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Abstract

The diffusion of renewable electricity generating technologies is widely consid-
ered as crucial for establishing a sustainable energy system in the future. However,
the required transition is unlikely to be achieved by market forces alone. For this
reason, many countries implement various policy instruments to support this pro-
cess, also by re-distributing related costs among all electricity consumers. This
paper presents a novel history-friendly agent-based study aiming to explore the
efficiency of different mixes of policy instruments by means of a Differential Evo-
lution algorithm. Special emphasis of the model is devoted to the possibility of
small scale renewable electricity generation, but also to the storage of this electric-
ity using small scale facilities being actively developed over the last decade. Both
combined pose an important instrument for electricity consumers to achieve partial
or full autarky from the electricity grid, particularly after accounting for decreasing
costs and increasing efficiency of both due to continuous innovation. Among other
things, we find that the historical policy mix of Germany introduced too strong and
inflexible demand-side instruments (like feed-in tariff) too early, thereby creating
strong path-dependency for future policy makers and reducing their ability to react

to technological but also economic shocks without further increases of the budget.
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1 Introduction

‘there must be a “sweet spot” in [...] subsidy design space
at which subsidies are maximally effective in triggering
adoption and widespread diffusion without wasting
money on adopters who would have adopted anyway’

(Cantono and Silverberg), 2009, p. 495)

The diffusion of renewable electricity generating technologies (REGT) is widely seen
as a crucial part for establishing a sustainable energy system in the futureE] However,
the current energy system is designed for and locked into the usage of fossil fuels, so
that the required transition is unlikely to be achieved by market forces alone. For this
reason, many countries have recently implemented different policy instruments to support
innovation in and diffusion of REGT (e.g., |Grau et al., 2012). Most instruments try to
foster an innovative activity in REGT by lowering R&D costs for private companies or
by performing R&D in public research institutes (del Rio and Bledal, |2012); or directly
support their diffusion via subsidies. The main goal of these policies is to make REGT
competitive (in terms of costs) with fossil fuels inside the electricity grid.

In this diffusion-oriented context, a specific feature of the electricity from REGT gains
importance, namely the possibility of small scale electricity generation without the need
of further inputs. Combined with the possibility of energy storage, this can be used
by electricity consumers to become electricity producers themselves (partial autarky) or
even to achieve full autarky from the electricity grid in the sense that the consumer can
generate and store as much or even more electricity than she consumes in a normal period
(Zahedi, |2006). This becomes particularly important as with the decreasing costs and
increasing efficiency of both, storage and REGT, the necessary investments required to
become an electricity producer, and to become fully autarkic from the electricity grid, fall.
The latter can be considered as an unintended side effect of the original policy measures
and is a paradigm change in the electricity generation systems of developed countries,
which were built around large, fossil electricity generating plants that distributed an
electricity through complex electricity gridsE] REGT and storage together provide the
possibility of an individual electricity supply, which is also environmentally-friendly.

Another incentive to invest into REGT comes from re-distribution of costs of the elec-
tricity generated from more expansive renewable sources to cheaper fossil fuels (e.g., Bode
and Groscurth) 2006|), which raises the consumption price one has to pay for electricity
from the grid. By becoming electricity producers themselves, consumers avoid the extra
costs and hedge against rising prices in the future. Once more consumers become fully
autarkic (and do not demand electricity from the grid), the costs for consumers remain-
ing in the grid increase (since the costs are distributed among fewer people), creating the
possibility of a snowball effect. This puts the stability of the grid in question, forcing the
policy makers either to change their policy or risk a collapse of the grid.

In this paper we aim to compare possible policy instruments and find the optimal
combination, which stimulates consumers to invest into REGT and even to become au-

!The intended transition from fossil to renewable sources does not have to be seen solely from the
view of possible shortage of fossils, but also as a decision to ‘establish new pathways, [...] which may
offer richer opportunities for economic growth or prosperity’ (Steinmueller} 2013)).

2More details on the visionary perspective of the future electricity market one can find in Rifkin
(2011) describing the ‘five pillars of the Third Industrial Revolution’.



tarkic from the grid (and how fast this occurs). Thus, policy instruments are compared
in terms of REGT electricity diffusion and stability of the electricity grid ]

Since the transition is an out-of-equilibrium-process (Arthur], 2006)), we utilise evolu-
tionary modeling approach (see [Safarzynska et al. 2012 for a review) and build a novel
agent-based simulation model (ABM). We find ABM better fitting our research prob-
lem in comparison to more traditional techniques (like DSGE models) because we avoid
presuming unrealistic cognitive capabilities of our agents (De Grauwe, 2011)), given the
uncertainty related to constantly changing prices of fossil and REGT electricity but also
unforeseeable stochastic events (e.g., emergence of the small scale storage technology).
Furthermore, we aim to address income inequality and interaction among heterogeneous
agents, which would have been incompatible with the traditional representative agent as-
sumption (Fagiolo and Roventini, 2012, p. 84). The latter is particularly important since,
as we demonstrate in this paper, the same policy instruments differently affect electricity
consumers depending on their income stimulating some of them to install REGT plants
and sell electricity to other consumers, thus, fundamentally changing the electricity mar-
ket and demonstrating emerging properties (the snowball effect aforementioned) out of
individual decisions (Battiston et al., 2016). ABMs have gained an increasing interest in
different fields of economic research also thanks to the possibility of an extensive and fast
simulation analysis for different effects and parameter settings (for a literature review see,
e.g., Tesfatsion and Judd, 2006). In the last years, ABMs have become popular to model
transitory processes (see, e.g., Nannen and van den Bergh| 2010, Lopolito et al., 2013 and
Safarzynska and van den Bergh, 2013)) and electricity markets (see, e.g., [Sensfufset al.|
2007, Weidlich and Veit|, 2008 and (Guerci et al., |2010 or Ringler et al., 2016 for a recent
overview on smart electricity grids). In addition, there is a large body of literature utiliz-
ing this approach to investigate the problem of diffusion of eco-innovations (see Cantono
and Silverberg), 2009, |[Bleda and Valente, 2009/ and Windrum et al., 2009).

With this ABM, we have two main objectives. The first one is to illustrate in a
history-friendly manner (see, e.g., Malerba et al [2008; |Garavaglia, 2010]), which policy
instruments played a critical role in the electricity market of Germany in the early 1990s
in fostering transition towards the use of electricity generated from REGT. Back then,
a low number of large fossil power plants supplied the whole economy with electricity,
which was transmitted via the electricity grid. From this situation onwards, we show
that policy intervention was necessary to start the transition and is still necessary if the
transition shall progress further. For that reason, our model accounts for different policy
instruments that were implemented in real life.

The second objective is to investigate which possible mix of instruments is likely to
deliver the best outcomes (in terms of diffusion reached and grid stability preserved) in the
near futureff To identify an optimal policy mix, we apply an exercise from optimal control
literature (see, e.g., Blueschke-Nikolaeva et al.,[2012), where a set of controls is optimised
to achieve policy targets as close as possible. Since the search space of possible solutions is
infinite (due to the continuous nature of the problem) and not necessarily ‘well-behaved’
(with non-linearities and multiple local optima), a Differential Evolution algorithm is
used. We compare different mixes of instruments with respect to how steady the transition

3In the literature there is no universal definition of circumstances, under which grid may break down,
and for simplicity we penalize the percentage of unstably produced electricity over time.

4Alternatively, the model could be relatively easily adjusted to compromise also along the third
dimension, which is policy budget applied, but for this one must declare how to weight cost and benefit
of the policy. We leave this extension for further research.



progresses are and how much REGT technologies are diffused. We purposely underline
importance of grid stability, as unstable electricity supply has several adverse effects. The
most obvious is the risk of blackouts, which hinder production processes and displeases
people used to steady electricity supply (as it is the case in most industrialised countries)ﬂ

The rest of the paper is organised as follows. In Section [2] we present the basic model
together with a description of policy intervention mechanisms applied in Germany. In
Section [3| we address the parameter calibration issues of the present ABM, compare its
evolution over the ‘history-friendly’ period with empirical findings and stress stylized facts
observed. Section 4| presents a counterfactual analysis, where by means of the Differential
Evolution algorithm we identify optimal policy mixes for different time periods. Section
discusses the implications of the present study and concludes.

2 Model

This section presents a model meant to serve a consistent but concise representation
of routines, relationships and behaviour of economic agents as indicated in available
literature. We try to balance between following appreciative theorising making our model
empirically oriented and implementing mechanisms closely reconstructing some real world
processes (such as merit-order pricing), but keeping our model simple and well-suited for
logical explorations helping to understand what factors make the model behave as it does.

In this ABM, two connected markets, the one for electricity and the one for electric-
ity generation equipment, are modeled (Figure . These markets are populated with
three different types of actors, namely electricity consumers, fossil electricity producer
and equipment manufacturers. Two technologies for electricity generation are available,
fossil fuels and REGT. The heterogeneity inside both technologies (i.e., nuclear, coal and
gas for fossil on the one hand, and wind and solar energy on the other hand) is ignored
deliberately to reduce complexity. Note that under REGT technologies we solely under-
stand those new technologies that have been experiencing an immense rise in the last two
decades providing renewable but unstable energy supply. For that reason, we concentrate
on wind and photovoltaic leaving hydro-power and biomass outside the scope of REGT,
assuming the latter two being a part of the fossil (stable and established) technologyﬂ

The model is run for 7" periods (months), where 7" has a maximum of 360. For the
first twenty years then we apply policy interventions in a history-friendly manner as it
was done in Germany in 1990-2010, which is described in more detail in Section [3] For
the last ten years, we aim to identify an optimal mix of policy interventions matching
best the policy target to reach 26% diffusion of REGT by 2020 — policy target formulated
by |German Federal Government (2010)[] In addition, we compare different policy mixes
for the period of 30 years to see, whether one could reach better state of the world having
started alternative policy strategies earlier.

®Also, unstable electricity supply decreases power quality, which might damage electrical devices (see
e.g. [Farhoodnea et al.| (2013)) or |Liu et al.| (2011)).

