
Success rates in simplified 
threshold public goods 
games - a theoretical model

by Christian Feige

No. 70  |  JUNE 2015

WORKING PAPER SERIES IN ECONOMICS

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association econpapers.wiwi.kit.edu



Impressum

Karlsruher Institut für Technologie (KIT)

Fakultät für Wirtschaftswissenschaften

Institut für Volkswirtschaftslehre (ECON)

Schlossbezirk 12

76131 Karlsruhe

KIT – Universität des Landes Baden-Württemberg und 

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Working Paper Series in Economics

No. 70, June 2015

ISSN  2190-9806

econpapers.wiwi.kit.edu



Success rates in simpli�ed threshold public goods

games � a theoretical model

Christian Feigea,�

aKarlsruhe Institute of Technology (KIT), Institute of Economics (ECON), Neuer Zirkel
3, 76131 Karlsruhe, Germany

Abstract

This paper develops a theoretical model based on theories of equilibrium
selection in order to predict success rates in threshold public goods games,
i.e., the probability with which a group of players provides enough contri-
bution in sum to exceed a prede�ned threshold value. For this purpose, a
prototypical version of a threshold public goods game is simpli�ed to a 2 � 2
normal-form game. The simpli�ed game consists of only one focal pure strat-
egy for positive contributions aiming at an e�cient allocation of the threshold
value. The game's second pure strategy, zero contributions, represents a safe
choice for players who do not want to risk coordination failure. By calculat-
ing the stability sets of these two pure strategies, success rates can be put in
explicit relation to the game parameters. It is also argued that this approach
has similarities with determining the relative size of the strategies' basins of
attraction in a stochastic dynamical system (cf. Kandori, Mailath, and Rob,
1993, Econometrica, Vol. 61, p. 29-56).
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1. Introduction

The general idea of a threshold public goods game (ThrPG)1 is that a

group of people need to jointly provide a given amount of money to fund a

project of �public interest�, which can mean anything from stopping global

warming or building a public library to developing a new gaming software

that everybody in the group will enjoy. The problem is that the group

members must not only come to an agreement (whether tacit or overt) on

whether or not to provide this public good, but also on which player will

provide which share of the total.

Roughly �fteen years ago, Croson and Marks (2000) published a meta-

study on success rates in ThrPGs, i.e., whether or not the group's total

contribution exceeds a prede�ned threshold value, postulating the �step re-

turn,� which refers to the ratio of total valuation from reaching the threshold

to the necessary threshold contribution, as one of the main explanatory vari-

ables in this game. Since then quite a number of additional experimental

studies have been concerned with ThrPGs, but to my knowledge there is still

no theoretical model which su�ciently explains the experimental data, i.e.,

why some subject groups reach the threshold consistently, while other groups

appear to have no hopes of ever reaching this goal, leading them to converge

on an outcome where nobody contributes anything.

In the present study, I will present just such a model, which I derive from

previous work on equilibrium selection (Harsanyi and Selten, 1988; Harsanyi,

1This type of game is also discussed in the literature under the names �step-level public
good� or �provision-point public good�, the latter being more applicable to games with
some kind of rebate of contributions in case of overcontribution.
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1995). The idea is that the players in a ThrPG concentrate on the most focal

(in the sense of Schelling, 1980) allocation of the threshold in their group and

then decide whether or not this risky Nash equilibrium is to be preferred to

the safe choice of contributing zero. I argue that the relative attractiveness

of the most focal threshold allocation compared to zero contributions is the

main determinant in a class of ThrPGs that give no or only a partial refund of

contributions if the threshold is missed. It is only indirectly, via this relation,

that the step return and other game parameters a�ect average success rates.

Admittedly, there have been a number of other attempts in the past to

theoretically predict contribution behavior in ThrPGs, but they all have their

limitations, if they make accurate predictions at all. A �rst attempt has been

made by Palfrey and Rosenthal (1984), who calculate the equilibria for binary

ThrPGs with and without a refund of contributions if the threshold is missed.

In binary ThrPGs, each player has only two pure strategies � contribute

or not contribute � which means that there is no symmetric pure-strategy

equilibrium that exactly reaches the threshold (unless the threshold is equal

to the total endowment of all players). O�erman et al. (1998) calculate the

quantal response equilibria (McKelvey and Palfrey, 1995) for this type of

ThrPG. Goeree and Holt (2005) use a similar approach and are even able

to perform a comparative statics analysis for success rates dependent on the

number of players and the step return. Yet despite the minimal strategy set,

both models can provide only implicit characterizations of the success rate,

which could be taken to mean that an explicit model for (binary) ThrPGs

simply does not exist.

