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Abstract

Information about the future may be instrumentally useful, yet scary. For example, many

patients shy away from precise genetic tests about their dispositions for severe diseases. They

are afraid that a bad test result could render them desperate due to anticipatory feelings. We

show that partially revealing tests are typically optimal when anticipatory utility interacts

with an instrumental need for information. The same result emerges when patients rely on

probability weighting. Optimal tests provide only two signals, which renders them easily

implementable. While the good signal is typically precise, the bad one remains coarse. This

way, patients have a substantial chance to learn that they are free of the genetic risk in

question. Yet even if the test outcome is bad, they do not end in a situation of no hope.
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1 Introduction

It is one of the most elementary principles of decision theory that agents prefer to have as much

information as possible before making a decision. More information allows agents to fine-tune

their decisions. For example, planning the future becomes easier when knowing the challenges

that lie ahead.

The following thought experiment may illustrate why nevertheless there are contexts in which

information is not necessarily desirable: Imagine there was a test that could determine whether

you survive the next t years or not. Set t to a relevant value, e.g., about half the time you

expect to survive from now on. Assume that for some reason you are entirely confident about

the accuracy of the test. Would you want to get this information? Contrary to the reasoning in

the first paragraph, this is a question many people find difficult to answer.

While most people are currently not confronted with such a fundamental testing decision, people

under risk of having inherited Huntington’s disease are. Huntington’s disease is a severe genetic

disorder which breaks out around the age of 40. As more and more cells get damaged by

the disease both mental and physical health deteriorate. After some years, patients end up in

dementia and disability, needing full-time care. Patients die 20 years younger than other people

on average. There is no cure for Huntington’s disease. Children of patients have a 50% risk of

having inherited the disease (provided that exactly one parent has it). Consequently, the risk

for grandchildren is 25%. Since the 1980s, a genetic test is available which allows to almost

perfectly determine if a person will eventually get the disease.

People under risk often find it difficult to decide whether to take the test or not. There are

books solely dedicated to this decision.1 Many people postpone the decision, they wait for years

before eventually taking the test. The problem of testing for Huntington’s disease may seem like

a – disturbingly severe – minority problem. Yet likely, this type of problem will become more

wide-spread as research into human genetics progresses and more and more genetic dispositions

become detectable. We will employ this testing decision as our running example in the following.

1See, e.g., Baréma (2005).
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This paper presents a simple but robust model that aims at capturing why tests that provide

life-changing outcomes can be challenging. To this end, we blend risk preferences regarding

anticipated outcomes with instrumental information. We study the design of optimal tests in

this setup. Optimal tests often turn out to be coarse. They either provide a perfectly informative

signal in the good domain, then, the genetic risk is absent. Or they provide a coarse bad signal,

which means that the patient has to correct his hope to stay healthy downwards. In the latter

case, there still remains justified reason to hope that the disease will not break out as the coarse

signal emerges from pooling.2 This differentiates the coarse test from the precise one. We also

show that when a patient relies on prominent forms of probability weighting regarding future

outcomes the results remain robust.

This type of test is easily illustrated in terms of our thought experiment from the beginning.

Imagine that with a probability of 50% you will survive the next t years. Consider a test that

provides only two outcomes: If you will live for more than these t years, the test reveals this

with a probability of, say, 30%. In all other cases, you receive a pooling signal which implies

that you have to adjust your life expectancy slightly downwards. Thus, taking the test offers

the possibility of getting good news while you never receive information that you will die within

the next t years for sure. Taking such a test may feel less scary than a precise one.

The medical literature has discussed the careful use of precise tests extensively3 but has not

looked into the possibility of letting patients choose between precise and coarse tests. While new

in medical testing, randomized mechanisms are well-established in a variety of other contexts.

