the distances

between the richest 400 families and the middle class could help defining educational

goals for the next decades.2

Related Literature

This paper is related to several contributions in the literatures on auctions and on

stochastic orders.3 Our auction-theoretic applications generalize results of Ganuza

and Penalva (2010) and thus contribute to the literature on information in auctions

and mechanism design.4 Jia, Harstad and Rothkopf (2010) study information release

in auctions when bidders know parts of their valuations and the other additive parts

can be disclosed. They illustrate that the comparative statistics of bidders’ revenues

are intricate and conclude that “no illuminating necessary condition seems possible”.

This is the problem we address. Stochastic orders, especially the dispersive order,

have also been applied to study other questions concerning auctions and related

contexts, see, for instance, Johnson and Myatt (2006), Mares and Swinkels (2014),

Kirkegaard (2014), and the references therein.

In the literature on stochastic orders, parts of our analysis build on a result of Li

and Shaked (2004) who prove one of the main properties of the k-dispersion order

2See “America’s elite. An hereditary meritocracy”, The Economist, 01/24/2015.
3For introductions to these two fields, see Krishna (2002) and Shaked and Shanthikumar (2007).
4For a survey, see Bergemann and Välimäki (2006).
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without explicitly introducing this order.5 We provide new insights on k-dispersion

and introduce the generalized k-m-dispersion orders. As the k-dispersion order

coincides with the excess wealth order in the case k = 1, our results are also related

to two contributions from the operations research literature which apply the excess

wealth order to auctions, Li (2005) and Xu and Li (2008). Analyzing the case k > 1

allows us to address many questions which are not tractable under the excess wealth

order. Paul and Gutierrez (2004) provide several results related to ours based on

the star order. Yet their results stating that differences of order statistics can be

controlled in terms of the star order are incorrect as is shown in Xu and Li (2008).6

The same remark applies to Rösler (2014) whose work partially builds on the same

incorrect result. Our results can help to alleviate these issues.

Outline

Section 2 introduces our model and discusses the scope and limitations of modeling

information release in terms of the dispersive order. Section 3 introduces our new

stochastic orders as well as their key properties. Section 4 presents our main results

on information release in multi-object auctions, first in the general case and then in

the applications of information partitions and heterogeneous signal quality. Section

5 sketches further economic applications of our methods and presents additional

properties of k-dispersion. All proofs are in the appendix.

2 The Setting

2.1 Auction Model with Information Release

We study a symmetric independent private values auction model with information

release. Our techniques will allow us to handle one object as well as k object

auctions. We therefore introduce the broader setting straight away.

A risk-neutral seller auctions off k identical objects in a (k+ 1)th price auction. The

n > k bidders are all risk-neutral. Those who submit the k highest bids receive an

object and each of them pays the (k+1)th highest bid. Ties are broken with uniform

randomness.

5Compare Proposition 2.
6This incorrect result is cited in Shaked and Shanthikumar (2007) as Theorem 4.B.19 and as

Lemma 1 and Lemma 4 in Rösler (2014).
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Initially, bidders do not know their valuations exactly. Before the auction takes

place, the seller decides whether he wants to release information to the bidders. If

he opts against information release, the bidders stick to their initial private estimates

Yi of their valuations. The Yi are nonnegative and independently distributed accord-

ing to a commonly known cumulative distribution function G with finite mean. If

the seller opts for information release, each bidder receives an independent signal

that reveals more about his valuation for winning an object. We denote by Xi the

updated estimates of valuations. The random variables Xi are again nonnegative,

independent and identically distributed with finite mean and we denote their cu-

mulative distribution function by F . F−1 and G−1 denote the generalized inverse

(quantile) functions of F and G.

Throughout we assume that all bidders follow their weakly dominant strategy of

bidding their best estimate of their valuation in the auction. Thus, bidder i bids

Xi if information is released and Yi otherwise. We denote by Xi:n the ith order

statistic, i.e., the ith-largest out of X1, . . . , Xn, and define Yi:n analogously. Lemma

1 summarizes the main properties of the bidding equilibrium.

Lemma 1 Set Z = X if information is released and Z = Y if no information is

released. The expected selling price in the auction is given by E[Zk+1:n]. The seller’s

expected payoff is given by k E[Zk+1:n]. Bidders’ aggregate rents are given by

k∑
j=1

E[Zj:n − Zk+1:n]

and total welfare amounts to
k∑
j=1

E[Zj:n].

In the following, we call the seller a welfare maximizer if he is interested in maximiz-

ing total welfare, and we call him a revenue maximizer if he maximizes his expected

payoff.

An alternative interpretation of the model is that F denotes a finer information

structure compared to G, and the seller decides whether to release a signal imple-

menting G or F . In the context of information release with Bayesian updating, it

is plausible to assume that F and G share the same mean. Our analysis, however,

does not rely on this assumption, thus incorporating the possibility of non-Bayesian
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updating by the bidders. As a final interpretation, the seller could decide between

running the auction with bidders from two different populations with respective

distributions F versus G.

We do not impose that F and G are continuous. This allows us to provide results

for models of information release such as information partitions that would violate

a continuity requirement. The additional structures introduced in Ganuza and Pe-

nalva (2010) in the one object case – a prior distribution of valuations, a continuous

family of signals with associated costs of information provision, and a continuous

family of (posterior) distributions of valuations – directly translate to our setting. In

particular, while we do not explicitly specify costs of information release, the com-

parison between F and G should be thought of as one side of a cost-benefit trade-off.

While we focus on (k + 1)th price auctions, the results can be transferred to more

general mechanisms by the revenue equivalence theorem for multi-unit auctions in

Engelbrecht-Wiggans (1988) in the case of continuous distributions.

2.2 Information Release and the Dispersive Order

This section illustrates how measures of dispersion allow to study the effects of

information release in auctions. We provide an overview of existing results and

point out their limitations by an example.

Intuitively, providing bidders with more information should increase the variability

in their estimated valuations. The posterior distribution F should thus be more

variable (or “dispersed”) than the prior G. In their analysis of information release,

Ganuza and Penalva (2010) study two notions of dispersion, an ordering between

F and G in the convex order, and an ordering of F and G in the dispersive order.