Recently, Alberti et al. (Unpublished) and Cartwright and Stepanova
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(Unpublished) have applied impulse balance theory (see also Ockenfels and

Selten, 2005; Selten and Chmura, 2008) to ThrPGs, theorizing that players

learn from outcomes in previous rounds and experience a certain drive (im-

pulse) to adapt their contributions afterwards. Just as the quantal response

models, theirs ends up being only an implicit characterization of success

rates, albeit with a more general applicability to larger individual strategy

sets.

What all these models have in common, though, is that they ignore the

possibility of equilibrium convergence, i.e., of the idea that the players learn

to coordinate their behavior and then attain a stable outcome. Palfrey and

Rosenthal (1984) at least mention that �the ine�cient pure strategy equi-

libria of the [game with refund rule] are weak � (ibid., p. 180) and there-

fore inferior, but do not discuss the implications of this result in a repeated

game.2 With quantal response, a concept that does account for repeated

interactions, the disregard of convergence arises from the assumption that

the group composition changes after each round. O�erman et al. (1998) (see

also O�erman et al., 1996, 2001) accordingly use a strangers procedure (i.e.,

randomly changing group compositions) in their accompanying experimental

study, controlling for e�ects of learning through repeated interaction. Un-

fortunately, however, the large majority of experimental studies involving

ThrPGs are repeated games with a �xed group composition (partners pro-

cedure), so that these models should not be able to predict more than the

success rates in �initial� rounds of these experiments.

On the other hand, papers discussing convergence in ThrPGs (or its lack

2See also Bagnoli and Lipman (1989, 1992).
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thereof) frequently point out that it may be hard to put this �initial� stage

in terms of rounds. For instance, Cadsby and Maynes (1999) state that

�14 periods did not appear to be su�cient in many cases for convergence

to an equilibrium. [...] we increase the number of periods to 25.� In con-

trast, other studies observe convergence to zero contributions after only seven

rounds (Guillen et al., 2006) or ten rounds (Isaac et al., 1989; Feige et al.,

Unpublished). The convergence of total contributions to the threshold level

is discussed in several studies by Croson and Marks (1998, 1999), as well as

by Cadsby and Maynes (1999), but only on the basis of experimental data,

not a theoretical model for why groups should coordinate on a particular

threshold equilibrium (instead of, for example, zero contributions).

By developing such a convergence model, much can also be learned about

success rates in ThrPGs, because the one is contingent on the other: In order

to converge on zero contributions, a group must necessarily fail to reach the

threshold. In contrast, the lower the probability of convergence to zero con-

tributions, the higher the success rate. This is the general principle behind

the model of a �simpli�ed ThrPG� as it is presented here. The remainder of

the paper is structured as follows. After a more detailed motivation of the

theoretical approach in Section 2, the theoretical model is derived in Section

3. A comparative statics analysis based on this model is subsequently con-

ducted in Section 4. Section 5 concludes with suggestions for future research.
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2. Risk dominance and the probability of playing a particular equi-

librium

The theoretical work on equilibrium selection, like Harsanyi and Selten

(1988), rarely goes beyond discussing 2 � 2 normal-form games, clearly be-

cause a generalized analysis of more complicated games is, well, too compli-

cated to be worthwhile. Having two players with two strategies each is su�-

cient to create the fundamental part of this problem. Assuming xi ¡ yi ¡ zi

for each player i � 1, 2, the game shown in Figure 1 has two Nash equilib-

ria in pure strategies: (X, X), which is payo� dominant because it yields the

highest payo� xi to each player i, and (Y, Y), which gives a �safe� payo� of yi

no matter what the other player does. This safe option becomes particularly

attractive if 2yi ¡ xi � zi for all i, i.e., if (Y, Y) is risk dominant, which also

means that there is a con�ict between these two dominance criteria in this

case. The game also has a unique mixed-strategy equilibrium, which �gures

prominently in the subsequent theoretical analysis.

Player 1

Player 2
X Y

X x1, x2 z1, y2
Y y1, z2 y1, y2

Figure 1: A 2 � 2 normal-form game with two pure strategy Nash equilibria (xi ¡ yi ¡ zi
for each player i � 1, 2).