Examples range from complex random procedures for determining start configurations in sports

contests (such as in the soccer world cup) to randomized pricing in the airline industry.4 We

emphasize in this paper that the technical progress in the design of information structures allows

for better test design when it comes to crucial, potentially life-changing tests as in medical

2Thus there are no false negatives, while false positives occur. Here, we use the term positive as in “HIV-
positive”.

3For example, basic fertility tests, though cheap, are recommended only to couples who have unsuccessfully
tried for one year to become pregnant, see the current guidelines of the CDC or the British NHS. Recently, the
PSA test (an indicator for prostate cancer) was criticized heavily for being overused on patients, see, e.g., Walter
et al. (2006).

4See also Kamenica and Gentzkow (2011) for a recent contribution regarding strategic randomization in infor-
mation transmission as applicable in litigation.
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contexts as well.

The key idea behind our model is that an agent’s utility at a given point in time is influenced

not only by his current situation but also by expected future prospects. This is the anticipatory

utility approach put forward by Loewenstein (1987), see below for more references. For a very

simple example of anticipatory utility, people look forward to holidays in Hawaii and this may

lift up their spirits even months before the journey begins. Notably, what influences their utility

now is not how those holidays will actually turn out to be, but how they expect them to be.

This idea is subtly yet crucially different from the classical assumption that an agent only takes

into account the (discounted) utility he enjoys at a later point in time when making a decision.

Agreeing to receive a piece of information is, so to say, equivalent to entering a gamble over

anticipated utility outcomes which – by Bayesian rationality – leaves the status quo unchanged

in expectation. Thus, other factors aside, an agent who is risk-averse with respect to anticipated

utility will never want to receive any information about the future – while an agent who is “risk-

loving”, i.e. eager to learn about the future, would opt for precise information. The risk aversion

in our model is hence analogous to the standard concept of risk aversion with the only difference

that it applies to anticipated outcomes instead of realized physical outcomes.

In addition to anticipatory utility our model incorporates costs. Agents with better information

make better decisions, e.g. better suited career or family plans. Under risk aversion regarding

anticipated payoffs, this leads to a trade-off. Getting more information allows to make better

plans for the future, but it also increases the risk of obtaining bad information that will lower

anticipatory utility.

Our model and analysis can easily be augmented to include other behavioral aspects. An-

ticipatory utility has been identified as a plausible factor in decisions about receiving crucial

information about the future. There may be alternative or additional reasons why patients shy

away from medical tests. Likewise, avoiding costs from less than optimal plans for the future

need not be the only argument in favor of perfectly revelatory tests.5 We design optimal tests

when there are conflicting forces at work. As a concrete example, we adapt the analysis to a

5Another reason could be curiosity, which, as we will see, can be covered by the analysis as well.
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setting where patients use probability weighting to evaluate the likelihood of different health

outcomes. The difference between being healthy with a probability of 95% or 100% may be

perceived as much greater than the difference between 50% and 60%. This is the famous “un-

derweighting of high probabilities” pointed out by Kahneman and Tversky (1979). Even in

the absence of instrumental information, probability weighting leads to the same structure of

optimal tests as before. Probability weighting is thus a second, independent factor in favor of

tests that either deliver clear-cut good news, or a coarse bad signals.

Section 2 introduces our basic model of medical testing in the presence of anticipatory utility and

instrumental information. In Section 3, we solve the decision problem of a doctor designing an

optimal test for a patient. Section 4 introduces additional assumptions under which the optimal

test provides either clear-cut good news or a pooling signal that corrects beliefs about staying

healthy downwards. This test structure emerges when the quality of life plans primarily hinges

on the precision of information about the future, and if information aversion is more pronounced

for bad outcomes than for good ones. Section 5 adapts our framework, allowing anticipatory

utility to depend on behaviorally weighted probabilities. Again, the same test structures turn

out to be optimal. Section 6 concludes. All proofs are in the appendix.