These are defined as follows.7

Definition 1

(i) F is more variable than G in the convex order, F �conv G,8 if E[X1] = E[Y1] and

E[(X1 − k)+] ≥ E[(Y1 − k)+] for all k ∈ R.
7For background on these two orders, see Chapters 3.A and 3.B of Shaked and Shanthikumar

(2007). Our definitions follow their Theorem 3.A.1 and Formula 3.B.1.
8For our purposes, it proves to be more convenient to formulate stochastic orders on the level

of distribution functions and not on the level of random variables as is done, e.g., in Shaked and
Shanthikumar (2007).
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(ii) F is more variable than G in the dispersive order, F �disp G, if

F−1(p)− F−1(q) ≥ G−1(p)−G−1(q) for all 0 < q < p < 1. (1)

An ordering in the convex order is a weak requirement closely related to second-order

stochastic dominance. It is satisfied in many models of information release. Under

the assumption that F �conv G, Ganuza and Penalva show that releasing informa-

tion increases expected welfare and, with sufficiently many bidders, the expected

revenue in the auction.9 Both results follow from the intuition that increasing the

variability of valuations tends to increase the highest valuations.

In order to control differences between overall welfare and seller’s revenues, stronger

orderings need to be imposed. Ganuza and Penalva rely on the dispersive order. F

dominates G in the dispersive order if all pairs of quantiles lie further apart under

F than under G. As we will see below, this is a rather rigid requirement which is

violated in many models of information release. The next lemma summarizes their

results on information release in auctions under the assumption that F �disp G.10

Lemma 2 Assume F �disp G and k = 1.

(i) Bidders’ aggregate rents increase when information is released,

E[X1:n −X2:n] ≥ E[Y1:n − Y2:n].

(ii) A welfare maximizing seller has a stronger incentive to release information than

a revenue maximizing seller,

E[X1:n − Y1:n] ≥ E[X2:n − Y2:n].

(iii) The expected welfare generated by the auction increases more strongly when the

number of bidders increases under information release than when no information is

released,

E[X1:n −X1:n−1] ≥ E[Y1:n − Y1:n−1].
9These results are their Theorems 3 and 5. A generalization to the k object case, relying on

their techniques and results by de la Cal and Cárcamo (2006) on majorization of order statistics
is straightforward and omitted here.

10The four parts of Lemma 2 correspond to Proposition 6, Theorem 7, Theorem 4 and Theorem
6 of Ganuza and Penalva (2010).
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(iv) The seller’s expected payoff increases more strongly when the number of bidders

increases under information release than when no information is released,

E[X2:n −X2:n−1] ≥ E[Y2:n − Y2:n−1].

All four results rely on comparisons of differences of order statistics, so-called spac-

ings. Technically, they stem from the following fact about the dispersive order.11

Lemma 3 Let F �disp G. Then for all k < n

E[Xk:n −Xk+1:n] ≥ E[Yk:n − Yk+1:n]

and

E[Xk:n −Xk:n−1] ≥ E[Yk:n − Yk:n−1].

In the remainder of this section, we illustrate a setting which does not fall under

Lemma 2 and which leads to the opposite economic implications.

Example 1

Assume that bidders’ true valuations are distributed uniformly on [0, 1]. Bidders do

not know their true valuations. They only know whether their valuation is below 2/3

or not. By releasing information, the seller can furnish bidders with the additional

information whether their valuations lie below or above 1/3. Consequently, the a

priori distribution G puts a mass of 2/3 on the value 1/3 and the remaining mass on

5/6.12 The a posteriori distribution F is a uniform distribution on 1/6, 1/2 and 5/6.

Notice first that F and G are not comparable in the dispersive order. When moving

from G to F the lowest third of probability mass moves downwards from 1/3 to 1/6

while the middle third moves upwards from 1/3 to 1/2. The upper quantiles do not

react to the information release. Therefore, the lower two-thirds of probability mass

are indeed more dispersed under F than under G. Yet the upper two-thirds lie more

closely together. When working with information partitions, information release will

always lead to such ambiguous effects and thus preclude a direct application of the

dispersive order.

As Lemma 2 is not applicable in our example, we compare welfare and seller’s

11The first claim of Lemma 3 follows from Theorem 3.B.41 of Shaked and Shanthikumar (2007).
The second claim follows from the first and formula (6) below.

12For a more detailed introduction of this model, see Section 4.2.
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revenues by a direct calculation,

E[X1:n −X2:n] =
1

9
n

(
2

3

)n−1(
1 +

(
1

2

)n−2)
and E[Y1:n − Y2:n] =

1

6
n

(
2

3

)n−1
.

For n = 2, we obtain results similar to parts (i) and (ii) of Lemma 2. For n = 3,

welfare and seller’s revenues react equally strongly. With four or more bidders, the

results are reversed. Bidders’ aggregate rents decrease when information is released.

Thus a revenue maximizing seller has a stronger incentive to release information

than a welfare maximizing one.13

In our example, information affects bidders with intermediate valuations more strongly

than bidders with high valuations. This renders the auction more competitive. In

particular, information release does not increase the differences between high order

statistics. If we look at restrictions of F and G to sufficiently high quantiles, we see

that, in a sense, information release reduces dispersion.

Definition 2 For p ∈ (0, 1) define the restriction of F to its quantiles higher than

p as the cumulative distribution function

F>p(x) =


F (x)−p
1−p x ≥ F−1(p)

0 x < F−1(p)

and define G>p(x) analogously.14

Consider the distributions F>1/3 and G>1/3. F>1/3 is the uniform distribution on

{1/2, 5/6} while G>1/3 is the uniform distribution on {1/3, 5/6}. Unlike F and G

themselves, these restrictions can be compared in the dispersive order. Yet it is the

distribution without information release which is more dispersed, G> 1
3
�disp F> 1

3
.

Since higher quantiles dominate the behavior of high order statistics with sufficiently

many bidders, this observation explains the reversal of Lemma 2. Indeed, we will

see in Proposition 6 and Theorem 1 that a dispersive ordering between F and G

above some quantile is essentially a sufficient condition for whether Lemma 2 holds

or whether it is reversed.

13As we will see in greater generality in Section 4.2, parts (iii) and (iv) of the lemma are also
reversed with sufficiently many bidders.