Harsanyi (1995), placing more importance on risk dominance here than

in his and Selten's earlier equilibrium selection theory (Harsanyi and Selten,

1988), argues that the probability with which a particular pure strategy is

chosen by player i in such a coordination game depends on this strategy's

stability set, i.e., the set of mixed strategies of the other player against which
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this pure strategy is a best response for player i, which in turn is determined

by the game's parameters xi, yi, and zi. So we can calculate, for example,

how increasing z1 a�ects the probability that strategy X is chosen by player 1,

and even derive the probability that (X, X) results as an outcome. If payo�

dominance were the more important selection criterion, the relation between

yi and zi should not matter at all, only that xi is greater than both yi and

zi for a given player i.

Following the reasoning of Harsanyi (1995), the probability that (X, X),

i.e., the payo�-dominant equilibrium, results, depends on the relative dis-

tance between this equilibrium and the mixed-strategy equilibrium. Fig-

ure 2 illustrates this reasoning for the game described above. Sub�gure a)

shows the strategy space of this game, whereby X and Y refer to the two

pure-strategy equilibria (X, X) and (Y, Y), whereas M denotes the mixed-

strategy equilibrium. In symmetric games the mixed-strategy equilibriumM

is located on the straight line from X to Y, but this need not be the case

in a game with asymmetric payo�s. However, the simplex containing the

stability sets of player i's pure strategies is indeed one-dimensional, as shown

in Sub�gure b). Here, the mixed-strategy equilibrium cleanly separates the

stability set of strategy X from that of strategy Y. At any point closer to X

on the simplex, player i will be better o� switching to the pure strategy X.

Similarly, at any point closer to Y, player i will prefer switching to strategy

Y.

Let σi denote the probability with which player i plays X in the mixed-

strategy equilibrium. The probability p that the associated pure-strategy

equilibrium (X, X) is played, is then equal to the distance between (X, X)
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X 

Y 

M 

σ2 

1 – σ1 

1 – σ2 

Y M X 

a) 

b) 

σ1 

Figure 2: Strategy space (a) and simplex with stability sets (b) of a 2 � 2 normal-form
game with two pure-strategy equilibria X and Y and a single mixed-strategy equilibrium
M. The probability that equilibrium (X,X) (at point X) is played, is equal to the relative
distance between X and M, i.e., |�XM |{p|�XM |�|�MY |q.
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and M relative to the total distance between (X, X) and M as well as M

and (Y, Y):

p �
|�XM |

|�XM | � |�MY |
�

a
p1 � σ1q2 � p1 � σ2q2a

p1 � σ1q2 � p1 � σ2q2 �
a
σ2
1 � σ2

2

(1)

In a symmetric game with x � x1 � x2, y � y1 � y2, and z � z1 � z2,

the mixed-strategy probabilities in equilibrium play are the same for both

players. Accordingly, by letting σ � σ1 � σ2, (1) can be simpli�ed to

p � 1 � σ �
x� y

x� z
. (2)

If (X, X) is risk dominant in this symmetric game, we must have 2y   x� z.

(2) then implies that p ¡ 0.5. Consequently, and as Harsanyi suggests as well

(Harsanyi, 1995, p. 92), the equilibrium with the highest theoretical proba-

bility of being played is the risk-dominant outcome.

Note, from (2), that p is equal to the weight placed on strategy Y (i.e.,

the other strategy) in this game's unique mixed-strategy Nash equilibrium.

While this may appear a bit confusing at a �rst glance, it is actually correct

and consistent with Harsanyi's �proportionality requirement� for unanimity

games3 (cf. Harsanyi, 1995, p. 106f., Lemmas I and II): The more weight

player i puts on strategy Y in the mixed-strategy equilibrium, the greater is

this equilibrium's geometrical distance from (X, X), the larger is X's stability

set, the higher is the probability that a player will choose X over Y.4

3For more on unanimity games see Harsanyi and Selten (1988), p. 213�.
4Harsanyi (1995) shows (Lemma I) that using the size of the stability set directly as

a proxy does not necessarily work if there are more than two available strategies, making
this round-about approach necessary.
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Extending the model to n players playing a �2 � . . . � 2� game is straight-

forward. This game still has only two pure-strategy Nash equilibria, X and

Y, in which either all players choose X or all choose Y, respectively, as well

as a unique mixed equilibrium M.5 Furthermore, the simplex of this game is

once again one-dimensional, with M separating the stability sets of the two

pure-strategy equilibria. Analogous to above, the theoretical probability p

that all players choose X is therefore:

p �

a°n
i�1 p1 � σiq2a°n

i�1 p1 � σiq2 �
a°n

i�1 σ
2
i

(3)