6Hydro-power has long been applied for electricity generation, indicating that the best locations are
already in use, limiting the possibility to increase electricity generation from it. Biomass, on the other
hand, is limited by the availability of soil to grow the plants needed, which conflicts with the needs to
feed an ever increasing human population.

"Since the biomass and hydro-power technologies are not considered in the scope of REGT and also
can hardly increase their share in the electricity market (in 2010 it was around 8.9%) in the next decade,
we assume that the photovoltaic and wind technologies alone have to contribute in reaching the target
of 35% set by German Government, i.e. increase their share from the current 8.1% to 26%.

4
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Figure 1: Markets for Electricity and Electricity Generation Equipment

2.1 Technologies

In our model only two technologies for electricity generation are assumed, fossil and
renewable. Both technologies are embedded in power generation equipment sold by man-
ufacturers. Innovation in one of them increases efficiency or decreases cost of the technol-
ogy, but cannot introduce new ones. The only exception is the storage technology, which
however can only become available by basic research conducted by the state.

Each technology has two independent attributes regarding its cost effectiveness: in-
stallation costs and efficiency. Installation costs are the price actors have to pay if they
want to install the technology. Here it is assumed that manufacturers produce ‘turn-key’
installations, so that other actors do not bear additional costs after purchasing the equip-
ment. Installations are fixed in size, but it is possible to install more than one plant at
once, if agents possess the sufficient space and budget. Efficiency determines how much
electricity can be generated from one plant (electricity yield per size) and can be improved
by innovation. Installation cost, on the other hand, can be decreased by learning-curve
effects (described in detail in Section [2.3)).

The fossil technology is assumed to be mature at the starting point of the simulation.
Its efficiency is high and the costs per unit of electricity generated are low. However, due
to the maturity of the technology, there is little room for further improvements. Since
fossil power plants are big (each one generates a high amount of electricity), their number
is small compared to the number of consumers. To operate, they need fuels which have
to be acquired every periodEl The fossil electricity supply is stable, thereby putting no
burden on the stability of the electricity grid.

In contrast to the fossil technology, REGT are modeled as new at the starting point
of the simulation, resulting in low efficiency and high cost per unit of electricity. REGT
plants are small scale of the size that can be installed by majority of households. If a
household wants to install more plants (because of, e.g., larger space available), it simply
buys more than one plant. REGT do not need additional fuels to run, which means
that they can produce at zero marginal costs. However, since there are investment costs
that investors aim to earn back, households want to achieve a positive price when selling
electricity (Section [2.4.1). An important drawback of electricity generated by REGT is
unstable supply, which may put the stability of the electricity grid in question, especially
if the share of electricity generated from REGT reaches high levels.

8The dynamics of the fuel price is described in Section m
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Instability of REGT electricity supply is of two types: short term instability resulting
in different amount of electricity produced on different days, hours or even minutes, and
mid-term instability, where in different periods of year different amount of sunshine and
wind is present. While we explicitly model only the latter one, both present a potential
threat for the grid stability. To model the mid term instability, there are periodically
times when REGT cannot generate electricity at its full potential. This can be seen as a
simple way of modeling the dependence of REGT on weather conditions, which change
over the year. Thus, since a period in the model represents one month, there is a cyclical
pattern with a length of 12 periods, where the electricity generation from each REGT
plant changes each period. After 12 periods, the cycle starts anew:

Generation;; = MaxGeneration;; x SeasonV alue,, (1)

where electricity consumer ¢ can generate in a specific period t a certain amount of
electricity at maximum. SeasonValue; is a value between 0 and 1[] stating which share
of the maximum generation MaxGeneration; can be reached in a specific month. Hence,
the supply of electricity from REGT is unstable over the year, creating additional demand
for fossil plants in some months, while there is excessive supply in other periods.

The storage technology is different from the two others in several aspects. First
of all, it is not available from the beginning, but has a chance to be ‘discovered’ at
a later point by basic research. Although it does not generate electricity, it is used to
store electricity generated from REGT, thereby transforming it into stable energy supply.
However, the investment costs of the storage technology have to be added upon the
price of electricity from REGT. There are different promising technologies for electricity
storage in development, although most were in an premature state at the end of the
history-friendly part of the simulation (for an overview, see [Hadjipaschalis et al. 2009).
A very comprehensive analysis of most possible storage technologies can be found in
EASE/EERA| (2013)). In our model, we only consider small scale electricity storage
solutions, like fuel cells or batteries (an overview of the different battery solutions is
provided by [Divya and Ostergaard (2009)), for two reasons. First, large scale storage
solutions (such as pump storage) are not decided upon by the actors of our model, but
rather by policy maker, making them exogenous to our model. Second, the construction
of large scale storage facilities is likely to induce resistance from the population, as can
be observed from the discussion about the construction of new pump storage facilities in
Germany, as described in |Steffen| (2012]). Therefore, we consider it unlikely that a high
number of new large scale storage facilities will be built in near future. Small scale storage
solutions, in contrast, are on the verge of becoming profitable (see Colmenar-Santos et al.|
2012)) and this profitability increases with increasing electricity prices, as shown in | Mishra
et al. (2012). In addition, their installation is a private decision of households, which is
in line with our assumptions about the consumers.

Each investment has a finite life expectancy (see Lifes, Life, and Lifes in Table
in Appendix [A)), after which it either has to be replaced at the current investment costs
or removed (at zero costs). The life expectancy varies between the different technologies.
Fossil power plants, both due to the maturity of the technology and the size of the power
plants, are assumed to have a higher life expectancy than REGT and storage plants.

9The specific values are chosen arbitrarily, since they are only used to generate additional variance:
1,1, 0.9, 0.9, 0.85, 0.8, 0.8, 0.85, 0.9, 0.95, 0.95, 1.



2.2 Actors
2.2.1 Electricity Consumers

Electricity consumers (represented by households) are central actors of our model. Their
number is set to 1000. Consumers are heterogeneous in several dimensions. They have
different income levels. The distribution of income is based on the German income deciles
in 1991, which are taken from German Council of Economic Experts (2009).@ Since the
data on income contains only ten decile values, we add additional variance by dividing
the consumers into ten groups, one for each income decile Deciley, where k =1, .., 10, so
that 100 consumers share one Decile,. For each group, income is assigned as follows:

Income;y, ~ N (5 x Deciley,2 x Deciley,). (2)

Additionally, we restrict the income distribution to prevent very small incomes. This is
done to represent governmental aids to poor people and to allow all consumers to have
sufficient income to pay for electricity at the beginning.

Other attributes of the consumers are assumed to correlate imperfectly with income,
for example, the space available to install REGT. REGT needs sufficient space to be
installed, which is assumed to be sparse for most consumers:

Income;
Space; = floor (—Z

-3 X Xi> , where X ~ N(2,1), (3)

where Space; denotes the amount of space the consumer ¢ has for installing REGT and
X is used to generate additional variance. The floor(.) function (rounding argument
downwards) creates non-negative integer values for space distribution (since installation
size is one) with a considerable proportion of households with no space available.
Irradiation (electricity yield per space) is additionally used to account for heterogene-
ity of space in terms of REGT productivity. Solar irradiation in Germany is distributed
between 0.7 and 1 (see |JRC - European Commission| (2015))), while for wind it is between
0 and 1. The irradiation value for each consumer is drawn from a normal distribution:

Irradiation; ~ N(0.6,0.2), (4)

which is additionally restricted in the interval (0.4, 1].
Electricity demand is also assumed to be weakly positively correlated with income, as
richer consumer can afford higher consumption:

Demand; = \/Income; X Y;, where Y ~ N (1,0.2). (5)

The demand for electricity of a consumer stays constant over time. However, if a
consumer installs the REGT and storage technologies, she will be able to satisfy at
least parts of her own demand by self-production. Therefore, the relevant value is the
NetDemand; of a consumer, which is calculated from

NetDemand; = Demand; — Sel f Consumption,, (6)

where Sel fConsumption; is the amount of electricity a consumer can produce and store.

10The values for the income deciles are: 4.1, 5.8, 6.8, 7.7, 8.5, 9.5, 10.6, 12, 14.3, 20.7.



The most important source of heterogeneity among consumers are their preferences.
The first preference is for environmental protection, which is bound between 0 and 0.9.
This preference is assumed to be imperfectly correlated with incomeﬂ so that people
with high preferences tend to have a higher income. A rich number of empirical studies
has shown that wealthier households are willing to pay higher prices for eco-products
(e.g. |Roe et al., [2001, Wiser, [2007, Diaz-Rainey and Ashton, 2011)). Most consumers
have no or only weak preferences for environmental protection. A fraction of consumers
(which is a parameter of the simulation and in an default setting equals 5%), however,
have very high preferences. These consumers are called ‘eco-warriors’ (e.g., [Williams,
2013). The role of those eco-warriors is important since, on the one hand, due to their
high willingness to pay, eco-products sustain at least as niche markets, while on the other
hand, those households signal to policy makers importance of ecological goods (e.g., by
pointing to the rights of future generations) and actively vote for public intervention. For
example, in Germany environmental activists played a key role in supporting the feed-in
tariff (Lauber and Mez, 2004). The preference values are calculated in the following way:

Pref! ~N(0.9,0.1)  if the consumer is an eco-warrior,

7
Pref? ~ N(—0.2,0.4) otherwise. @)

PrefEP;, = {

The values for Pref! and Pref? are chosen to ensure values close to 0.9 for eco-warriors
and a distribution with many zeros and few intermediate values for other consumers.
This represents the situation in Germany at the beginning of 1990s, where environmental
issues were already causing concern for many people (e.g., due to the oil crisis), but very
few people invested into REGT (see |Jacobsson and Lauber} 2006)).