14Notice that the definition is such that if F has an atom on F−1(p), i.e., F (F−1(p)) = q > p
then F>p(x) has an atom of size (q − p)/(1− p) on F−1(p).
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3 Dispersion Criteria for Order Statistics

As seen in Lemma 3, the dispersive order implies a control over all spacings of

order statistics while the outcomes of auctions depend only on the highest few. This

motivates us to introduce the k-dispersion orders which are specifically designed to

control spacings of the k highest order statistics. Example 1 shows that a clear

monotonicity behavior of these spacings may only develop with sufficiently many

bidders. To capture these situations, we introduce the weaker k-m-dispersion orders.

These allow to control the behavior of the k highest order statistics in auctions with

more than k+m bidders. The goal of both families of stochastic orders is to focus on

the properties of a distribution which are most relevant for the auction’s outcomes,

and not to impose more restrictions than needed.

3.1 The k-Dispersion Orders

This section introduces the family of k-dispersion orders, compares them with other

orders, and develops their implications.

Definition 3 (k-Dispersion) For an integer k ≥ 1, F is more dispersed than G

in the k-dispersion order, F �k G, if∫ 1

p

(1− u)kdF−1(u) ≥
∫ 1

p

(1− u)k dG−1(u) (2)

for all p ∈ (0, 1).

This definition is inspired by the following representation of spacings in terms of the

quantile function, see, e.g., Kadane (1971),

E[Xk:n −Xk+1:n] =

(
n

k

)∫ 1

0

un−k(1− u)kdF−1(u). (3)

The k-dispersion order �k allows to control spacings of neighboring order statistics

independently of n as is shown in Propositions 2 and 3 below. In Section 5, we

demonstrate its applicability to order statistics that lie further apart as well as to

normalized spacings.
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�k is a genuine stochastic order in that it is transitive:15 For three distribution

functions F , G, and H, F �k G and G �k H imply F �k H. While the 1-

dispersion order coincides with the excess wealth order,16 the k-dispersion orders for

k > 1 appear to be novel.17 Like the excess wealth order, all k-dispersion orders are

location independent, i.e., F �k G remains fulfilled if either of the two distributions

is shifted by a constant.

Proposition 1 sets k-dispersion into context. The dispersive order is stronger (and

thus less broadly applicable) than all k-dispersion orders. For instance, it is a

necessary condition for the dispersive order that F−1 and G−1 cross only once. k-

dispersion does not rely on such a single-crossing condition.

Within the family of k-dispersion orders, (k + 1)-dispersion implies k-dispersion.

The convex order can generally not be compared to k-dispersion and the dispersive

order as it is not location independent: F �conv G can only hold if F and G have

the same mean. Under the assumption that F and G share the same mean, the

convex order is implied by each of the other orderings. Yet the convex order itself

is not strong enough to control spacings of order statistics.

Proposition 1

(i) If F �disp G then F �k G for all k ≥ 1.

(ii) If F �k+1 G then F �k G for all k ≥ 1.

(iii) If E[X1] = E[Y1] and F �k G then F �conv G for all k ≥ 1.

Proposition 2 demonstrates the suitability of k-dispersion for controlling spacings of

high order statistics. The result combines Proposition 1 (ii) with Proposition 3.4 of

Li and Shaked (2004).

Proposition 2 If F �k G for some k < n then for all i ≤ k

E[Xi:n −Xi+1:n] ≥ E[Yi:n − Yi+1:n].

Next, we extend this result to the other class of spacings of order statistics where we

vary n while keeping i fixed. The key observation is that the two types of spacings

differ only by a combinatorial factor which is not distribution-dependent.

15This separates k-dispersion from some single-crossing criteria for dispersion such as the rotation
criterion of Johnson and Myatt (2006).

16See Shaked and Shanthikumar (2007) for background on the excess wealth order.
17The definition is motivated by an observation of Li and Shaked (2004), see Proposition 2 below.

12



Proposition 3 If F �k G for some k < n then for all i ≤ k

E[Xi:n −Xi:n−1] ≥ E[Yi:n − Yi:n−1].

Since k-dispersion orders are location independent, we cannot expect to obtain re-

sults comparing E[Xk:n] and E[Yk:n] without further assumptions. Under the addi-

tional requirement that F and G share the same mean, results of this type can be

derived from the fact that k-dispersion implies the convex order.

3.2 The k-m-Dispersion Orders

While the k-dispersion orders are weaker than the dispersive order, there are still

many economically interesting examples for which they are too rigid. For instance,

in Example 1 monotonicity of spacings sets in only with sufficiently many bidders.

Building on k-dispersion, we therefore introduce the weaker class of k-m-dispersion

orders. These imply the results of Propositions 2 and 3 under the additional restric-

tion that the number of bidders is sufficiently large, namely n > k +m.

Definition 4 (k-m-Dispersion) For integers k ≥ 1 and m ≥ 0, F is more dis-

persed than G in the k-m-dispersion order, F �k,m G, if∫ 1

p

um(1− u)kdF−1(u) ≥
∫ 1

p

um(1− u)k dG−1(u) (4)

for all p ∈ (0, 1).

The k-m-dispersion orders are location-independent and transitive. k-0-dispersion

coincides with our previous k-dispersion. Compared to k-dispersion, the increasing

function um in the integrand shifts attention into the right tail of the distribution.

With many bidders, the behavior at this tail is crucial for an auction’s outcomes.

Proposition 4 summarizes the central properties of k-m-dispersion. The proposition

generalizes Propositions 2 and 3.

Proposition 4

(i) If F �k,m G for some k and m with k +m < n then for all i ≤ k

E[Xi:n −Xi+1:n] ≥ E[Yi:n − Yi+1:n].
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(ii) If F �k,m G for some k and m with k +m < n then for all i ≤ k

E[Xi:n −Xi:n−1] ≥ E[Yi:n − Yi:n−1].

To put the k-m-dispersion orders into context we add the following result in the

spirit of Proposition 1.

Proposition 5

(i) If F �k,m G then F �k,m+1 G for all k ≥ 1 and for all m ≥ 0.

(ii) If F �k+1,m G then F �k,m G for all k ≥ 1 and for all m ≥ 0.

(iii) If k,m ≥ 1 and E[X1] = E[Y1] then F �k,m G 6⇒ F �conv G and F �conv G 6⇒
F �k,m G.