At the mixed equilibrium M, player i is indi�erent between the pure

strategies X and Y, but if any other player were to change his own mixed

strategy only slightly, either X or Y would immediately become a best re-

sponse. Consequently, assuming that all other players choose their strategies

independently, so that, e.g., player j plays X with probability σj, player i

faces the following decision problem:

pX :
±

j�i σj, Y : 1 �
±

j�i σjq

X p
±

j�i σjqxi � p1 �
±

j�i σjqzi
Y yi

The break-even point, for which X and Y yield the same expected payo�

to player i and which characterizes the mixed-strategy equilibrium, is given

by the following set of equations:

5Cf. Kim (1996), Lemma 1, although technically the game described here does not
belong to the set of games Π to which the lemma applies, since πHk � πHk�1,@k   n.
Palfrey and Rosenthal (1984), show a similar result (Proposition 10) for a binary ThrPG.
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@i � 1, . . . , n :
¹
j�i

σj �
yi � zi
xi � zi

(4)

Solving this set of equations for an explicit expression for the mixed strat-

egy σi yields the following result:

Lemma 1. In the n-player two-strategy normal-form game de�ned above,

the equilibrium mixed strategy for player i is given by:

σi �
xi � zi
yi � zi

n�1

gffe n¹
j�1

yj � zj
xj � zj

(5)

Proof: For any two players i and j, divide the respective equations in (4)

by each other to receive a new equation containing only σi and σj. Repeating

the process for the same i, but in combination with other players, yields

n � 1 such two-variable equations. Substituting these equations back into

(4), namely into the equation generated from for player i's choice between X

and Y, and solving for σi yields the above expression.

For the homogeneous case with n players we can use (3) and (5) to derive

a theoretical probability p that all players choose X of

p � 1 � σ � 1 � n�1

c
y � z

x� z
. (6)

Consequently, p decreases in larger groups, approaching zero if n ap-

proaches in�nity, which conforms to the intuition that coordination should

be more di�cult with more players. In the geometric interpretation of the

model, increasing the number of players movesM closer to X, implying that,
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for any particular player, Y's stability set becomes increasingly larger relative

to X, so that this player has an increasingly lower probability of choosing X

over Y.

This generalization to n players also yields a more general de�nition of

risk dominance based on the size the pure strategies' stability sets:6 Even

for more than two players we can say that equilibrium X risk dominates

equilibrium Y if p ¡ 0.5, that is, if strategy X has the higher probability of

being played. For the game discussed here, this is the case if for all players

i, xi � p2n�1 � 1qzi ¡ 2n�1yi.

3. The simpli�ed ThrPG

While this approach seems to work well for games with only two pure

strategies, this may still seem a long way away from ThrPGs with continuous

contributions. However, I will argue that a model based on a 2 � 2 normal-

form game is already rich enough to provide a basic understanding of what

goes on in even a complicated game like a ThrPG.

3.1. Basic model

A ThrPG consists in a group of n players, each simultaneously choosing

their individual contributions to a public account with a threshold T . Each

player i � 1, . . . , n starts with an endowment ei ¡ 0 which can be used to

pay for his contribution qi P r0, q̄is to the public good. The marginal costs of

contribution, meaning the conversion rate from endowment to contribution,

6This corresponds to one of the characterizations of n-player risk dominance given by
Kim (1996) which refers to the relative size of the pure-strategy equilibria's basins of
attraction. See also Section 3.4.
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is given by ci ¡ 0.7 Usually, ciq̄i � ei for all i, meaning that the players can

spend their entire endowment on contributions, but not more than that.

If the total contribution Q �
°n
i�1 qi is equal to or exceeds the threshold

value T ¡ 0, i.e., Q ¥ T , each player i receives an individual bene�t of

vi ¡ 0. Otherwise, the contribution costs are returned to each contributing

player at a refund rate of 0 ¤ r ¤ 1. This means that, if r � 1, a full refund

of contributions is granted, similar to a money-back guarantee. Let q̄i   T

for all players i, as well as T ¤
°n
j�1 q̄j, so that one player alone cannot reach

the threshold, but the entire group can. By assuming ciT  
°n
j�1 vj for all i,

we ensure that reaching the threshold is collectively pro�table for all feasible

allocations of T among the players.

Player i's payo� πipqiq is given by:

πipqiq �

$&
% ei � ciqi � vi if Q ¥ T

ei � p1 � rqciqi if Q   T
(7)

Any vector of individual contributions q � pq1, . . . , qnq, with ciqi   vi

for all i, that exactly reaches a total contribution of Q � T is a (strict)

Nash equilibrium of this game. If any player decreases his own contribution

below this amount, the threshold is missed and the player loses vi, which is

more than the contribution costs ciqi that he could save in the process. And

by increasing this contribution beyond qi, the same player only manages to

further reduce his endowment to no additional bene�t.