1.1 Related Literature

Contributions such as Loewenstein (1987), Caplin and Leahy (2001), Brunnermeier and Parker

(2005), Epstein (2008), Kadane, Schervish and Seidenfeld (2008) and Golman and Loewenstein

(2012) have developed concepts of anticipatory utility in the behavioral economics literature.

Building on this research, Caplin and Leahy (2004), Caplin and Eliaz (2003), Kőszegi (2003,

2006) and Oster, Dorsey and Shoulson (2013) study information transmission in doctor-patient

relations. The main distinction between our work and most of these contributions is that we

focus on the design of optimal tests that can be partially revelatory.

Caplin and Leahy (2004) study testing decisions under anticipatory utility yet in the absence of

instrumental information. Kőszegi (2003, 2006) blend anticipatory utility with costs of subopti-

mal decisions. Kőszegi (2003) focuses on patients’ preferences with regard to perfectly revelatory
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tests. Kőszegi (2006) studies the exchange of information between doctor and patient in a cheap-

talk game in which the doctor is severely limited in his power to commit on truthfulness. The

patient has to choose between taking a therapy or not. For the doctor, as he cares about the

patient’s well-being, this creates an incentive to downplay the severeness of the patient’s illness

(as long as the patient still takes the therapy).6 Yet the patient understands this, and therefore,

the doctor can only credibly release rough signals about the health status of the patient.7 In

a sense complementary to this analysis, we focus on the case where commitment is possible as,

e.g., in genetic testing, as hard information can be generated in this case and the doctor does not

receive more information than the patient himself. See also the discussion at the end of Section

2. Finally, in an empirical study, Oster, Dorsey and Shoulson (2013) show that anticipatory

utility can well explain observed decisions for and against taking the perfectly revelatory test

for Huntington’s disease.

To our knowledge, Caplin and Eliaz (2003) is the only other paper which considers optimal test

design under anticipatory utility. The authors focus on tests for HIV. They suggest partially

revelatory certificates as a way to motivate agents with anticipatory utility to get tested at all.

Caplin and Eliaz identify a testing procedure that yields an ‘infection-free” equilibrium such

that HIV is no longer transmitted to healthy people. The test is thus designed with a different

intent, namely protecting healthy people. The well-being of an individual patient is a potential

constraint that does not allow the test-designer to implement the first best solution which would

be a perfectly revelatory test. Thus there is a conflict of interest between test-designer and

potentially infected patients. This is different from our analysis, where doctor’s and patient’s

interests are perfectly aligned. The goal is to identify the optimal test according to an individual

patient’s needs.

Eliaz and Spiegler (2006) have argued that models of anticipatory utility have difficulties in

capturing the following phenomenon. Patients with a high probability of being healthy are more

information-seeking than patients with a low probability. However, in the settings of Sections 4

6The doctor would thus release messages like “It looks basically fine but we may nevertheless do the therapy
to be on the safe side...”

7Kőszegi (2006) also briefly considers the case where the doctor can commit on truthful revelation. Yet under
his assumptions on preferences and costs, this always leads to full revelation.
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and 5, we observe this type of behavior. The optimal test is non-revealing for small priors and

partially revealing for large priors. We discuss how our findings can be reconciled with their

results at the end of Section 4.

There has been some debate about revealed-preference foundations for anticipatory utility (Eliaz

and Spiegler, 2006, Epstein, 2008). Further, it may be difficult for a doctor to infer a patient’s

exact preferences for information. Our contribution is, in a sense, orthogonal to this discussion.

We argue that the same small family of tests emerges as optimal under a broad class of prefer-

ences. Thus, offering the patient some tests from that family can be a good idea even without

knowledge of his exact preferences.

From a technical point of view, our paper is related to works on strategic conflict in information

transmission: Rosar (2014) also considers test design. The characterization of optimal signals

in Kamenica and Gentzkow (2011) crucially relies on a classical result from geometric moment

theory (Kemperman, 1968) which is also the key in our derivation of optimal tests. These

papers focus on problems caused by strategic interaction between economic agents. We consider

problems caused by the need to control one’s own expectations. In our model, there is no conflict

of interest when it comes to information transmission.