Accordingly, increasing m renders the k-m-dispersion order less rigid. All k-m-

dispersion orders are weaker than the k-dispersion order and, consequently, the

dispersive order. Unlike k-dispersion, k-m-dispersion is not comparable to the con-

vex order if F and G have the same mean. Indeed, in the application to information

partitions in Section 4.2, we find that F �conv G is always satisfied together with

either F �k,m G or G �k,m F . The dispersive order is not applicable in these

examples.

The following alternative sufficient condition for k-m-dispersion is useful, e.g., when

working with discrete distributions. The condition relies on the dispersive order

between restrictions of F and G to high quantiles as introduced in Definition 2.

Proposition 6 Suppose there exists p ∈ (0, 1) such that F>p �disp G>p and there

exist q1, q2 ∈ (p, 1) with F−1(q2) − F−1(q1) > G−1(q2) − G−1(q1). Then for any k

there exists m such that F �k,m G.

In the proposition, the condition involving q1 and q2 ensures that the comparison in

the dispersive order holds, in a sense, strictly. A direct consequence is the following

corollary which states that for continuous distributions on a bounded support F �k,m
G holds for sufficiently large m if the density of F is smaller than the density of G

near the tops of the respective supports.

Corollary 1 Suppose F and G are continuous with bounded supports [aF , bF ] and

[aG, bG] and possess continuous density functions f and g. If there exists δ > 0 such
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that 0 < f(x) < g(y) for all x ∈ [bF − δ, bF ] and y ∈ [bG− δ, bG] then for any k there

exists m such that F �k,m G.

4 Information Release in Multi-Object Auctions

4.1 The General Case

This section applies k- and k-m-dispersion to information release in k object auc-

tions. Theorem 1 generalizes Lemma 2. It provides conditions for welfare reacting

more strongly to information than seller’s revenues, as well as conditions for the op-

posite situation. Furthermore, it covers the cases in which sufficiently many bidders

need to take part in order to arrive at clear-cut results.

Theorem 1

(i) If F �k,m G and n > k + m, then bidders’ aggregate rents increase when infor-

mation is released.

(ii) If F �k,m G and n > k + m, then a welfare maximizing seller has a stronger

incentive to release information than a revenue maximizing seller.

(iii) If F �k,m G and n > k+m, then the welfare generated by the auction increases

more strongly when the number of bidders increases under information release than

when no information is released.

(iv) If F �k+1,m G and n > k + 1 + m, then the expected selling price and the

seller’s payoff increase more strongly when the number of bidders increases under

information release than when no information is released.

(v) The conclusions of (i-iii) are reversed if G �k,m F and n > k+m. The conclusion

of (iv) is reversed if G �k+1,m F and n > k + 1 +m.

Thus, in the setting k = 1 and m = 0 of Ganuza and Penalva, the excess wealth

order is sufficient for (i) to (iii) while the stronger 2-dispersion order is needed for

(iv). We need to require stronger dispersion orders when the number of objects k

increases. An immediate consequence of (ii) is that if information release is costly

then for intermediate cost levels a welfare maximizer releases information while a

revenue maximizer does not. Finally, while the results may only hold with suffi-

ciently many bidders, they are more than asymptotic results. For given k, F and

G, k-m-dispersion provides an explicit criterion for determining the value of m.
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4.2 Information Partitions

When information release takes the form of increasingly finer information partitions,

Theorem 1 yields a complete characterization of information release with sufficiently

many bidders. If information release increases the highest valuation estimate, the

requirements of claims (i) to (iv) of the theorem are fulfilled. If the highest valuation

estimate is unaffected by information release, the four claims are reversed.

Assume that bidders’ true valuations are distributed according to a continuous dis-

tribution function H with a strictly positive density h on an interval [a, b] with a ≥ 0

and a < b ≤ ∞. Denote by (βi)i an ordered and strictly increasing subsequence of

(a, b) with B > 0 elements. Thus, β1 and βB are the lowest and highest values in

the sequence. Without information release, bidders only know for each of the values

βi whether their valuations lie above or below. Accordingly, the distribution G of

valuation estimates assigns probability

H(βi)−H(βi−1) to the estimate

∫ βi
βi−1

xh(x)dx

H(βi)−H(βi−1)
(5)

with the obvious modifications for β1 and βB.

Information release is modeled such that the seller increases the number of values

for which bidders know whether their valuation lies above or below. The sequence

(βi)i is thus replaced by another ordered and strictly increasing sequence (αi)i with

A > B elements. (βi)i is a subsequence of (αi)i. The distribution F of posterior

valuation estimates is derived from (αi)i analogously to (5).

Proposition 7 shows that for any k, F and G are always comparable in the k-m-

dispersion order for sufficiently large m.

Proposition 7

(i) If αA = βB, then for any k there exists an m such that G �k,m F .

(ii) If αA > βB, then for any k there exists an m such that F �k,m G.

Whether F or G is more dispersed thus depends on whether information release

affects the highest valuation estimates or not. If αA = βB, the bidders with the

highest valuation estimates are not affected by information release. The auction thus

becomes more competitive such that the reverses of claims (i-iv) of Theorem 1 hold
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with sufficiently many bidders. If αA > βB, information release further differentiates

the valuation estimates of the highest valuation bidders. Consequently, the auction

becomes less competitive and the four claims of Theorem 1 hold with sufficiently

many bidders.

4.3 Heterogeneous Signal Quality

The quality of a signal may depend on the bidder’s type. In this section, we provide

a model that allows to study such a heterogeneity in signal quality in a multi-object

auction context. We start with the following classical set-up. Bidders receive a

noisy signal which is identical to their valuation with some probability and pure

noise otherwise. With homogeneous signal quality, this is the truth-or-noise model

introduced in Lewis and Sappington (1994) and applied, e.g., by Johnson and Myatt

(2006), Ganuza and Penalva (2010), and Shi (2012). We study a variation of this

model which captures heterogeneity in signal qualities. The probability of the signal

being correct is different for bidders with high versus low valuations. Possible in-

terpretations include information which is more vital to bidders with low valuations

than to bidders with high ones (or vice versa), or, more generally, information which

is more precise in some respects than in others.