The preference for environmental protection lowers the price consumers subjectively
perceive altering the decision on which form of electricity to demand (and consequently
on whether to invest into REGT). Thus, even if the objective price for REGT electricity
is higher, consumers with high preferences may still demand it. As an additional restric-
tion, consumers avoid spending for electricity a share of their income beyond a certain
threshold. The actual share that consumers are ready to spend is a parameter of the
simulation, ¢. In Great Britain, households spending more than 10% of their income
on energy are labeled to live in ‘fuel-poverty’ (Department of Energy & Climate Change,
2013)), which we use as threshold here. If consumers are in danger to pay a higher share of
their income, they also consume the objectively cheapest form of electricity. If consumers
demand electricity from REGT, but there is no supply present in the electricity market,
consumers may invest into REGT themselves, becoming ‘consumer-producers’ (on the
conditions when a consumer invests in REGT see Section [2.4.2)).

Besides preference for environmental protection, there is a preference for autarky. This
preference makes the technology more attractive to consumers and starts mattering only
after the technology becomes available. It can be interpreted as a preference to consume
self-generated electricity because of the fear of rising prices of the grid-based electricity
(as the incentive to self-generate and -consume electricity increases with rising electricity
prices). If no storage is installed, no self-generated electricity can be consumed by the
household, motivating it to make the investment (if together with the storage the REGT
electricity is still considered as subjectively cheapest). Once storage capacity is installed,
the electricity supply from REGT becomes stable and all self-generated electricity that is

1 Correlation between environmental preferences and income equals 0.1.



stored can be self-consumed. The extent of the preference is correlated with the electricity
demand per income[™| as a high level of electricity demand per income increases the effect
of changing electricity prices:

(8)

ZN Demand;
D dz = ncomevl
Pref Autarky; NN( cmandi L1 : ,0.3) .

Income; N

Here, PrefAutarky; is calculated from a normal distribution, where the mean of the
demand per income is subtracted from the individual value to ensure that a sufficient
number of consumers have very small (or zero) preference values, since we assume high
preference values for autarky to be an exception. See Figure in Appendix [B] for
illustration of those consumer characteristics described.

2.2.2 Fossil Electricity Producers

Producers generate electricity using fossil power plants and sell it to electricity consumers
via the electricity grid. For simplicity, each producer operates only one power plant
(therefore, the terms fossil producer and fossil power plant used as synonyms). For the
same reason, the producers cannot invest into REGT or storage. Producers are profit
oriented, which means that they aim to avoid losses from operating their power plants.
The central variable that indicates if losses are made is the ‘up-time’ of a power plant.
The up-time is the share of the maximum electricity generation capacity a plant is able to
feed-in (hence, up-time is a number € [0, 1]). A power plant generates losses if the up-time
is lower than a certain threshold . This simplified rule ensures that those fossil power
plants with lower cost (and in reality making profits) will feed-in most of their supply
and stay in the market longer, while those with relatively higher cost, may have to exit
the market first. The rule has a convenient feature of not making specific assumptions
on how past profits can be accumulated to finance future performance.

The conditions for a power plant to run (to be inside the market) are described in
Section The number of fossil power plants is low compared to the number of
consumers. To be precise, the number of fossil producers is hundred times smaller than
the number of consumers. The size of power plants is determined at the beginning of the
simulation in a way to guarantee that the entire demand is satisfied by the fossil power[']

The cost of each power plant consists of capital cost and fuel cost:

CostFossil,; = CapitalCost, + FuelCost,, (9)

where p = 1, ..., P, with P as the maximum number of fossil producers on the market.
The capital cost reflects the income needed to earn back the installation costs:

InstallCostyy

CapitalCost, = Life; x 12
(A

(10)

where InstallCosty, denotes the cost of installing a fossil plant. Since the cost is dis-

12This correlation equals 0.25 in our model.

I3Note that power plants will not shut down permanently prior to hitting their life expectancy, as
there are no maintenance costs if the plant is not running. However, a low up-time will discourage
replacement investment once the plant reaches its life expectancy. New power plants have to earn back
their investment costs, which is unlikely if the power plant does not sell a sufficient amount of electricity.



tributed over the lifetime of the plantﬂ it is divided by Lifes. Also, since electricity is
sold on a monthly basis, we also divide it by 12. The fuel costs are calculated from:

FuelCost,; = Fuel Price,/Efficiencyy, (11)

where Efficiencys, denotes the efficiency level of the plant, while FuelPrice, denotes
the price of the fossil fuels which have to be acquired every period. Note that, while
CapitalCost, and Efficiencys, are determined when the plant is installed and are con-
stant over time["’| the Fuel Price; may change every period. In the history-friendly part,
we approximate the FuelPrice; by taking the oil price for German consumers, as re-
ported by the German Statistical Office (Destatis (2015])). For simplicity, we normalise
the initial price value to one and adjust all other prices accordingly. From 2011 onwards
we assume a random development of the fuel price:

Fuel Price; = Fuel Price;_1 X F, where F ~ N (1,0.1). (12)

In the end, we obtain the Fuel Price; development presented in Figure 2] Clearly, the
dynamics leads to changes in CostFossil,; as well, but due to the fixed cost effect of
CapitalCost, not as strong ones as the price of fossil fuels.

Fuel Price
3
1

1990 1997 2005 2013 2020

Period

Figure 2: Development of Fuel Price over Time

2.2.3 Equipment Manufacturers

Manufacturers produce the equipment necessary for electricity generation and storage.
There is only one manufacturer present for each technology. This is made to avoid unnec-
essary complexity in two aspects. On the one hand, modeling a number of manufacturers
per technology would also require competitive and cooperative structures among these
manufacturers. On the other hand, if manufacturers could sell more than one technology,

14The period in which the producers try to earn back the money invested is assumed to be equal to
the life expectancy of the power plant, and that the costs are distributed equally among the lifetime, so
that the capital costs do not change over time.

15Since the power plants are installed at different times (at the beginning of the simulation, the age
of the power plants present is heterogeneous) and manufacturer of fossil plants experiences (although
small) learning effects from their production (more on this in Section , there is small heterogeneity
in investment costs and efficiency levels, resulting in slightly heterogeneous prices.

10



it would be necessary to create a decision mechanism in which technology R&D is done[[|

There is little heterogeneity in the structure of the individual manufacturers. One
difference comes from how much equipment a manufacturer has sold in the past (which
is linked to how long she was operating in the market). The fossil producer is assumed
to have been in the market for a long time by 1990, which means that it had time to
improve its technology via innovation and learning (more details on this in Section .
The manufacturer for REGT enters the market right at the beginning of the simulation,
while the storage manufacturer only enters after storage technology becomes available.

Based on the demand in the past, each manufacturer adjusts her production capacity:
increase if the demand for installation exceeds this capacity, and reduced if demand is
too low for several consecutive periods. This approach is inspired by the neo-Austrian
capital theory (see Faber and Proops, 1991). The number of past periods considered
when deciding upon capacity change S and the extent to which production capacity can
be changed are parameters of the simulation. In default, it is assumed that manufacturers
change their capacity according to the mean difference between demand for installations
and production capacity over the last five years:

S
CapacityChange,, ; = Z

=1

DemandPlant,,;_, — Capacity, .
) ) , (13)
S
where DemandPlant,,; depicts the number of installations actors demand from equip-
ment manufacturer m in period ¢, while Capacity,,, depicts the production capacity of
the manufacturer m in period t. Thus, manufacturers are assumed to have adaptive ex-
pectations. The maximum increase and decrease in production capacity per period are
symmetric, meaning that capacity can be at best doubled and at worst halved.

2.3 Innovation and Learning

Innovation and learning are an important part of the model since they can alter the
competitiveness of different technologies by making them cheaper or more efficient["]
Innovative activity in this model makes the technology more efficient. The innovative
step is calculated based on the amount of money invested in R&D:

Efficiencyy,: = Efficiencym—1 + max(Z,,4,0), (14)

logio(Investym,+)x0.005 logio(Investy, +)x0.001 o
where Z ~ N ( Eificiency s Efficiency i ) and Invest,,; = shareRD

x SoldPeriod,,; x InstallCost,, ;. The variable shareRD is a share of turnover man-
ufacturers invest into R&D, set to 5%. The formula is chosen in a way that the higher
the efficiency level prior to the innovation, the smaller the innovative step on average.
This implies that it becomes increasingly difficult to improve a technology. As innova-
tive activity cannot make technology worse (since in such a case the old technology is
preferred), only Z > 0 are allowed.

Another source of (cost reducing) technology improvement are learning effects (e.g.,
van der Zwaan, [2003)). In this model, learning effects are based on the cumulative number
of installations sold. If the number of plants sold increases, the installation costs decrease.

161f the simple rule of ‘R&D expenditure equals share of turnover’ would be chosen (i.e. routine-based
decision), there would be no difference from assuming independent manufacturers for each technology.
17The initial value for installation costs and efficiency can be found in Table [I|in Appendix
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The effect of the number of plants sold in one period is:

lOg (SoldPe'riodnL,t+StockSoldm’t )
2
InstallCost,,; = InstallCost,,+—1 x LearnRate StockSoldm, ¢

(15)
Here, the parameter LearnRate determines how fast costs decrease. For an ordinary
simulation run, it is set to 0.86, which means that every time the overall number of
plants sold StockSold,,; doubles, installation costs decrease by 14%11—_8] Note that this
equation is the same for all manufacturers, regardless of technology. The only difference
is in the number of plants assumed to be sold prior to 1990. As fossil power plants are a
mature technology, a very high number of plants sold is assumed to make further learning
very slow. In contrast, only few REGT installations and storage installations have been
sold (a positive number necessary in equation ([15))), allowing for strong learning effects.
For an ordinary simulation run, it is assumed that this starting value is equal to three
for both REGT and storage, while being equal to 250 for fossil plants.

2.4 Markets

The general structure of the markets can be observed in Figure [ The two markets are
connected, as the outcome of the market for electricity determines demand in the market
for electricity generation equipment, while the installation of fossil power plants, REGT
or storage technology alters the conditions in the electricity market. In the following,
both markets are described in detail.

2.4.1 Market for Electricity

In the market for electricity two types of actors are present: fossil electricity producers
and consumers. Producers generate electricity using fossil power plants and sell it to the
consumers via the electricity grid. Since the ABM is modeled to represent the electricity
market of an industrialised country, it is assumed that sufficient grid capacity is available.