2 The Basic Model

Consider the following game between a receiver of information (“the patient”) and a revealer

of information (“the doctor”). Doctor and patient share the goal of maximizing the patient’s

utility. They also have the same information about the patient’s preferences and the ex-ante

situation. There is an initially unknown state of the world X which takes the values 1 and 0

with commonly known probabilities p and 1 − p.8 Throughout, X = 1 denotes the preferred

outcome (“the patient is healthy”). X = 0 denotes the unfavorable outcome (“the patient has

a severe genetic mutation and will become ill”). The timing of the game is as follows.

(i) The doctor designs a test by specifying a signal S.9 S is a random variable correlated with

8In applications such as genetic testing, such priors only hinge on which relatives of a patient are known to
have the disease.

9Throughout, we use the words “signal” and “test” interchangeably. The former is more in line with the
language of theoretical economics and the latter is more in line with the language of the doctor-patient relationship.
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X.

(ii) The patient learns the distribution of S. He decides whether he wants to take the test and

observe S, or not.

(iii) The patient forms a posterior belief B about the distribution of X. If he has taken the

test, his belief to be healthy adjusts, B = P [X = 1|S]. If he opted against the test, B

remains the prior belief, B = p.

(iv) The patient settles on a life plan, modeled as choosing a value y ∈ [0, 1].

Both agents optimize the patient’s expected realized utility given the information they have.

This realized utility is given as the sum of three terms

Uc(X) + θU(E[X|B])− (1− θ)C(X, y).

The term Uc(X) captures the classical, “physical” utility from being healthy or ill. We assume

Uc as an increasing function, thus Uc(X) is largest when the patient is healthy.

The term U(E[X|B]) depends on the patient’s posterior expectation of X.10 This term captures

anticipatory utility. For example, a patient may feel miserable knowing that he will become ill.

Anticipating this, he may want to avoid a too revelatory test about his health condition. We

assume U as increasing, continuous and concave.

The cost term C models how the patient can enhance his condition by a careful choice of life

plan y. C : {0, 1}× [0, 1]→ R has the property that for fixed x ∈ {0, 1}, C(x, y) is continuous in

y and takes its unique minimum in C(x, x) = 0. The cost term is thus minimal when the patient

knows the state of the world X and can choose the best-suited life plan y = X. If the patient

does not know X, he cannot adjust his plans optimally to his (future) health condition. This

leads to costs out of suboptimal planning, c(X, y). For example, the patient may want to opt

for a different career plan, travel more or take more leisure time, care better about his savings,

10A credible testing procedure will have to obey the rules of Bayesian statistics. Resulting posteriors are
communicated explicitly to the patient. This rules out misperceptions of probabilities. For potential effects of
probability weighting, see Section 5.
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or buy a home close to his family instead of moving far away or even abroad if he knows he is

going to become ill eventually.

θ ∈ [0, 1] is a parameter that captures how important anticipations are compared to choosing a

good life plan. We will later vary θ in order to investigate the interplay of the two terms.

We think of Uc(X), U , and C as aggregates over all future time periods, i.e., discounted sums

of future physical utilities, future anticipations, and future costs of having chosen a life plan y

which is – ex post – suboptimal. Likewise, the choice of life plan y should be understood as

an aggregate over many decisions (occupational choice, investment and saving plans, etc.). If

we think of X as a genetic indicator of whether a disease will eventually break out, the patient

inevitably observes X in the far future. Accordingly, the life plan y only captures decisions made

before that point in time.

Two simplifications of the game are immediate. The physical utility term Uc(X) is unaffected

by the doctor’s and the patient’s decisions. It thus does not play any role in the later analysis.