Bidders’ true valuations Zi are independent and uniformly distributed on [0, 1]. Each

agent receives an independent signal Si which is either equal to Zi or equal to Ui

where Ui is independent of Zi and also uniformly distributed on [0, 1]. There are

numbers θ, pL, pH ∈ (0, 1) such that the probability of Si = Zi is pL for Zi ≤ θ and

pH for Zi > θ. Signal quality thus depends on whether the true valuation is above

or below θ. We denote by G the distribution of valuation estimates which follows

from this specification of θ, pL and pH .

In this model, releasing more information corresponds to improvements in the quality

of the signals. It can thus take three basic forms, an increase in pH , an increase in pL

or a shift of θ such that more agents have the higher signal quality. In the following,

we refer to these three possibilities as an H-increase in information, an L-increase

in information, and a T -increase in information.18 We denote by F the distribution

of valuation estimates which arises from either of these increases in the amount, or

18For the case of a T -increase, more information is released if pH > pL and θ decreases, or if
pH < pL and θ increases. When pH = pL, changes in θ have no effect. We thus implicitly assume
pL 6= pH when speaking of a T -increase in information.

17



quality, of information. In particular, we say that F differs from G, e.g., through

an H-increase in information if the two distributions are based on the same values

of pL and θ but if F has a higher value of pH than G.

In order to study the impact of information release, we need to establish what the

distributions G and F look like. The probability qL of observing a signal below θ is

given by

qL = P (Si ≤ θ) = θpL + θ2(1− pL) + θ(1− θ)(1− pH) =: p1 + p2 + p3,

where the three summands pj correspond to the cases where Si = Zi ≤ θ, where

Si, Zi ≤ θ but Si 6= Zi, and where Si ≤ θ but Zi > θ. Analogously, we have

qH = P (Si > θ) = (1− θ)pH + (1− θ)2(1− pH) + θ(1− θ)(1− pL) =: p4 + p5 + p6.

The valuation estimate (and bid) of a bidder who received the signal realization

s ≤ θ is thus given by

eL(s) =
1

qL

(
s p1 +

θ

2
p2 +

1 + θ

2
p3

)
where the pre-factors of p2 and p3 are the means of uniform distributions on [0, θ]

and (θ, 1]. Similarly, an agent who received s > θ has the estimate

eH(s) =
1

qH

(
s p4 +

1 + θ

2
p5 +

θ

2
p6

)
.

Denote by u(· | I ) the density of a uniform distribution on the interval I. Since

signals remain uniformly distributed conditional on lying above or below θ, the

distribution of valuation estimates G is a mixture of two uniform distributions and

its density g is given by g(y) = qL u(y | IL ) + qH u(y | IH ) where

IL = [eL(0), eL(θ)] and IH = (eH(θ), eH(1)].

In this model, an increase in the amount of information does not necessarily imply

a higher dispersion in the sense of the dispersive order.19 Moreover, higher values

19For instance, for pL = θ = 0.25 and pH = 0.1, there is a gap between the two parts of the
support IL and IH . Improving signal quality by increasing pH to 0.25 closes this gap, eL(θ) =
eH(θ), so that some quantiles lie more closely together than before, thus ruling out an ordering in
the dispersive order.
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of the signal realization do not necessarily imply higher valuation estimates. Such

a lack of monotonicity can occur if θ is sufficiently large so that Zi < θ can still

correspond to a rather high valuation, and if signal realizations below θ are more

reliable than those above, pL � pH . For the auction, we need to determine whether

the overall highest bids come from bidders with the highest possible signals (near

1), or from bidders with signals near θ. This motivates the following definition of

monotonicity at the top (MT).

Definition 5 The tuple (pL, pH , θ) satisfies monotonicity at the top (MT) if eH(1) >

eL(θ). The tuple (pL, pH , θ) violates (MT) if eH(1) < eL(θ).

The next lemma provides an explicit equivalent condition and some illustrations of

(MT). (MT) holds if high signals are more reliable than low ones, or if the overall

reliability of signals is sufficiently high while the threshold θ is low. (MT) is violated

if high signals are sufficiently unreliable, and if the threshold θ is sufficiently high.

Lemma 4

(i) (MT) is equivalent to

0 < S(pL, pH , θ) = pL + pH + pLpH + θ2p2L − (1− θ)2p2H − 2θpL − 2θpLpH .

(ii) (MT) is satisfied if pH ≥ pL.

(iii) (MT) is satisfied if (1− θ)(pL + pH) ≥ 1.

(iv) For any pL ∈ (0, 1), (MT) is violated if pH is sufficiently small and θ is suffi-

ciently large.

The next two propositions characterize the effects of the three types of information

release, first for the case where (MT) holds and then for the case where it is violated.

We indicate whether F �k,m G or vice versa for sufficiently high m. The results on

auctions then follow directly from Theorem 1.

Proposition 8 Suppose (pL, pH , θ) satisfy (MT).

(i) If F differs from G through a sufficiently small L-increase or T -increase in in-

formation, then for any k there exists m such that F �k,m G.

(ii) If F differs from G through a sufficiently small H-increase in information and if

pH < θ−1 − pL, then for any k there exists m such that F �k,m G.
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(iii) If F differs from G through a sufficiently small H-increase in information and

if pH > θ−1 − pL, then for any k there exists m such that G �k,m F .

In the proposition, “a sufficiently small increase” means that the increase leaves

condition (MT) intact and, in cases (ii) and (iii), also the additional restriction on

pH . Increasing the amount of information through changes in pL or θ thus relaxes

competition among sufficiently many bidders, i.e., assertions (i)-(iv) of Theorem 1

apply. In contrast, if θ, pL and pH are sufficiently high,20 a further increase in pH

induces a fiercer competition at the top and implies the reversals of assertions (i)-

(iv). In the latter case a further increase in pH leads to more bidders learning about

their very high valuations. If the overall signal quality is already high, this effect

dominates the welfare enhancing effects of information release such as a further

differentiation of beliefs at the top.21 Finally, we investigate the situation where

(MT) is violated so that the highest bids come from bidders with signals slightly

below θ.

Proposition 9 Suppose (pL, pH , θ) violate (MT). If F differs from G through a

sufficiently small H-increase, L-increase or T -increase in information, then for any

k there exists m such that F �k,m G.