Electricity can be generated both by fossil producers and by consumers who invested
into REGT (becoming consumer-producers). Which one is demanded by the consumers
depends on the prices, consumers’ preferences and income. Consumers always want to
purchase the subjectively cheapest form of electricity.

In order to allow consumer-producers to get their investment costs back, heteroge-
neous prices in the electricity market are allowed. These prices are individual for each
‘consumer-producer’ and are determined at the moment when the REGT is installed{"]

InstallCost,,
Efficiency,, x Life, x 12

ElecPriceREGT; = (16)

The desired electricity price ElecPrice REGT; is set in a way that the ‘consumer-producer’
will be able to earn her investments back, if she is able to sell all the electricity produced.

18Tn reality, the learning rate is different for each technology and there is a disagreement about the
extent of the learning effect, as can be observed from the meta-study by [Lindman and Séderholm/ (2012)
for wind turbines. 14% is at the lower bound for wind and PV combined (for PV, see |Candelisea et al.|
2013). However, since we look at the complete costs of a REGT installation, we have to assume a lower
learning rate, since not all cost components decrease as fast as the technology cost.

19Gince installation costs are distributed equally among the lifetime of the REGT installations, the
desired price stays constant over time.
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The value InstallCost,,/Efficiency,; denotes the levelised costs (technological charac-
teristics of the plant installed). The costs are distributed over the lifetime of the plant,
therefore this value is divided by Life, x 12 (in months). If a consumer-producer is not
able to sell all her electricity to other consumers, she will feed-in the remaining electricity
into the grid at the price which equals the cost of the cheapest fossil producer.m This can
be understood as consumers forming contracts among each other individually, allowing
for different conditions compared to the general market. Using this mechanism, con-
sumers with high preferences can pay higher electricity prices for the form of electricity
they prefer. The consumers willing to purchase electricity from REGT can ‘see’ if there

is supply available, so there is no uncertainty for them.

The market for electricity is progressed in the following order. At first, the ‘consumer-
producers’ (if present) try to sell their electricity. Other consumers buy this electricity if
the following two conditions are fulfilled:

1. ElecPrice; > ElecPriceREGT; X (1 — PrefEP;),

2. % > (Elech'ceRE'GTj X NetDemand; + (ElecPriceREGT; + CostStorage;) X SelfConsumptioni>.

Here ElecPrice, is the electricity price consumers have to pay when buying electricity
from the gridﬂ while the cost of storage per unit of electricity is calculated from:

InstallCosts,
Efficiencys; x Lifes x 12’

CostStorage; = (17)

which is analogous to . Consumers acquiring storage plants have to add the cost of
storage in to the price of REGT electricity in .

In sum, consumers buying (potentially more expansive) REGT electricity do not spend
more than threshold ¢ of their income on electricity (including the electricity they produce
and consume themselves).@ Otherwise, they have to switch from REGT to the fossil
electricity. The ‘general’ market price for electricity ElecPrice Market; is determined by
a merit-order (e.g., Sensfufet al., 2008). This means that the electricity producers feed-in
their electricity according to their cost in ascending order. ElecPriceMarket; is equal
to the CostFossily,, of the producers with the highest price who can feed-in electricity.
Power plants with costs below the electricity price run the entire time, resulting in an up-
time value equal one for this period. The power plants that produce at costs equal to the
electricity price (the power plants which feed-in last), might not face sufficient demand
to run the entire time. Therefore, their up-time is determined by how much residual
electricity demand they face compared to the maximum amount they could generate.

On FElecPriceMarket; a markup is added if there are policy instruments in place, as

described in Section 2.5
ElecPrice; = ElecPriceMarket, + MarkupPolicy,. (18)

Here, MarkupPolicy; denotes the cost of all policy instruments applied, calculated
on a monthly basis and divided by the NetDemand; in the electricity grid. With this
notation, the price of each unit of electricity bought from the grid is increased by the

20This assumption is made to ensure that the consumer-producers can feed-in all their electricity
instead of loosing it and making (even larger) losses.

2INote that ElecPriceREGT) can be different for each ‘consumer-producer’, so that it is possible that
some can sell their electricity at their desired price level while some cannot.

22The cost of storage is included as no household can self-consume without installing storage capacity.
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same markup. Electricity generated from ‘consumer-producers’, which is directly sold to
other consumers on a bilateral basis, is not increased by MarkupPolicy;, as the policy
maker does not aim to increase the cost disadvantage of electricity from REGT further.
Consumers, who do not buy electricity directly from ‘consumer-producers’ or are not able
to satisfy their demand by self-production, have to pay ElecPrice; for the electricity they
consume, even if the total expenses result in a higher share than ¢ of their income ]

2.4.2 Market for Electricity Generation Equipment

In this market, all actor types are present. The manufacturers sell their individual equip-
ment to fossil producers and those consumers investing into REGT or storage technology.

The decision of consumers to invest into REGT and storage technology is based on
a number of factors. For REGT, consumers will only invest if they would buy electric-
ity generated from REGT based on the current technology. Therefore, the precondition
to invest is the same as the decision rule to consume electricity generated from other
‘consumer-producers’ in Section 2.4.1 However, there are three additional restrictions.
First, a consumer will not invest if all of her electricity demand is satisfied by electric-
ity generated from REGT from other ‘consumer-producers’, so NetDemand; > 0 must
holdF_I] Second, the consumer must have sufficient funds to purchase at least one REGT
installation, preventing poor consumers from investing into REGT (we assume that only
consumers with income equal to the price of a REGT plant Income; > InstallCost,; can

invest into REGT). Third, the consumer should have sufficient space available.
For storage technology, the decision process is similar. The consumers will invest if
the following three conditions are fulfilled:

1. ElecPricet > ElecPriceREGT; x (1 — PrefEP;) + CostStorage; x (1 — PrefAutarky;),
2. % > (ElecPriceREG’Ti x NetDemand; + (ElecPriceREGT; + CostStorage;) x SelfC’onsumptiom)7

3. NumberO fStoragePlantsInstalled; x Efficiencys ; < NumberO fREGT PlantsInstalled; x Efficiencyy ;.

The rules stated ensure that i) the household finds the cost of self-produced and
stored electricity subjectively cheaper than the one from the grid; ii) she can finance the
additional consumption of the self-produced electricity not surpassing her threshold of
income; iii) the number and efficiency of storage plants already installed does not yet
cover the amount of electricity (maximally) produced by REGT plants installed.

Manufacturers always sell up-to-date equipment at current prices, so there is no stock.
All equipment produced in a specific period is also sold. Since manufacturers only start
producing after they face demand, there is no risk of unsold products.

2.5 Policy Intervention

Policy intervention plays a central role in this model. Historically, policy intervention
was needed (Jacobsson and Lauber, 2006) to initiate and foster the transition towards
the usage of electricity generated from REGT. Even though there is a number of ‘eco-
warriors’ present in the model, their influence is not sufficient to induce innovation and

23Thus, the threshold ¢ is effective only when consumers choose between the two alternatives and
tend to select a more expansive one. If, however, these consumers lack funds to pay even for objectively
cheapest electricity, then they spend more than this threshold (their number is reported in Figure .

24Otherwise she assumes a sufficient amount of renewable electricity is present and does not act.
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learning to an extent that would make a general transition possible. Therefore, at some
point the policy maker may decide to intervene and support the diffusion of REGT.

We assume that the policy maker aims to foster the transition towards electricity from
REGT, in particular, to reach the 26% share of electricity from REGT of all consumed
electricity by 2020. This aim is fixed, so that there are no changes due to political
elections or other changes in government. Apart from this, policy maker aims to preserve
the stability of the electricity grid. In the model, stability is measured as the share of
unstable electricity supply inside the electricity grid. The policy maker is willing to keep
the stability of electricity supply high, which conflicts with the goal of increasing the
share of electricity from REGT | Also, the transition should be as steady as possible.

To limit the choice options, the policy maker can only apply a pre-specified collection
of policy instruments (either separately or as a mix). A mix of different instruments is
sometimes considered to be more efficient than single instruments with the same com-
mitment level (Rogge and Reichardt] 2015). The costs of these instruments are laid as
a surcharge upon the electricity price for electricity distributed via the grid, i.e. among
the consumers who buy electricity from the grid (equation )

Most of the policy instruments can be applied to all technologies present in the ABM.
However, since the fossil technology is already mature and supplies the whole market by
1990, there is no policy support for it.ﬁ]

Public R&D

The most basic form of policy intervention is research performed by public actors. This
research can be either basic or applied. Basic research has the sole purpose of making the
storage technology available. Without basic research, there is no chance storage will be
discovered (see Section . Applied public R&D works in the same way as private R&D
(described in Section but is conducted separately. The policy maker can choose in
every period ¢ the budget invested in technology m 7| Results of public R&D in terms of
technology advances in efficiency are transferred to technology producers at no cost.

R&D Subsidies

Instead of performing R&D in the public sector, another policy option is financing private
R&D. This instrument simply adds funds for research to the respective share of turnover
which the manufacturer invests. The sum available for innovative activities changes to:

InvestSub,,; = Invest,, ; + StateFunds,, , (19)
where StateF'unds,,; is the R&D subsidy for a specific technology.

REGT Installation Subsidies

There are several diffusion-oriented policy instruments possible. The most straightfor-
ward is to subsidise the installation cost of REGT or storage technology, which increases

25The only exception is when the REGT electricity is sufficiently supported by the storage capacities
of consumers. In that case, REGT becomes automatically stable.

260f course, in reality there is a lot of institutional support and subsidies for fossil power plants.
However, to simplify the search for an optimal policy mix, currently all the policy instruments are aimed
at improving REGT and storage technology.