Likewise, the doctor will always propose the best possible test for the patient. We can thus

assume without loss of generality that the patient accepts the test in stage (ii) of the game. If

the patient would refuse any (partially) revelatory test, the doctor offers an uninformative test,

As we will see, the doctor may propose a test that is completely uninformative, or a test that is

only partially revealing.

We assume that the doctor can offer the test the patient likes best. For instance, he may send

instructions for generating the test to a medical laboratory. With regard to genetic testing,

many noisy signals can be created by mixing blood samples of different patients and just testing

the mixed sample for the genetic mutation of interest.11 Assume the blood of two people at risk

is mixed and then tested with a precise test: If the mixed blood sample is clean, both patients

are free of the genetic mutation. If the mixed blood sample contains the mutation, either one of

the patients carries the mutation, or both do. This test thus generates a noisy signal. Of course,

another way to generate noisy signals is via computerized, anonymous processes.

11In other medical contexts, e.g., to ensure safety of blood donations, testing mixed samples is a known procedure
for reducing costs, see Section 6 for more discussion.
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Some authors have emphasized that preferences for information are influenced by their acces-

sibility.12 Indeed, a patient will likely be influenced by knowing that a sheet of paper with

his diagnosis is hidden in a stack of documents right in front of him. However, it is easy to

anonymize the testing procedure in a way that no such sheet of paper exists and that the doctor

does not have access to X either.

3 Optimization

This section focuses on the Perfect Bayesian Equilibrium (PBE) of the doctor-patient game.

Proposition 1 and 2 characterize, respectively, the beliefs induced by an optimal test and the

optimal test itself. Proposition 3 describes how the optimal test becomes more revelatory if the

costs of making wrong decisions become more important compared to the anticipatory effects.

In order to find the equilibria, let us first consider the patient’s choice of y given that B has

taken the realization B = b. Ignoring terms that are independent of y, the patient’s problem to

choose a good life plan y is given by

min
y
c(b, y) where c(b, y) = bC(1, y) + (1− b)C(0, y).

Since c(b, y) is continuous in y ∈ [0, 1], an optimal choice of y exists for all b. We denote it by

y∗(b). The costs given that the patient behaves optimally are thus

c∗(b) = c(b, y∗(b)).

Our first result shows that c∗ is concave in b.

Lemma 1. The function c∗(b) is continuous and concave in b ∈ [0, 1].

We now turn to the doctor’s task of designing the optimal test for the patient. We take an

indirect approach. First, we determine the optimal belief B∗. Then we construct a test that

induces this belief. To this end, denote by B the set of random variables valued in [0, 1] that

12See Golman and Loewenstein (2012) for a model which takes these aspects into account.
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have mean p. By Bayesian consistency, the doctor cannot induce any belief outside of B, as the

prior needs to be preserved in expectation.13 The set B thus encodes all possible tests, including

the special cases of perfect revelation (B ∈ {0, 1}) and no revelation (B = p a.s.).

The doctor aims at maximizing the patient’s expected utility, assuming the patient chooses the

conditionally optimal life plan y∗ based on the test result:

max
B∈B

E[V (B)] where V (b) = θU(b)− (1− θ)c∗(b). (1)

Here, we have ignored the term E[Uc(X)] since, by the law of iterated expectations, it does

not affect the maximization problem. Further, we have used that E[X|B] = B and thus

U(E[X|B]) = U(B). By assumption, U is concave. Moreover, Lemma 1 has shown that −c∗

is convex. Thus, for θ ∈ (0, 1), the function V is generally continuous but neither convex nor

concave. This stems from the conflict that lies at the heart of the problem: The more standard

cost-term from choosing an unsuitable life plan, E[−c∗(B)], demands resolution of uncertainty.

Yet the anticipatory utility term, E[U(B)], suggests to avoid information.