Thus, if (MT) is violated and there are sufficiently many bidders, assertions (i)-(iv)

of Theorem 1 hold for all three types of information release. Small amounts of

information always soften competition at the top.

Our analysis describes which kind of information release appeals more to welfare-

maximizing versus revenue-maximizing sellers. Another question is whether infor-

mation release actually enhances welfare and the seller’s revenue or not. In the

information partitions model of Section 4.2, welfare and seller’s revenue always in-

crease in response to information release when there are sufficiently many bidders.

In the model of this section, effects can be more intricate. With sufficiently many

bidders, the question is equivalent to the question whether the upper end of the

support u = max(eL(θ), eH(1)) increases in response to information release. When

20Notice that pH > θ−1 − pL can only hold if the right hand side is smaller than 1, i.e., if
(1 + pL)θ > 1. To see that cases (ii) and (iii) of the proposition are both compatible with (MT),
consider p = pL = pH > 1

2 . Then (MT) holds by Lemma 4 and whether we are in case (ii) or (iii)
depends on whether θ < (2p)−1 ∈ (0, 1) or not.

21In particular, the effect which leads to a reversal of Theorem 1 in this model is distinct from
the one we observed in the case of information partitions. There, the increased competition at the
top was due to a further differentiation of intermediate valuation estimates.
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(MT) is satisfied, H- and L-increases in information always lead to an increase in

u = eH(1) and thus to higher welfare and seller’s revenue with sufficiently many

bidders.22

5 Further Applications

This section sketches extensions of our analysis to other economic contexts, like

matching markets, and the control of differences in low realizations which is impor-

tant for risk management and reliability theory. Via k-dispersion, we can compare

increments of expected order statistics E[Xk:n] that are next to each other with

regard to k or n. In this section, we show that k-dispersion serves as a tool for

controlling differences of order statistics that lie further apart as well, and describe

where this control can be applied.

Proposition 10 If F �k G for some k < n then for all i ≤ k and all l > i

E[Xi:n −Xl:n] ≥ E[Yi:n − Yl:n].

Proposition 10 characterizes which degree of k-dispersion is needed in order to com-

pare specific differences of order statistics. For example, the 1-dispersion order allows

to contrast differences between first and third order statistics across distributions.

A similar comparison of the second and third order statistics requires the stronger

2-dispersion order. The proposition generalizes the main result of Kochar, Li and

Xu (2007)23 which treats the case k = 1.

A direct consequence of Proposition 10 is that it allows to compare sums of spacings

of order statistics: F �k G implies that

l−1∑
j=i

E[Xj:n −Xj+1:n] ≥
l−1∑
j=i

E[Yj:n − Yj+1:n]

22For T -increases and for the case where (MT) is violated, the behavior of u is more complex
and a detailed discussion is beyond the scope of this paper. The results of Theorem 1 remain valid
when u decreases in response to information release but one might want to reinterpret (ii), e.g., in
terms of incentives to prevent leakage of information.

23Kochar, Li and Xu apply their result to the study of one object kth price auctions. This part of
their analysis is problematic from the viewpoint of game-theoretic auction theory since it relies on
the assumption that bidders truthfully bid their valuations independently of the auction format.

21



for all i ≤ k and all n > l > i. Proposition 11 provides similar results for normalized

spacings of order statistics.

Proposition 11 If F �k G for some k < n then for all i ≤ k and all l > i

m∑
l=i

lE[Xl:n −Xl+1:n] ≥
m∑
l=i

lE[Yl:n − Yl+1:n].

The case k = 1 generalizes a result of Barlow and Proschan (1966) which is a key

ingredient of Hoppe, Moldovanu and Sela (2009)’s analysis of matching markets.

In the latter paper, women and men can invest into costly presents in order to

improve their matching outcomes (and thus, e.g., match with a partner that is

ranked better than the partner they would obtain otherwise). The inequality of

Proposition 11 allows to study the comparative statics of signaling costs and welfare

in this marriage market. Barlow and Proschan (1966) rely on the convex transform

order which is stronger than the excess wealth order when F and G have the same

mean.24 Proposition 11 shows that the results of Hoppe, Moldovanu, and Sela hold

under weaker requirements on the distributions.

Regarding the spacings of the k lowest order statistics, one can define the family of

k-dispersion orders given by

F � k G ⇔
∫ p

0

ukdF−1(u) ≥
∫ p

0

uk dG−1(u) ∀p ∈ (0, 1).

For example, expected differences in quality for the worst, second to worst, third

to worst, etc. product out of a production series can be compared through these

orders. All arguments for this family of orders are parallel to those we obtained for

the k-dispersion orders. Like the 1-dispersion order, the 1-dispersion order coincides

with a familiar stochastic order, namely, with the location independent risk order

of Jewitt (1989).

A Proofs

Proof of Proposition 1

To see (i), notice that F �disp G implies that the measure ν given by dν(u) =

24Shaked and Shanthikumar (2007), formula (4.B.3) shows that the convex transform order
implies the star order. Li (2005), Remark 2.7, shows that the star order implies the excess wealth
order if F and G share the same mean.
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d(F−1(u) − G−1(u)) is non-negative, so that integrals of non-negative functions

against ν are non-negative. Thus (2) holds for all p. (ii) is shown as follows: Lemma

7.1 of Chapter 4 of Barlow and Proschan (1981) states that for any signed measure

ν on R+ and any non-decreasing, non-negative function h∫ ∞
p

dν(u) ≥ 0 ∀p > 0⇒
∫ ∞
0

h(u)dν(u) ≥ 0.

Applying this result with dν(u) = (1−u)k+1d(F−1(u)−G−1(u)) shows that F �k+1 G

implies ∫ 1

0

h(u)(1− u)k+1dF−1(u) ≥
∫ 1

0

h(u)(1− u)k+1 dG−1(u)

for any non-decreasing, non-negative h. Applying this inequality to all members of

the family of non-decreasing functions (hq)q∈(0,1) defined by hq(u) = (1− u)−11{u≥q}

yields ∫ 1

q

(1− u)kdF−1(u) ≥
∫ 1

q

(1− u)k dG−1(u) ∀q ∈ (0, 1)

and thus F �k G. (iii) follows from the fact that F �k G implies F �1 G by (ii),

and from the fact that �1 is the excess wealth order so that we can apply Formula

3.C.8 of Shaked and Shanthikumar (2007). �

Proof of Proposition 2

By Assertion (ii) of Proposition 1, it is sufficient to consider the case k = i. By (3),

it is sufficient to show that∫ 1

0

un−k(1− u)kdF−1(u) ≥
∫ 1

0

un−k(1− u)kdG−1(u).