2TPublic R&D on storage technology can be applied only after the technology is introduced.
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the incentive for consumers to install them. In the model, this policy instrument is mod-
eled to decrease the price a consumer has to pay by a certain percentage. Note that the
revenues of the manufacturer do not change:

PInstall,,; = InstallCost,,+ x (1 — SubInstall,, ;). (20)

Here PInstall,,; is the price for a consumer, while InstallCost,,, is the price at which
the manufacturer is selling. The variable SubInstall,,; determines the percentage of the
installation cost financed by the state and is dependent on the levelised cost of technology
m at time ¢ observed by the government. The actual value is computed from:

Sublnstall,, ; = min(Sy,,0.9), (21)
InstallCostm,t 1 InstallCosty, ¢ 1
where Smﬂf N < Efficiencym,t X InstallCostm,0’ Efficiencym,t X InstallCostm,o/l())' The gov-

ernment here tries to keep to subsidy level stable in relation to the decreasing prices,
since it has to offer less subsidies if the technology becomes cheaper and more efficient.

Feed-in Tariff

For Germany, the most important policy instrument was and remains a feed-in tariff
(FIT) (see Jacobsson and Lauber, [2006). FIT guarantees the feed-in of electricity gener-
ated from REGT at a fixed price. This removes the uncertainty related to the investment
into REGT, namely if there are consumers willing to purchase electricity from REGT
at a sufficiently high price. The decision to invest into REGT becomes a simple deci-
sion based on net-present value, as both cost of installation and expected income from
the installation become knownP®| Since the installation costs are covered by FIT, the
‘consumer-producers’ do not need a positive electricity price anymore and feed-in elec-
tricity into the market at zero marginal costs, crowding out electricity from fossil power
plants. Another side consequence of FIT is that it reduces the incentive to self-consume
REGT electricity, if FIT granted is higher than the electricity price consumers have to
pay. The height of FIT is calculated in the following way:

InstallCost,,

FIT = )
Efficiency,; x Life, x 12 x mean(Irradiation)

(22)

Here, FIT denotes the amount of money consumer-producers get per unit of electricity
fed-in. FIT is dependent on the levelised cost of the installation (%) Also,
FIT is granted over the entire lifetime of the REGT installation and paid on a monthly
basis (Life, x 12). To avoid all consumers accepting the FIT, it is divided by the mean
irradiation of consumers, which means that only people living in locations suitable for
REGT will be able to benefit from the FIT. Since the extent of the FIT is calculated from
the mean irradiation, consumers enjoying irradiation above average can benefit from it.

Although further policy instruments could be implemented (such as a carbon tax),
their calibration becomes increasingly complex while justification of their relevance in the

past is rather questionable. Therefore, we leave their analysis for further research.

28Note that this policy instrument greatly reduces the importance of preferences for environmental
protection, since now even people with low preferences might have an incentive to invest into REGT.
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2.6 Ordering of the Simulation Steps

In the ABM, the following sequence of simulation steps is adopted:

1. Set all exogenous parameters; allocate to actors their characteristics.
2. Each month sell electricity to consumers.
3. At the end of each year do the following:

e Electricity producers and consumers buy new plants if necessary.
e Equipment manufacturers invest in R&D.

e Policy maker updates her policy intervention.
4. After a pre-specified number of periods 1" stop the ABM and report results on:

e the diffusion of REGT and the stability of electricity production,
e income/losses generated by consumers from investing into REGT technologies,

e clectricity prices.

3 Robustness Analysis and Empirical Verification

In this section, tests with alternative parameter settings are performed to calibrate the
model as not all parameters can be constructed from historical data. While there is infor-
mation about, e.g., income structure or the speed of learning, other parameter values are
unknown, as for example, the distribution of preferences, where some assumptions have
to be made ( discussed in Section [2.2.1]). In those cases we follow Malerba et al/| (2008)
and other history-friendly models in not attempting detailed calibration of all param-
eters: ‘Because most parameters fall into groups within a particular mechanism in the
model, common-sense guidance is available for choosing plausible orders of magnitude’.

The model has been calibrated with the parameter settings presented in Table (1] in
Appendix [A] The parameters were chosen to represent the conditions of Germany in
the 1990s. The parameters for fossil producers are set that every consumer can afford
to satisfy her electricity demand at the beginning of the simulation without spending
more than ¢% of her income on electricity. This is partly due to the high efficiency of
fossil plants, but also due to the low initial price for fossil fuels. The initial values for
price and efficiency of REGT, as well as the preferences of consumers, are chosen in a
way to allow consumers with high preferences to install REGT, but make it unattractive
for othersF_g] The technological characteristics, however, can be improved substantially
making REGT electricity more attractive and replicating the progress of the technology
in the last two decades. Due to the parameters chosen for innovation and learning,
it is very unlikely that REGT overcome their cost-disadvantage without governmental
support. The figures on space available (for consumers) and its irradiation are calibrated
to make possible all demand for electricity to be satisfied from REGT sources, if there
are substantial improvements in the efficiency of REGT Y]

29This reflects the lack of cost competitiveness of REGT compared to fossil fuels, especially at the
beginning of 1990s.

30The REGT technology has to be improved by about 80% (in terms of efficiency) so that the complete
demand can be satisfied from REGT-installations.
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With the set of parameters chosen, there is no meaningful diffusion of REGT without
public support (Figure [14]in Appendix . The only investment into REGT-installations
(bottom right chart) is from the ‘eco-warriors’, but their number is not sufficient to induce
adequate learning effects or innovation to improve REGT to a level where it can compete
with fossil power plants, even though there are some improvements in efficiency of REGT
plants and a significant drop in prices, caused by early learning effectsﬂ Therefore, the
share of electricity generated from REGT stagnates below 1% (top left chart).

A = FIT for electricity from REGT
B — Public R&D (REGT)

C = Public R&D (Storage)

D = R&D Subsidy (REGT)

E = R&D Subsidy (Storage)

F = Installation Subsidy (REGT)
G = Installation Subsidy (Storage)

Share of Budget in %

Figure 3: Policy Mix for History-Friendly Runs

To generate a history-friendly simulation run, which can serve as a basis for our opti-
mal policy mix identification, we run the first 20 years of our simulation with a predefined
set of policy interventions and the values presented in Table [I] in Appendix [Al For the
policy interventions, we try to mimic the order in which different policy instruments were
applied (see, e.g. (Cantner et al, ming) : public R&D and R&D subsidies are present
over the whole period, with increasing amount of money invested over time. Installa-
tion subsidies are introduced periodically (since they were usually subsidy programs with
a finite time frame) with varying amount of money invested. The subsidy per REGT
installation decreases over time, as the decreasing cost and increasing efficiency of the
plants lower the subsidy necessary to induce consumers to invest (this consequently leads
to more installations supported with the same governmental investment). Since the first
German FIT (Electricity Feed-in Law — ‘Stromeinspeisegesetz’) was introduced already
in 1991 (see, e.g., Jacobsson and Lauber, 2006/ and |Cantner et al., ming), FIT is active
all the time in our model. However, the first FIT provided sufficient incentives only for
some technologies. More effective FIT was introduced in 2000, the Renewable Energy
Sources Act (‘Erneuerbare Energien Gesetz’;, EEG), which provided sufficient incentives
for most REGT. We replicate this by choosing small sums spent on FIT in the first years,
but then strongly increasing them so that more consumers can apply for FIT over time@
To summarize, the amount of funds invested to support REGT technologies increase over
time, particularly after an effective FIT is introduced in 2000 (Figure [3)).

31Due to the small initial number of installed plants chosen, even low production numbers allow
manufacturers to achieve strong learning effects.

32Note that the money which can be spent on policy intervention is pre-specified for each period. By
changing these values, the focus of the policy mix can be shifted between different instruments.
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We take as a basis the simulation run producing the median share of renewable elec-
tricity in the electricity market over 101 replications.lﬂ This share is 8.3%, which is
nearly identical to the actual value for Germany in 2010 (according to the German Fed-
eral Minstry for the Environment and Nuclear Safety| (2012)). The development over
time is very similar, as can be observed from the top left plot in Figure @
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Figure 4: Characteristics of REGT evolution with HF policy support

Note: In all charts the median run + /- two standard deviations are presented.

Since this ‘history-friendly’ simulation run serves as a basis for optimal policy mix
identification by DE, it is useful to show some developments and final values at ¢t = 240
(at the end of 20 years period, T7). As can be observed from the bottom right chart in
Figure [ the number of REGT installations increases steadily, closely correlated with
the share of electricity generated from REGT. This fact is hardly surprising, since the
electricity must be generated from the installations. From the bottom left chart in Figure
we see that the efficiency (electricity generated per REGT installation) increases over
time, by about 40% in 20 years. The variance between single runs in the top charts
of Figure [] spurs mainly from the stochastic nature of efficiency improvements. More
improvements imply less REGT plants have to be installed to generate a certain amount
of electricity, which influences the profitability of single plants and therefore the cost-
competitiveness of REGT in comparison to fossil fuels. The price of REGT installation

33Tt is not possible to take mean results of all 101 runs since we need an individual simulation result
as input into the differential evolution and not averaged values. Another advantage of the median is its
robustness to outliers, which is also an asset for our modeling exercise.

34The correlation between our simulation results and the German time-line is 0.98529.
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decreases over time by nearly 65%, so that the cost per unit of electricity generated
is reduced by nearly 80% (i.e. combined effect from efficiency and cost improvement),
which is more than the historical decrease of the levelised cost of wind electricity (about
60%, |Lantz et al., [2012)), but a bit below the development for photovoltaics (above 80%,
calculated from Stubenrauch| 2003|, Wissing, [2013)).

Storage technology was introduced in the simulation by public R&D in 2003. How-
ever, due to still high costs, only 4 consumers installed a storage facility. Nearly all
improvement to the technology is from public R&D, which increased efficiency by about
6%. The cost of storage technology decreased by about 20%, due to the very strong ini-
tial learning effects. However, since there is large room for further improvement, storage
can become important in the near future (in the period 2011-2020, where we attempt to
identify an optimal policy mix).