7The idea of contribution costs, which may be di�erent for di�erent players, has been
modeled by Palfrey and Rosenthal (1991) in the case of binary ThrPGs, yet their approach
is more closely related to having heterogeneous endowments.
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Another equilibrium is constituted by the zero-contribution vector q0 �

p0, . . . , 0q, which arises from the assumption that no player alone can reach

the threshold and accordingly should not contribute, if he believes to be the

only contributor. Zero contributions is a strict equilibrium in the case of no

or only partial refund if the threshold is missed (r   1), but only a weak

equilibrium if contributions are fully refunded (r � 1). In addition, a full

refund establishes an entire set of �weak� Pareto inferior equilibria with a

total contribution of Q   T . Because of the refund of contribution costs, a

player is indi�erent to changes of his individual contribution at any of these

points, since whatever he contributes, the threshold will not be reached and

his payo� will be the same.

3.2. Simpli�ed ThrPG

Given that the general idea behind a ThrPG is very simple, it will be

helpful to look separately at the two main components of this game:

1. Will the group reach the threshold or not?

2. Among the large number of possible threshold allocations, which one

(if any) does the group choose?

You may notice that the �rst question is binary: the group will or will

not reach the threshold. Assuming that �not reaching the threshold� is the

same as an overall and individual contribution of zero (so as not to waste

any contributions), this translates into the two strategies of Z (for �zero�),

which is contribute zero, and Qαi
(to indicate a positive total contribution

�quantity�), which has a particular player i contribute his �fair� (or otherwise

14



assigned) share of the threshold, denoted by αi. If all players contribute their

assigned share, the threshold value is reached exactly.

As long as all players agree on what a �fair share� is, we have already

come a long way in simplifying this game. Based on the general model of a

ThrPG presented above, we can then specify a simpli�ed ThrPG8 for a given

threshold allocation α � pα1, . . . , αi, . . . , αnq, where 0   αi   1 is the relative

share of the threshold value provided by player i, resulting in a contribution

of Qαi
� αiT .

9 Obviously,
°n
i�1 αi � 1. An example for a simpli�ed ThrPG

with only two players is given in Figure 3.

Player 1

Player 2

Qα2 Z

Qα1

e1 � c1α1T � v1,
e2 � c2α2T � v2

e1 � p1 � rqc1α1T,
e2

Z
e1,
e2 � p1 � rqc2α2T

e1,
e2

Figure 3: A simpli�ed two-player threshold public goods game with two pure-strategy
Nash equilibria.

Note the similarity to the game shown in Figure 1, which e�ortlessly

translates to the n-player case: If ciαiT   vi for all i and r   1, Z yields a

guaranteed payo� of ei to player i, whereas Qαi
yields either strictly more

than ei if all players j choose the complement share Qαj
or strictly less than

8This simpli�ed game is not the same as the �reduced game� discussed by (Harsanyi
and Selten, 1988) and (Harsanyi, 1995) which eliminates only clearly non-essential game
components like dominated or duplicate strategies or players.

9Since no individual player can reach the threshold value on his own, αi � 1 is ruled
out for any player i. Assigning to any particular player i a share of αi � 0 is tantamount
to removing this player from the game and thus equivalent to reducing the number of
players by one to only those with strictly positive shares.
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ei if even a single other player chooses Z.10 The �rst qualifying assumption

implies that the bene�t from providing the public good, vi, is strictly greater

than the costs a player su�ers from contributing his share, ciαiT , which

simply means that participation in this game must be individually rational.

In addition, if r � 1, that is if a full refund is granted, any player i always

earn at least ei, even if he contributes and the others do not, making this a

riskless choice between Qαi
and Z and thus a case to which the model does

not apply. For this reason, it is also assumed that r   1.

Accordingly, the theoretical probability with which the threshold in a

public goods game is reached, i.e., its predicted success rate, should like-

wise depend on the stability sets of two pure strategies. The predicted (or

theoretical) success rate then corresponds to the probability with which the

pure-strategy equilibrium associated with Qαi
is played. For reasons of sim-

plicity, I will call the equilibria associated with these two pure strategies Z

and Qα.