This inequality follows from the definition (2) of the k-dispersion order by applying –

like in the proof of Proposition 1 – Lemma 7.1 of Chapter 4 of Barlow and Proschan

(1981) to the signed measure ν given by dν(u) = (1 − u)kd(F−1(u) − G−1(u)) and

to the non-decreasing function h(u) = un−k. �

Proof of Proposition 3

Again, by Assertion (ii) of Proposition 1, it is sufficient to consider the case k = i.

Rewriting Relation 1 from David (1970, p. 45) into our notation yields

E[Xk:n]− E[Xk:n−1] =
k

n
(E[Xk:n]− E[Xk+1:n]). (6)
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Thus we can apply Proposition 2 and conclude that F �k G implies

E[Xk:n]− E[Xk:n−1] =
k

n
(E[Xk:n]− E[Xk+1:n])

≥ k

n
(E[Yk:n]− E[Yk+1:n]) = E[Yk:n]− E[Yk:n−1].

�

Proof25 of Proposition 4

By Proposition 5 (ii) we can focus on the case i = k. The proof of (i) is entirely par-

allel to the one of Proposition 2 except that we choose dν(u) = um(1−u)kd(F−1(u)−
G−1(u)) and h(u) = un−k−m. (ii) follows from (i) and (6). �

Proof of Proposition 5

The proof of (i) is entirely parallel to the one of Proposition 1 (ii) except that we

choose dν(u) = um(1− u)k+1d(F−1(u)−G−1(u)). The same is true for the proof of

(ii) where we choose dν(u) = um(1 − u)kd(F−1(u) − G−1(u)) and hq(u) = u1{u≥q}.

For (iii), notice that Proposition 7 provides a class of examples where E[X1] = E[Y1],

F �conv G is satisfied together with either F �k,m G or G �k,m F for some m. �

Proof of Proposition 6

Choose the measure ν as dν(u) = (1 − u)kd(F−1(u) − G−1(u)). We have to show

that there exists m such that

L(r) =

∫ 1

r

umdν(u)

is non-negative for all r ∈ (0, 1). By assumption, the measure ν is nonnegative over

[p, 1]. This proves the claim for r ≥ p. For r < p consider the decomposition

L(r) =

∫ p

r

umdν(u) +

∫ q1

p

umdν(u) +

∫ q2

q1

umdν(u) +

∫ 1

q2

umdν(u).

The second and fourth integrals are non-negative by assumption. The first integral

we can bound from below by replacing ν by its negative part ν− which exists by the

Hahn decomposition:

L(r) ≥
∫ p

r

umdν−(u) +

∫ q2

q1

umdν(u).

25The logical contingencies between Propositions 4 - 7 are as follows: Proposition 6 ⇒ Proposi-
tion 7 ⇒ Proposition 5 ⇒ Proposition 4.
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Since these are integrals with respect to a negative and a positive measure, we can

further bound them from below as follows:

L(r) ≥ pm
(∫ p

0

dν−(u)

)
+ qm1

(∫ q2

q1

dν(u)

)
.

The first term in brackets is finite since the supports of F and G are bounded from

below. The second term in brackets is strictly positive by our assumption on q1 and

q2. Since q1 > p, it thus follows that L(r) ≥ 0 for sufficiently large m. Since the

final lower bound is independent of r, this choice of m is the same for all r. �

Proof of Corollary 1

The fact that f is strictly smaller than g at the top of the support implies that there

exists a threshold p such that all pairs of quantiles greater than the p-quantile lie

strictly further apart under F than under G. This implies F>p �disp G>p and the

claim follows from Proposition 6. �

Proof of Theorem 1

Observe that we can write bidders’ aggregate rents after information release as

k∑
j=1

E[Xj:n −Xk+1:n] =
k∑
j=1

jE[Xj:n −Xj+1:n].

To the expression on the right hand side we can apply Proposition 4 and conclude

k∑
j=1

E[Xj:n −Xk+1:n] ≥
k∑
j=1

E[Yj:n − Yk+1:n]

which is (i). Rearranging this inequality yields

k∑
j=1

E[Xj:n − Yj:n] ≥ E[kXk+1:n − kYk+1:n]

which proves (ii). The welfare gains from adding an additional bidder when releasing

information are given by
∑k

j=1E[Xj:n−Xj:n−1]. This is greater than the correspond-

ing quantity with Y in place of X by Proposition 4. This shows (iii). The claim

about the expected selling price in (iv) follows from observing that Proposition 4

yields

E[Xk+1:n −Xk+1:n−1] ≥ E[Yk+1:n − Yk+1:n−1]
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provided that F �k+1 G. The statement about the seller’s payoff follows by multi-

plying this inequality with k. (v) follows by exchanging the roles of F and G. �

Proof of Proposition 7

Denote by α∗ the largest element of (αi)i which is not included in (βi)i and set

p = H(α∗). We prove (i) by showing that G>p �disp F>p and then invoking Propo-

sition 6. Denote by β∗+ > β∗− the upper and lower neighbors of α∗ in the sequence

(βi)i. Observe that the distributions F>p and G>p are both discrete distributions

concentrated on a finite number of values. In particular, since the two partitions are

identical from β∗+ ∈ (αi)i on, the two distributions are identical except for the lowest

value. For F>p, the lowest possible realization lF is the conditional mean of H over

the set [α∗, β∗+], while for G>p this lowest realization is the conditional mean lG over

[β∗−, β
∗
+]. Both occur with the same positive probability (H(β∗+) −H(α∗))/(1 − p).

Clearly, we have lF > lG. Since this difference between the lowest realizations is

the only difference of F>p and G>p, it follows directly that G>p �disp F>p. Since

all probabilities are strictly positive, we can also guarantee existence of q1 and q2 as

required by Proposition 6.