Out of 1000 consumers, 148 did invest into REGT, but 91 of these consumers did not
use all their space available due to the income constraint. If they have to replace their
installations after 20 years, they will likely use more space due to the reduced price of
REGT. Out of the 148 consumers who have already installed REGT, 115 were granted
FIT, which means that only 33 consumers did invest without the incentive. However,
some of them could have invested due to an investment subsidy that reduced prices.
While most ‘eco-warriors’ invested (47 out of 50) in REGT, 26 of them accepted FIT.
In addition, 7 ‘eco-warriors’ also used a subsidy to install REGT. Since at least some
‘eco-warriors’ would also have invested without FIT, the existence of FIT is crowding-out
voluntary investment. In particular, as can be observed from the left chart of Figure[13]in
Appendix[B], the oldest installations were accepting FIT. Only after some time consumers
(including ‘eco-warriors’) started also investing on their own (next to accepting FIT but
not rejecting it when available), as the technology improvements allowed more consumers
(than the amount of FIT support available) to invest. This indicates that the existence
of high FIT may be initially beneficial (to help the REGT technology to improve), but is
crowding out other incentives to invest later on, since even consumers who would invest
on their own are better off if they accept FIT.

The electricity price from the grid increases over time, as can be observed from the
right chart of Figure [I13] However, the reason for this increase is mainly caused by the
increase in prices for fossil fuels, which show an increase up to factor five throughout
the simulation. The price effect of public action is low in the first half of the simulation
(with the exception of a very strong subsidy program at the beginning), but increases
steadily in the second half. At the end, it accounts for about one-fifth of the electricity
price and is expected to remain high due to the long term character of FIT subsidy
(granted over the entire lifetime of REGT installations, Section . As a consequence,
the policy instruments already being applied will affect the REGT diffusion in the near
future (2011-2020) making installations of renewable technologies even more attractive.

Figure [5| demonstrates that, averaged over the whole history-friendly period, only
poor consumers with relatively high electricity demand become ‘energy poor’ (left chart).
Together with the right chart illustrating the cost of policy intervention compared to
income, it becomes clear that poorest households have to pay disproportionally more
for the public support of REGT. There are several reasons for this finding. First, since
electricity demand is only weakly correlated with income, the effect of rising electricity
price due to policy instruments is largest for poor consumers. This regressive effect,
especially of FIT, has also been shown for the German case (e.g., |Lehr and Drosdowski,
2013)). Second, consumers with less income have fewer opportunities to invest into REGT
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and Storage (mainly due to income and space restrictions) and, therefore, are less likely
to receive public support. As a consequence, poor consumers are most vulnerable to the
electricity price dynamics observed.
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Figure 5: Income Spent on electricity

Note: Consumers in this figure are ordered in ascending order by their income.

Another purpose of numerical experiments is sensitivity analysis. Here, we aim to
find out how robust the simulation results are to changes in parameters. Although it
is impossible to discuss each parameter in detail, we would like to stress only the most
important ones. First, naturally our results are sensitive towards changes in the initial
values concerning costs and efficiency. Also, the extent to which innovation and learning
can reduce those characteristics over time have a strong impact on the results (which
is not surprising given the decisions of consumers are based on the comparison of the
two technologies). One more important parameter worth mentioning is the distribution
of environmental preferences, because the model results may be driven by the exact
distribution of those preferences among consumers. In Figure in Appendix [C] the
effect of reassigning those preferences prior to each simulation run is demonstrated. The
black lines show the results for the standard parameter distribution used in nearly all runs
presented in the present study, while the red lines illustrate the results from the same
parameters except that income and REGT preferences are newly re-distributed before
each simulation restart (just ensuring that the two are weakly correlated). Both diffusion
patterns look very similar illustrating that our model results are robust for different
combination of income and environmental preferences among individual consumers. Thus,
we conclude that the choice of the parameters is accurate for the purpose of our study
since i) many of them we tune based on empirical estimates; ii) we can replicate some of
the key empirical figures (diffusion of REGT, improvement in REGT levelised cost) and
stylised facts (e.g., asymmetric distribution of policy costs among electricity consumers)
in the history-friendly exercise; iii) we demonstrate that the results are sufficiently stable
to changes in consumer individual characteristics.

4 Counterfactual Analysis by Differential Evolution

In this section we take a challenge in ‘looking further ahead’ instead of only in the
‘rearview mirror’ as has been put by Garavaglia (2010)). A necessary limitation of the
counterfactual (i.e. ‘what if’ ) analysis provided below is that it provides sufficient (in
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the structure of the present study) but not necessary condition for a certain outcome.
Therefore, results shall be considered with caution. Nevertheless, we believe that this is a
very promising direction of research, particularly in the line of history-friendly modeling
literature, fostering the discussion on the normative role of modeling in economics.

To identify an optimal policy mix we apply an exercise from the optimal control
literature (see, e.g., Blueschke-Nikolaeva et al.,[2012), where a set of controls is optimised
to achieve the states as close as possible to policy targets. An important difference is
that since we fix the overall budget of policy interventions.[ﬁ Therefore, the controls
themselves do not contribute to an objective function value, but only the corresponding
states achieved. The states in our study are of two types only: the difference between
the targeted and reached level of REGT on the market and a penalty added in case the
energy grid’s stability becomes vulnerable.

Another difference to optimal control literature consists in taking only the final year
of simulation into account in evaluating the objective function. Thus, e.g. diffusion may
be slow or fast, but the policy maker is solely interested in the final outcome.

min(J) = (Diffusion” 9 — Di ffusion”*) — log (Stability) (23)

where Di ffusion”®9¢ is the target set by policy maker for the system at the final period
T, (i.e. 26% diffusion of the REGT technology), while Diffusion ! is the level of the
REGT diffusion achieved, respectively. Thus, in our case a positive deviation from the
target value is penalised, while a negative deviation (i.e. an ‘over-achievement’) reduces
the value of the objective function, as the policy makers are even more successful with
their policy intervention then expected. log (Stability) represents the penalty on grid
instability, which is measured as a logarithm of the percentage of electricity produced
either out of fossil sources or supported by sufficient storage capacity]

4.1 Differential Evolution

To optimise the function, a Differential Evolution (DE) algorithm proposed by Storn and
Price| (1997) is used. The choice in favor of a so-called heuristic optimisation method
is due to i) large flexibility in terms of formulating our ABM and its main objective
function with no essential assumptions about the optimisation model (for more details
read |Gilli and Schumann (2014)) and ii) not necessarily ‘well-behaved’ search space of
our problem (with non-linearities and multiple local optima), where classical methods are
inappropriate. Since computing power has increased dramatically over the last decades,
it is also less a problem of time to optimise our ABM by DE|

35Tn particular, the yearly budget for the last ten years is taken close to the value observed in the last
year of the history-friendly part (i.e. 2010) (thus, we assume that in the future the yearly sum of support
should not increase further). For the period of 30 years we consider the sum of the history-friendly budget
and the one we fix for the last ten years, thus ensuring comparability between the exercises in terms of
the total budget spent on REGT support. The overall extent of public support for the history-friendly
run and the DE is shown in Table [I]in Appendix E}

361t is easy to see that objective function is falling in Diffusion with constant marginal return
for each additional percent of electricity produced by means of REGT, while J is also falling in Stability
with the difference that of diminishing marginal returns, i.e the more stable situation we have, the less
every additional percent of unstable electricity supply is penalized. Note that the form of the objective
function has been selected to be simple. It can be easily substituted if necessary. However, in the
following we illustrate that it well balances the diffusion and stability in a 30-year experiment.

370ur ABM is written in R. A single restart of the ABM for the parameter setting stated requires
from 6 to 30 seconds using R 3.1.1 and Pentium IV 3.3 GHz (depending on the policy mix and planning

Actual
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DE is a population-based optimisation technique for continuous objective functions
and only few tuning parameters to initialise (Blueschke et al.; 2013). In short, starting
with an initial population of random solutions (line 2 in Algorithm , DE updates this
population by linear combination (line 7) and crossover (line 9) of four different solution
vectors into one, and selects the fittest solutions among the original and the updated
population. This continues until some stopping criterion is met. More specifically, DE
starts with a randomly initialised set of candidate solutions P-(i)i (j=1,.,K;,t =
1,.,T7PE i = 1,...,p) of the K x TPE x p size, where K x T E is the dimension of
a single candidate solution, with K = 7 being the number of control variables (policy
intervention options in our case) and TPF — the size of the planning horizon (120 or
360 months), and p is the population size. Based on the tuning exercise described in
(Blueschke et al., 2013| p. 825-826), p = 10 x K, the shrinkage parameter F' is set to 0.8,
while the crossover rate CR = 0.3. A detailed discussion on how DE can be applied and
tuned for optimal control problems is provided in [Blueschke et al.| (2013]).

As for the DE stopping criterion, this has to: i) ensure that DE population of solutions
converges to an optimum (local or global); ii) signal DE to stop once the convergence is
observed. Again, in line with Blueschke et al.| (2013]), we set an upper limit on the number
of DE generations to be performed within one restart (G™** equal to 500), but at the
same time control for convergence within the population by looking on the candidates’
objective values. In particular, DE algorithm stops if 50% of solutions in the population
reach a deviation less then 10~ from the best solution available. In addition, if for 100
periods more than 50% of solutions in the population do not improve, the algorithm
also stops. Since our model contains stochastic components, one must repeat the model
evaluation for each candidate solution certain number of times (3 in our case) and use
their median value (more on advantages of using the least median objective value is
written in [Savin and Blueschke (2015)).