To be true, this approach assumes that the obstacle of selecting one of

the large number of feasible threshold allocations, by itself an interesting

problem, has already been overcome by the group, meaning that all players

already know which one of the many threshold allocations is targeted and

compared to Z. This is usually not the case in an experimental session where

the group members have just come together for the �rst time for an unfamiliar

task. However, theoretical concepts like focal points (Schelling, 1980) or

10Here it becomes most apparent what is behind this simpli�cation process, and what is
potentially lost in comparison to a more general analysis: In the original game, interme-
diate outcomes, with some players contributing and others not, may still entail a positive
probability that the threshold is reached.
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team reasoning (Sugden, 1995) as well as data from previous experimental

studies can be used to single out the threshold allocation(s) that will be

the most attractive to experimental subjects.11 I simply assume that any

feasible threshold allocation, i.e., any e�cient pure-strategy equilibrium of

the original ThrPG, is a possible candidate for a �fair� outcome.

As before, we only need to determine the mixed-strategy equilibrium,

Mα, in order to calculate the theoretical probability pα that the associated

pure-strategy equilibrium Qα is played, which due to the impossibility of

overcontribution in this simpli�ed game also equals the theoretical success

rate. Let σipαq denote the probability with which player i plays Qαi
in

the mixed equilibrium Mα given a particular allocation α. The theoretical

success rate pα is then equal to the distance between Qα and Mα relative to

the distance between Qα and Mα as well as Mα and Z:

pα �

a°n
i�1 p1 � σipαqq2a°n

i�1 p1 � σipαqq2 �
a°n

i�1 σ
2
i pαq

(8)

By letting xi � ei� ciαiT � vi, yi � ei, and zi � ei�p1� rqciαiT , we can

use Lemma 1 to derive the following:

Corollary 1. In a simpli�ed ThrPG, the equilibrium mixed strategy for

player i is given by:

σipαq � n�1

d
1 � r±n

j�1 r
vj

cjαjT
� rs

�
vi

ciαiT
� r

�
(9)

11Conceivably, the method described by Harsanyi and Selten (1988) could be used just to
single out a unique threshold allocation, but it is biased towards payo�-dominant equilibria
(see ibid., Section 10.12) and would always predict that the threshold is reached.
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Although the model is technically not de�ned for the case of a full refund,

that is if r � 1, taking the limit of (9) for r approaching 1 gives σipαq � 0

and a success rate of pα � 1. This means that Qα is the only equilibrium

predicted to occur by this theoretical approach in this special case, because

Mα moves closer and closer to Z as r approaches 1, being located at the same

point as Z in the limit. This is consistent with the fact that Z is just a �weak�

Nash equilibrium in this case and therefore presumably less attractive than

the strict equilibrium Qα, no matter how the game parameters are chosen.

Obviously, this establishes a limitation of this model to the class of ThrPGs

with no or only a partial refund.

3.3. Success rates for homogeneous games

If the players are homogeneous, so that e � ei � ej, v � vi � vj, and

c � ci � cj for all players i and j, it is once again possible to simplify (8)

further in order to better identify the e�ects of the particular game elements

on success rates. Symmetry can then be used as a justi�cation to also assume

αi � αj � 1
n
as a (unique) focal allocation. Similar to the example in

Section 2, the mixed-strategy probabilities will consequently be the same for

all players as well, i.e., σ � σi � σj. Furthermore, the theoretical success

rate is then given by

pα � 1 � σ � 1 � n�1

d
1 � r
nv
cT
� r

. (10)

Realizing that nv
cT

is just the step return SR (Croson and Marks, 2000),

the theoretical success rate for a ThrPG with homogeneous players appears
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to depend only on the step return, the number of players, and the refund

rate:

pα � 1 � n�1

c
1 � r

SR � r
. (11)

Alternatively, we can de�ne ρ :� T
ne

as the proportion of total endowments

required to provide the public good,12 so that the success rate can also be

stated as

pα � 1 � n�1

d
1 � r
ne�v
T �ec

� r
� 1 � n�1

d
1 � r

1
ρ
� v
ce
� r

. (12)

The probability given in (11) also results by translating the �unanimity

rule� variant in Palfrey and Rosenthal (1984) into the notation used in this

paper.13

3.4. Equilibrium convergence

In the introduction to this chapter I have criticized previous theoreti-

cal approaches for ignoring the possibility of equilibrium convergence. At a

�rst glance, the model presented above is similarly �awed, because Harsanyi

12Since 0   T ¤ ne, we have 0   ρ ¤ 1. By allowing ρ � 0 (or T � 0) it may also
be possible to integrate linear public goods games into this model as an extreme case.
However, for all i Qαi

and Z are then indistinguishable, making the parameter vi mean-
ingless. Instead, linear public goods games grant a �nancial return on �overcontribution�
(commonly referred to as a �rebate�) to reward positive contributions. The fact that zero
contributions is a dominant strategy in these games is nevertheless consistent with the
idea that both �focal� pure strategies coincide in this case so that no coordination problem
exists.