The proof of (ii) proceeds similarly by showing that F>p �disp G>p. We set p =

H(βB). Then G>p is a degenerate distribution which takes as its only value the

conditional mean of H over [βB, b]. F>p takes at least two values with positive

probability, since the sequence (αi) contains at least one element which is greater

than βB. We thus have F>p �disp G>p. �

Proof of Lemma 4

A direct calculation reveals that

eH(1)− eL(θ) =
S(pL, pH , θ)

2(1 + (pL − pH)(1− θ))(1 + (pH − pL)θ)
.

Since |pH − pL| < 1, the denominator is always positive and (i) follows. For (ii),

note that S is concave in pH so it suffices to verify S(pL, pL, θ) = 2pL(1− θ) > 0 and

S(pL, 1, θ) = 2pL + 2θ − 4pLθ − θ2(1− p2L) > 0.

The last claim follows from the facts that S(pL, 1, θ) is concave in θ and that

S(pL, 1, 1) = (1 − pL)2 > 0 as well as S(pL, 1, 0) = 2pL > 0. For (iii), notice
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that S can be written as

S(pL, pH , θ) = pL(1− θ)(1 + pH) + pH + θ2p2L − (1− θ)2p2H − θpL − θpLpH .

Applying in the first summand the assumed inequality pL(1 − θ) ≥ 1 − pH(1 − θ),
and rearranging, shows that S is bounded from below by the function

M(pL, pH , θ) = −p2H(2− θ)(1− θ) + pH(1 + θ − pLθ) + 1− pLθ(1− pLθ).

Since M is concave in pH , M > 0 follows from the positivity of M(pL, 0, θ) =

1−pLθ(1−pLθ) and M(pL, 1, θ) = θ(4−2pL−θ+p2Lθ). For (iv), it suffices to notice

that S is continuous and S(pL, 0, 1) = −pL(1− pL) < 0. �

Proof of Proposition 8

Since G is a mixture of uniform distributions, it suffices to study how the value of

the density at the highest valuation estimates reacts to changes in the parameters

and then to apply Corollary 1. Since (MT) holds, the value of the density at the

top is given by

T (pL, pH , θ) =
qH

eH(1)− eH(θ)
=

(1 + θ(pH − pL))2

pH
.

The relevant derivatives of T are given by

∂T

∂pL
= −2θ(1 + (pH − pL)θ)

pH
,
∂T

∂θ
=

2(pH − pL)(1 + (pH − pL)θ)

pH

and
∂T

∂pH
= −(1− (pH + pL)θ)(1 + (pH − pL)θ)

p2H
.

Since |pH −pL|θ < 1, ∂T
∂pL

is always negative, implying that F �k,m G for sufficiently

large m by Corollary 1. ∂T
∂θ

is negative when pL > pH and positive when pH > pL,

implying that F �k,m G follows if θ is shifted into the direction of the smaller

probability. The sign of ∂T
∂pH

depends on the sign of 1 − (pH + pL)θ as indicated in

the proposition. �

Proof of Proposition 9

We only point out the differences to the proof of Proposition 8. Since (MT) is
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violated, the density at the top is now given by

T (pL, pH , θ) =
qL

eL(θ)− eL(0)
=

(1 + (1− θ)(pL − pH))2

pL
.

The derivatives with respect to θ, pH and pL are given by

∂T

∂pH
= −2(1− θ)(1 + (pL − pH)(1− θ))

pL
,
∂T

∂θ
=

2(pH − pL)(1 + (pL − pH)(1− θ))
pL

and
∂T

∂pL
= −(1− (pH + pL)(1− θ))(1 + (pL − pH)(1− θ))

p2L
.

The signs of the derivatives follow like in Proposition 8 except that we do not

distinguish cases because a violation of (MT) implies (pH + pL)(1 − θ) < 1 by

Lemma 4. �

Proof of Propositions 10 and 11

It is convenient to give a combined proof of the two propositions. By Assertion (ii)

of Proposition 1, it is sufficient to consider the case k = i. From (3) we obtain that

E[Xk:n −Xl:n] =

∫ 1

0

l−1∑
j=k

(
n

j

)
un−j(1− u)jdF−1(u)

and
l∑

j=k

jE[Xj:n −Xj+1:n] =

∫ 1

0

l−1∑
j=k

j

(
n

j

)
un−j(1− u)jdF−1(u).

Obviously, the right hand sides coincide up to the factor j in the second sum. In

the following, we denote this factor by ϕ(j) and consider the choices ϕ(j) = 1 and

ϕ(j) = j. Now we claim the following:

Claim: For both, ϕ(j) = 1 and ϕ(j) = j, there exists a non-decreasing function h

such that we can write

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j = h(u)(1− u)k.

Provided that this claim is true, the desired inequality follows from the definition (2)

of the k-dispersion order by applying – like in the proof of Proposition 1 – Lemma

7.1 of Chapter 4 of Barlow and Proschan (1981) to the signed measure ν given by
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dν(u) = (1−u)kd(F−1(u)−G−1(u)) and to the non-decreasing function h identified

in the claim: We obtain ∫ 1

0

h(u)dν(u) ≥ 0.

and thus∫ 1

0

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)jdF−1(u) ≥

∫ 1

0

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)jdG−1(u).

Thus it remains to prove the claim. Since we can write

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j = (1− u)k

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j−k,

this amounts to proving that

h(u) =
l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j−k

is increasing in u for our two choices of ϕ(j). The key idea is to rewrite h in terms

of a Binomial(n− k, 1− u) distribution. We can write

h(u) =
l−k−1∑
j=0

ϕ(k + j)

(
n

k + j

)
un−k−j(1− u)j =

n−k∑
j=0

Ψ(j)

(
n− k
j

)
un−k−j(1− u)j

where

Ψ(j) = ϕ(k + j)

(
n
k+j

)(
n−k
j

)1{j<l−k} = ϕ(k + j)
n · . . . · (n− k + 1)

(j + k) · . . . · (j + 1)
1{j<l−k}.

For our two choices of ϕ which yield, respectively ϕ(k+ j) = 1 and ϕ(k+ j) = j+k,

Ψ(j) is clearly a non-negative, non-increasing function. Now denote by Zn−k,1−u a

random variable distributed according to the Binomial(n − k, 1 − u) distribution.

From writing h as

h(u) = E[Ψ(Zn−k,1−u)]

we can see that h is non-decreasing in u since Ψ is non-increasing. �
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