Algorithm 1 Pseudocode for Differential Evolution

1: Initialize parameters K,TP¥ p, F and CR

2: Randomly initialize P](t)m j=1,--- K;t=1,---,TPE. j=1,... p

3: while the stopping criterion is not met do

4. PO — p1)

5. for:=1topdo

6: Generate r1,r9,r3 €1,-++ D, 11 # 19 F T3 7£ )

7: Compute P() = P( 241 + F x (PEO}2 P(OTS)

8: forj—ltoKandt—ltoTDEdo

9: if u < CR then Pj(t)Z Pj(t)Z else P](?)Z = Pj(’(t)?i

10: end for

11: if J(P")) < J(P") then P} = P") else P") = P*)

12: end for
13: end while

To illustrate the convergence of the DE algorithm we run a small-scale experiment
with the same targets but the planning horizon of three years only (2011-2013, i.e. if
the goals would have been set for 2013) also reducing the size of the DE population
to p = 3 x K but for 100 independent DE restarts.[g_g] Results of the experiment are

horizon considered).
38Note that although a single evaluation of the ABM takes merely seconds, a single DE run with 500
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illustrated in Figure [I6]in Appendix [C] In the upper left plot of the figure the cumulative
distribution function for different ¢ is given, whereas the other plots are kernel density
plots of objective function values identified. Increasing the number of generation the
distribution shifts left and becomes less dispersed around the potential global optimum
solutionﬂ Since DE is a stochastic optimization algorithm, later on we always restart it
five times and report the best solution selected.

4.2 Outlook for 2011-2020

We run the DE algorithm taking the history-friendly run presented in Section[3|as a basis.
Here, of special importance is the policy mix applied. Assuming that the government
keeps its promises, FIT introduced in former periods limits the autonomy of decision
in later periods. For the policy mix candidate solutions used in our DE algorithm, we
have to make sure that sufficient money is allocated on paying for the ‘old’ installations
that were installed with FIT. This reduces the funds to be allocated for other policy
instruments (or used for new installations with FIT).

As can be observed from Figure [6] the policy mix found by DE is dominated by FIT.
However, this high level of FIT was predetermined by the ’history-friendly’ part of the
simulation and is decreasing as fast as the promise of paying FIT over a period of 20 years
allows. No new FIT is granted, strongly indicating in the direction of FIT being too high
before, so the money could have been spent more efficiently on other instruments.

A = FIT for electricity from REGT
B = Public R&D (REGT)

C = Public R&D (Storage)

D = R&D Subsidy (REGT)

E = R&D Subsidy (Storage)

F = Installation Subsidy (REGT)
G = Installation Subsidy (Storage)

Share of Budget in %
I
|

Policy Instruments

Figure 6: Policy Mix derived from 10 years DE runs

Over the course of ten years, budget is spent rather evenly among the different policy
instruments (with the obvious exception of FIT). There is, however, a slight advantage
for storage technology, which is interesting since it shows a switch in priority of the policy
maker in the model (in the "history-friendly’ part, there was very little spent on storage).
The temporal distribution of the non-FIT instruments shows a slight bias towards the

generations would require 10 x 7 x 3 x 500 = 105’000 model evaluations, which makes the computation
of 100 such restarts with standard office computers very expansive (several months time).

39Note that similar results in terms of the objective function are obtained by very similar solutions in
terms of policy budget allocation. Thus, although one cannot guarantee that the same objective value
cannot be obtained by two (very) different solutions, we compare the standard deviation of the 100 best
identified J values with the standard deviation among the corresponding P, _; solutions, and both are of
the order 107°.
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beginning, which means that it seems optimal to spend the budget early on, given that
technology costs have already decreased substantially in the ’history-friendly’ period.

The diffusion of REGT continuous in a nearly linear manner and reaches about 19%
in the last year, meaning that the government is not able to reach its diffusion goal of
26% diffusion with the budget limitation and policy mix combination[”] The price of
REGT decreases by 20% over the course of ten year (compared to the value at the end
of the history-friendly run), while efficiency increases by 20 percentage points and is now
60% higher than at the beginning of the history-friendly runs. All in all, 234 consumers
installed REGT installation, which is very close to 25% of the population and an increase
by 58% compared to the end of the ’history-friendly’ run.

85.5% of all electricity produced is considered stable. Here, most of the stable elec-
tricity still comes from the fossil plants. However, the number of consumers who have
installed a storage facility (131) is quite high. This means that more than half of all
consumers who invested into REGT also have installed a storage solution. However, only
8 consumers did install a sufficient amount of REGT installations and storage facilities to
completely cover their demand (allowing them to become autarkic from the grid). All in
all, only about one fourth of all electricity generated from REGT can be stabilised with
the installed storage. The cost of the storage technology decreased by ~50% compared
to the end of the "history-friendly’ runs, while the efficiency increased by about 20%.

Scenario with increased budget

A = FIT for electricity from REGT
B = Public R&D (REGT)

C = Public R&D (Storage)

D = R&D Subsidy (REGT)

E = R&D Subsidy (Storage)

F = Installation Subsidy (REGT)
G = Installation Subsidy (Storage)

Share of Budget in %

Policy Instruments

Figure 7: Policy Mix derived from 10 years DE runs (increased budget)

The extraordinary high share of spending for FIT raises the question whether the budget
restriction is too strict. Therefore, we repeat the experiment with a 50% increased budget.
The optimal policy mix can be observed from Figure[7] FIT is still at the minimum level.
The most notable change is in spending for the installation subsidy for storage, which
reaches very high levels, indicating a focus on storage diffusion, especially in the middle
of the period. The other instruments remain relatively low. Compared to the runs with
less budget, it seems that the budget constraint prevented investing more into storage,
even though it would have been optimal. This indicates that, by large shares of the
current budget being blocked by the ‘old” FIT, a favorable shift in focus of the policy mix

40Note that there are no charts presented here since the developments are nearly linear. However, the
results can be obtained on request.
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is impeded. This result again highlights the double-edged nature of the feed-in tariff. It
allows the policy maker to induce strong diffusion and learning with little contemporary
costs, but limits the choice set in the future.

Unsurprisingly, the higher budget allowed for better results. Diffusion reached 21%,
while 88% of all electricity generated was considered stable. Note that while the difference
in stability appears to be small compared to the case with lower budget, it is actually
much higher. If there is an increase in the diffusion of REGT, more unstable electricity
is in the electricity market. Before, there were 19% of unstable electricity which had to
be stabilised, now there are 21%. Therefore, the actual amount of stabilised electricity
was 4.5%, while now it is 9%. The number of storage facilities installed is therefore twice
higher than before. However, even with the increased budget, the results both in stability
and REGT diffusion are far away from their goals, indicating that more time is needed
to reach them, especially for stability.

4.3 Optimisation over the entire period 1990-2020

In contrast to Section [£.2] the 30 year runs are not based on the ’history-friendly’ part
and therefore start in 1990. It is immediately observable from Figure [§ that FIT has
much less dominance in the policy mix, which allows the policy maker to shift around
budget freely. However, at the end of the time frame, there is a large investment into
FIT, which is discussed below. The policy starts with a strong investment into basic R&D
for storage, which helps to make it available early on. After this, support for storage is
mostly realised through installation subsidies (which is the policy instrument with the
largest budget, except for FIT). Therefore, policy demonstrates demand-side focus only
in the later period, while at the beginning a relatively larger emphasis is made on the
supply-side support (R&D).

A = FIT for electricity from REGT
B — Public R&D (REGT)

C = Public R&D (Storage)

D = R&D Subsidy (REGT)

E = R&D Subsidy (Storage)

F = Installation Subsidy (REGT)
G = Installation Subsidy (Storage)

Share of Budget in %

Policy Instruments

Figure 8: Policy Mix derived from 30 years DE runs

Figure [0 shows the development of several policy indicators over time. From the top
left chart can be observed that the diffusion of REGT is weaker over a long time period
compared to the actual German values. However, towards the end of the simulation there
is a sudden rise in diffusion. In the end, 315 consumers did install REGT, which is more
than in the previous outlook for ten years. The REGT price decreased by 75% over the
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time period, while the efficiency of the technology increased by 55%. All in all, the system
costs (price and efficiency combined) decreased by 85%, which is not much more than
what was achieved in the "history-friendly’ runs above. The reason for this finding is the
learning effect becoming weaker with the number installations madeﬂ
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Figure 9: Characteristics of REGT evolution with optimal policy support

Note: In all charts the median run + /- two standard deviations are presented.

The high final rate of diffusion can be attributed to the strong increase in FIT at
the end and several periods of high installation subsidy for REGT. This seems to be an
optimal solution since the strong demand-side support occurs in a period when the tech-
nology has already evolved for some time (based on R&D), which increases the amount of
REGT the government can support given the budget constraint. However, this strategy
is only optimal since we take the diffusion at the end of the simulation as policy goal,
while considering interim targets as well changes the result.lﬂ Furthermore, even though
the results are better than for the ten years run based on the ’history-friendly’ results,

41Since we assume only a domestic market here, we do not consider the learning effect acquired else-
where. We conducted tests including (exogenous) foreign demand with different strengths (i.e. allowing
for up to 400 REGT plants being exported starting from year 2000 with increasing trend, to model a
growing world market) . The results are stable in terms of differences between the policy mixes and are
available upon request.

42 As an alternative, we also tried to introduce an interim target for the REGT diffusion — the actual
diffusion level of Germany in 2010. What one can observe is that because the policy maker is aware of
the storage technology in advance and takes this into account while calculating optimal policy design,
both more support and diffusion on the side of storage is observed. This comes at the price of lower
budget and reached diffusion rates for REGT. The results are available on request.
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the actual policy goal of 26% diffusion is still not met. Here, the median result is 22.5%
compared to 19% above.

The same can be said about storage technology. The share of stable electricity is
much higher for the optimal policy mix over 30 years (89%), compared to the ten years
case. Again, since much more unstable electricity has to be stabilised compared to the
original 10 years run, the amount of storage is much higher (11.5% compared to 4.5%).
As was the case for REGT, also for storage the diffusion is fastest towards the end of the
observed period. 189 consumers did install storage facilities. In relation to the number of
consumers who installed REGT, this is close to the result for the ten year runs, but here
each consumer on average installed more storage facilities. Also, the number of people
becoming autarkic from the grid is 20 for this run, which is 2.5 times more than in the
counterfactual scenario with ten years and no budget increase (but still a low number).
The price of storage facilities decreased by about 2/3, while the efficiency increased by
30%, which is still below the extent of REGT progress. This is not surprising, however,
given that FIT supports Storage only indirectly.
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Figure 10: Gains and losses from investing into REGT for different policy mixes

Note: Gains and losses are in percent of income available. The first decile is not shown due to the too low number of
consumers installing from this decile, which is illustrated in the bottom right chart — the number of people in both scenarios
(dark gray with 30 years of DE optimization and light grey — the combination of 20 years of history-friendly policy mix
and the last 10 years selected through DE optimization) investing in REGT grouped according to income deciles. The
remaining deciles are shown in parallel for the case where DE was applied to the last ten years only (denoted with’(10)’)
and for the entire period 1990-2020 (denoted with’(30)’).