13Their model assumes that the valuation v is normalized to 1. By letting q � σ,M � n
and c � 1{SR, (11) follows from the equation q � c1{pM�1qin Proposition 10 (Palfrey and
Rosenthal, 1984, p. 185) in the case of no refund (r � 0).
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(1995) only discusses one-shot (normal-form) games and the mixed-strategy

equilibrium is calculated under the assumption that the players act indepen-

dently of each other. However, there has been extensive theoretical work in

the literature on evolutionary game theory about the relation between risk

dominance according to Harsanyi and Selten (1988) and stochastically stable

strategies (e.g., Kandori et al., 1993; Kim, 1996; Samuelson, 1997).

The stability sets of a pure strategy are closely relate to the respective

equilibrium's basin of attraction, meaning that a measure of their size will

also be a predictor of equilibrium convergence. In other words, if there is a

high probability that equilibrium Qα is played in initial rounds of the experi-

ment, game-play will likely also converge to Qα in the long run. Convergence

to a threshold equilibrium may or may not increase success rates, though, de-

pending on the remaining volatility of total contributions. Even groups that

are very e�cient in terms of total contributions may have only low success

rates, because the total contribution can just as likely be marginally above

or below the threshold. Similarly, some groups may converge more quickly

than others and therefore make fewer coordination errors which also a�ects

empirical success rates.

The model presented here cannot capture this kind of convergence behav-

ior (and the associated e�ect on success rates), because this behavior appears

to be concerned with the coordination process for how exactly the threshold

should be allocated among the group members. Convergence to zero contri-

butions, on the other hand, is a clear indicator for a collective unwillingness

to take the risk involved in providing the public good, and it will obviously

lead to signi�cantly lower success rates than if game-play converges to the
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threshold.

With respect to the original ThrPG, it should be pointed out that the

basins of attraction of the threshold equilibria are actually in�nitesimally

small if contributions are continuous � even though these equilibria are strict,

which is usually taken to imply asymptotic stability under a replicator dy-

namic (cf. Samuelson, 1997, Proposition 2.11 on p.75) � because the set of

threshold allocations is convex and the next closest equilibrium is reached in

just two in�nitesimally small steps.14 On the other hand, Z's basin of attrac-

tion has a measurable extension (unless r � 1), which again varies with the

location of the mixed-strategy equilibrium, suggesting this basin's relative

size as a suitable measure for the predicted success rate, that is, the smaller

the basin, the higher the success rate.

4. Comparative statics

Is the theoretical success rate consistent with the results reported in the

experimental literature? A �rst benchmark in this regard is the meta-study

by Croson and Marks (2000). Table 1 translates their main empirical �nd-

ings15 into the notation used in this model, whereby � and � denote, respec-

tively, a positive or negative e�ect on success rates and � denotes statistical

signi�cance (p   0.05).

Except for SR, n, and ρ, the independent variables in this meta-analysis

are dummies, indicating whether or not a particular treatment has this prop-

14The �rst subtracts a negligible amount ε ¡ 0 from the contributions of player i, the
second adds the same amount ε to the contributions of any other player j.

15See Croson and Marks (2000), Table 2.
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Table 1: Empirical �ndings by Croson and Marks (2000).

SR n ρ Binary

Success rate �� �� � ��

Refund (r) Rebate Homogeneous Communication

Success rate �� � � ��

� denotes statistical signi�cance (p   0.05)

erty. �Binary� refers to treatments that allow only binary contributions. �Re-

fund� applies only to treatments with a full refund (r � 1). �Rebate� refers

to a return on contributions beyond the required threshold value. Obviously,

�Homogeneous� indicates groups with homogeneous players. In the Croson

and Marks (2000) meta-study, �Communication� applies to any treatment in

which the groups have a face-to-face discussion about the individual contri-

butions, which at that point in time had only been done in two treatments

from the study by van de Kragt et al. (1983), however.

As most of the literature is concerned with homogeneous groups (and

marginal costs of c � 1), I shall restrict the comparative statics analysis

to this special case. In (11), the step return SR is in the denominator of

a negative term and therefore positively correlated with the success rate.

Letting the refund rate r approach 1 makes the fraction it is contained in

converge to 0, so that the success rate converges to 1.

The e�ect of the number of players n is more di�cult to determine, be-

cause it is also a component of the step return. SR increases in n, because

more players receive the same valuation v at the same cost T . However, this

upward impulse on success rates is more than compensated in larger groups
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by the increasing risk of coordination failure. Mathematically, the increasing

power of the root term means that the success rate ceteris paribus decreases

in larger groups, approaching 0 as n approaches in�nity.

In order to determine the e�ect of the proportion of the threshold value

to total endowments ρ, we need to refer to (12) for pα. Realizing that ρ

is inversely proportional to the step return, but otherwise placed in a sim-

ilar position as SR is in (11), we should expect lower success rates if this

proportion is increased.

The results are accordingly quite consistent with the meta-study by Cro-

son and Marks (2000), as shown in Table 1. Although they do not �nd a

statistically signi�cant e�ect of ρ on the success rate, this does not neces-

sarily mean that (12) is wrong. For one thing, Croson and Marks (2000)

include a large number of treatments in their sample that grant a full refund

(r � 1) to the groups that do not reach the threshold. As, strictly speaking,

the model presented in this study does not apply to these treatments, it is

still possible that a signi�cant e�ect of ρ on success rates appears in only the

sub-sample of treatments with partial or no refund.

The other dummy variables included in the Croson and Marks (2000)

analysis are not fully accounted for in the simpli�ed ThrPG. Although it

seems plausible that binary contributions reduce success rates, because of

the lack of focal threshold equilibria in pure strategies, this result cannot

be derived from the model. Simplifying the ThrPG also abstracts from any

e�ects of a rebate rule on success rates if the Nash equilibrium is una�ected,

simply because overcontribution cannot occur.

Homogeneous groups may have an advantage over heterogeneous groups
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playing a simpli�ed ThrPG as well, given that the only focal allocation in

a symmetric game is equal contributions, which is likely to have a compar-

atively high success rate due to its central location.16 Interestingly, though,

the most frequent type of heterogeneity investigated in the literature, het-

erogeneous endowments, leads to the same theoretical success rate in the

simpli�ed ThrPG as the homogeneous case, provided that the players also

coordinate on equal contributions. Since experimental subjects usually do

not coordinate on this �risk-minimizing� allocation, the frequently observed

lower success rates in heterogeneous groups are in part compatible with the

theoretical model.

5. Conclusion

In summary, the main �nding of this paper is that success rates in ThrPGs

appear to be determined by three di�erent major components:

1. the relative size of the basin of attraction of the zero contribution equi-

librium, or respectively this strategy's stability sets

2. the selection process of a unique (focal) equilibrium from the set of

threshold equilibria

3. the convergence process (speed and volatility) towards coordination on

a speci�c equilibrium

16Put brie�y, assigning one player a larger contribution share makes it more risky for
him to contribute, so that he is less likely to do so. Even though another player becomes
more likely to contribute at the same time as the result of a reduced contribution share, the
trade-o� of the individual probabilities of contribution is not one-to-one (cf. (4)). A math-
ematical analysis in fact shows that equalizing the individual probabilities of contribution
maximizes the theoretical success rate.
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The �rst of these components is analyzed in more detail, resulting in a model

that sets the most prominent parameters of the game in explicit relation to

the success rate. As a secondary �nding it follows that, in theory, granting

a full refund of contributions, if the threshold is not reached, removes the

possibility of convergence to zero contributions, suggesting that games with

this parameter setting should be treated as an altogether di�erent type of

game and be investigated separately.

It should be pointed out that this mathematical model can be nothing

more than an approximation, a factor that correlates with observed success

rates, but does not provide a formula to directly calculate these rates (like

a physical model), let alone explain why some groups are successful, while

others are not. What it can do is give support for more general behavioral

theories which might predict that coordination is more di�cult in larger

groups or that larger incentives increase the willingness to contribute, but do

not exactly state how these two factors will interact. As a consequence, this

model may give rise to additional experimental work, in particular examining

the e�ect of the step return in larger groups of, say, thirty or even forty

players, or at least methodically varying the number of players in smaller

groups.

Future work should also extend the model to cover the other two com-

ponents as well as other design variations. This extension is likely to create

additional �novel� predictions (cf. Lakatos, 1970) to be tested experimentally

in order to corroborate (or refute) the model. As this model assumes that a

focal threshold allocation can be reached by playing pure strategies, it com-

plements the studies by Palfrey and Rosenthal (1984), O�erman et al. (1998),
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and Goeree and Holt (2005) who (at least implicitly) assume that the only

(focal) symmetric equilibria are in mixed strategies, a fact which makes it

di�cult for groups to coordinate their behavior and reach the threshold.
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