Another interesting question is how much each policy mix crowds out the intrinsic
incentives to install REGT based on preferences. Figure [10] illustrates the distribution
of gains and losses among consumers who invested into REGT. In particular, it is clear
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that overall consumers benefit more when taking the history-friendly policy support as
a basis. Hence, the policy mix derived from the 30 years DE experiment is better in
two dimensions. First, it generates on average less gains for the consumers who installed
REGT, which is good from the policy maker’s perspective since those gains imply funds
that could have been assigned more efficiently (i.e. policy support being 'wasted’; recall
the quote from Cantono and Silverberg| (2009) in the epigraph). Second, that policy
mix has a higher number of consumers investing in REGT without FIT and installation
subsidy. This means that in the absence of demand-side support the progress of the
REGT and Storage technologies (thanks to supply side R&D fostered by the policy mix)
provoked consumers with high preferences to invest on their own, which is beneficial
since the policy maker instead of crowding out private incentives involves consumers in
sharing the cost of the transition process, and by this is able to produce superior results
regarding the diffusion and stability. Note here that in the 30 years DE experiment there
is also a relatively large number of consumers from the lower income percentiles who
make losses, indicating that REGT reached the levelised cost that allows even relatively
poor consumers to act upon their preferences.

The difference in installation pattern is further detailed in Figure [II} Here, it is
depicted when each consumer made her REGT installation and how many plants were
installed. In the upper graph (with first 20 years of a history-friendly scenario), one
can see a lot of installations supported by FIT between 2000 and 2010, which is caused
by the historically strong increase in FIT during this period. As a side consequence,
there are quite few installations afterward (none of them supported by FIT). In the
lower graph, there are much less installations prior to 2015. Instead, one observes many
small installations (majority being done without any demand-side support). Once FIT is
increased, a very strong investment (especially from wealthier consumers) takes place. It
is worth stressing here that given the REGT technology is more advanced in this scenario
by 2015, those FIT and installation subsidy measures cost much less in absolute values
to secure a large number of installations.

5 Discussion and Conclusion

This study models development of the electricity market in Germany over the period
between 1990-2010 and makes an outlook for the following ten years. Its aim is to
analyse the conditions under which a transition towards a sustainable electricity can be
achieved more efficiently. The transition is based on diffusion of two different technologies:
the renewable electricity generation and storage. Since both are characterised by high
costs and low efficiency at the beginning, policy intervention is necessary to start the
transition (as it is shown in the simulations run without policy support in Section .
Without policy intervention, the diffusion process stops very fast, since there are too few
consumers investing at the current prices and efficiency levels to make the technology an
attractive investment to the broader mass of people.

Using a set of policy interventions sharing important features of the policy mix applied
in Germany over the last 20 years, we are able to reproduce a very similar diffusion pattern
as observed in Germany in 1990-2010. We take this result as a basis for our counterfactual
exercise, in which we aim to optimise the policy mix reaching simultaneously high REGT
diffusion and high (electricity grid’s) stability for the following ten years. From the
history-friendly experiments we can gain several insights. First of all, the introduction of
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FIT is a very effective and contemporary cheap way of inducing the diffusion of REGT.
However, this comes at relatively high costs later on and is inflexible over time. In
particular, since FIT is granted for 20 years, it is not possible to reduce spending on FIT
in the short run, at least not without breaking the promise given by policy maker to
respective households. Introducing FIT creates strong path dependency inside the policy
mix, as future spending has to take into account the funds already promised for FIT in
former periods. In addition, FIT (and to some extent also REGT installation subsidies)
is crowding out voluntary investment into REGT installations, since even people who
would invest without incentives are better off accepting FIT or the subsidy (or both).

The counterfactual analysis, in its turn, demonstrates the possibility to identify a
policy mix over 1990-2020 by DE which is superior to the one for 2010-2020 based on
the results of the "history-friendly’ run. This indicates that, for the purpose of reaching
the 2020 target of REGT diffusion, the historical policy mix of Germany introduced too
strong demand-side instruments too early. While they did produce impressive diffusion
rates, it would have been more cost efficient to introduce them later, when the technology
was more evolved and the same amount of money could have generated more diffusion.
Of course, this is at odds with the goal to bring greenhouse emissions down as fast a
possible, since most greenhouse gases accumulate over time in the atmosphere, which
makes an early diffusion desirable. Also, from an international perspective, it creates
interesting and adverse incentives. If one assumes that imitation of a technology is cheap
(or if the technology can be bought by the cheapest producer without restrictions), each
country has an incentive to postpone own investment into REGT and storage technology
as long as possible, to benefit from the improvements based on the investments made by
others. This is likely to lead to an underinvestment in the technology and a too low rate
of diffusion to tackle the international climate problems.

To sum up, the following policy insights can be gained. First of all, it is important to
define binding intermediate goals, to ensure a steady diffusion of new technologies and to
avoid adverse incentives. In addition, the policy maker should avoid fixing large shares of
its budget over a long period of time, since it looses the ability to react to changes in the
development (e.g., the emergence of a new technology). To avoid a conflict between the
two objectives, a policy mix regarding the long-term diffusion of a new technology should
be based on as broad as possible political consensus. Otherwise, a government fearing
to loose an election against competitors, who follow different policy goals regarding the
technology, might be tempted to create precedents by using policy instruments that bind
the policy maker over a long period of time to ’conserve’ its political will in this field.

In none of our (median) scenarios the policy makers were able to fulfill the goals
they set themselves for 2020. This can have several reasons. One possible explanation is
that we prohibited budget increases after the "history-friendly’ period, assuming that the
policy maker wants to avoid further cost increases, which could jeopardise the political
support for REGT from the electorate. Even with a 50% increased budget, the policy
maker is not able to meet its goal, though the results improve. Another option we have
excluded consists in the possibility of breaking the promise to buy REGT electricity at
the fixed price through FIT (e.g., in 2011 just after the history-friendly period). The
modeling of a such a policy shock, however, is not trivial, while we consider this option to
be rather unrealistic. Last but not least, one could model interaction with foreign mar-
kets in more detail and increase their importance. In particular, while some robustness
tests allowing manufacturers to export some REGT and Storage plants did not change
the results considerably, one could consider the possibility of exogenous technological im-

31



provements in the form of knowledge spillovers or import of superior plants from other
global technological leaders such as the USA and Japan. On the other hand, one should
remember that we took the evolution of the fossil fuel price from 2011 onwards as a
random walk which seems to be clearly above the price dynamics we observe today (and
can be considered as an unexpected economic shock). Since the lower fossil fuel price
makes the fossil electricity more competitive, one would need even stronger support for
the transition process, which in its turn makes the realisation of the 2020 policy goal even
less likely.

There are several promising directions to extend our work. One limitation of our
model as of now is that preferences are fixed, which is not very realistic given the long
time period under consideration. Therefore, a preference changing mechanism, e.g. due to
consumer interaction, would add some explanatory power, especially if the ‘eco-warriors’
are able to convince other consumers. Also, we make the assumption that all consumers
interact with each other with the same probability, which is again unlikely. Therefore, a
spatial representation of consumers would contribute to our model. Ideally this should
be implemented through a certain network structure, in which single consumers are only
connected to a limited number of other consumers. However, this would increase the com-
putational demand of our model greatly. A more suitable option would be to introduce a
regional structure, where each consumer is assigned to a specific region. Consumers who
belong to the same region have a higher chance of interacting with each other. Also, this
would allow us to study the effect of REGT on the electricity grid better, since one could
assume that certain transmission capacity is necessary to transfer electricity between the
regions, which is interesting because the irradiation and wind power being unevenly dis-
tributed inside most countries. This should allow one to look at regional effects of REGT
and storage technology as well.
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Appendices

A Analytical description of the simulation model

Table 1: Parameters used
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Description Symbol Value
Number of consumers N 1000
Share of ‘eco-warriors’ 1) 0.05
Number of fossil producers P 10
» Number of manufacturers M 3
% Number of periods considered by manufacturers for capacity change | S 5
% Maximum production capacity increase per period Inc 1
g Maximum production capacity decrease per period Dec 0.5
Té Average percentage of GDP per year government support
g in history-friendly run (240 periods) Support 0.75
© Average percentage of GDP per year government support
in DE (120 Periods) SupportpE 1.53
Average percentage of GDP per year government support
in DE (360 Periods) SupportpE 0.95
E Life expectation of fossil power plants (years) Lifey 40
g Life expectation of REGT (years) Life, 20
i Life expectation of storage technology (years) Lifes 20
é Maximum percentage of income to be spent on electricity 0] 0.1
E Minimal up-time of fossil plants vy 0.7
M Initial value for fuel price Fuel Price, 1
Parameter for learning effects LearnRate 0.86
Share of manufacturer’s turnover invested into R&D shareRD 5%
Initial value for number of sold REGT installations StockSold,. ; 3
o Initial value for number of sold storage installations StockSolds ¢ 3
.g Initial value for number of sold fossil plants StockSoldy 250
g Initial value for installation cost of REGT InstallCost, ¢ 32
E Initial value for installation cost of storage technology InstallCost, ¢ 32
Initial value for installation cost of fossil plants InstallCosty 4 200
Initial value for efficiency of REGT Efficiency,+ 1
Initial value for efficiency of storage technology Efficiencys ¢ 1
Initial value for efficiency of fossil technology Efficiencyy,, 105
Foreign Demand for REGT (Standard) ForeignDemand, | 0
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