U does not need to be globally concave for this conflict to arise. As soon as V is non-convex,

the optimal test should not be fully revealing for some priors p. Similarly, our analysis is robust

to further psychological factors such as anxiety, curiosity, fear, etc. The sole property of V that

is used in the following is that it is a continuous function.14 For instance, we could add a term

γF (b) modeling curiosity to the function V . In order to capture that a more informative signal

satisfies the patient’s curiosity better, we could assume that F is strictly convex. This would

not require any changes to our analysis (and we could conclude that for sufficiently large γ the

incentives for receiving as much information as possible become dominant). Formally, a similar

trade-off between concavity and convexity also lies at the heart of Kamenica and Gentzkow

(2011)’s results on partial revelation in strategic information transmission. In their setting,

one agent, the sender, can observe the state of the world. His utility depends on the decision

13It can be shown that the doctor can induce any B ∈ B, see Shmaya and Yariv (2009). Since we will first
determine the optimum B∗ ∈ B and then implement it directly, this type of result is not needed here.

14This continuity is a convenient technical assumption since it implies that V attains intermediate values,
maxima and minima. It can be relaxed at the expense of more complicated statements of the results. See Section
5.2 for an application where V is discontinuous.
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made by another agent, the receiver, who uses the information he receives to maximize his own

utility. When preferences are aligned, full revelation is optimal in their setting. In contrast, in

our analysis it turns out that full revelation is often dominated by less revelatory information

structures.

The optimization problem (1) is a classical problem in geometric moment theory which was

solved independently by various authors in the 1950s. We refer to Kemperman (1968) for an

overview of the earlier literature. To our knowledge, Richter (1957) contains the first published

statement of a result which immediately implies Proposition 1 below.15 For ease of reference,

we provide a short and non-technical exposition of how to solve (1) which is given in the proof

of Proposition 1.

The key observation is that the patient’s utility from the optimal test is given by V (p) where V

is the smallest concave function weakly greater than V . Moreover, the optimal test can be read

off from the graph of V as is depicted in Figure 1.

Figure 1: Construction of V

For illustration, consider a test inducing a belief B that takes only the two values dl < p < dh.

The patient’s utility from this test can be found graphically by connecting the points (dl, V (dl))

15For a broader perspective on moment problems, generalized Chebychev inequalities and applications in deci-
sion analysis, see Smith (1995). The result is also a key ingredient in Kamenica and Gentzkow’s (2011) analysis
of strategic information transmission. Earlier applications of similar techniques in the context of strategic infor-
mation transmission are found in Aumann and Maschler (1995).
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and (dh, V (dh)) and evaluating the value of the resulting line segment at p. Since V can be

characterized as the supremum over all line segments which connect two points in the graph of

V , V (p) is exactly what the optimal test can achieve. The proof of Proposition 1 demonstrates

this point in more detail. It also shows that beliefs B which take more than two values cannot

achieve more than V (p).

Proposition 1. Denote by V the smallest concave function with V (b) ≥ V (b) for all b ∈ [0, 1].

Then a solution B∗ ∈ B to (1) is given as follows:

(i) If V (p) = V (p) then B∗ = p with probability 1.

(ii) If V (p) > V (p) denote by I = (bl, bh) ⊂ [0, 1] the largest open interval with p ∈ I and

V (b) > V (b) for all b ∈ I. Then B∗ takes values bh and bl with probabilities

ph =
p− bl
bh − bl

and pl = 1− ph.

In both cases, E[V (B∗)] = V (p).

Existence of V is ensured since the convex hull of the graph of V exists and V is the upper

contour of that convex hull. It is easy to check that B∗ is unique if there are no subintervals of

[0, 1] on which V is linear.

To get some more intuition for the objects in the proposition, consider the case of θ = 0, i.e.,

the case of a patient who only cares about early resolution of uncertainty. Then V is convex

and accordingly, V is given by the straight line connecting (0, V (0)) and (1, V (1)). In that case,

V (b) > V (b) for all b ∈ (0, 1) and the proposition implies that B∗ takes values 0 and 1 with

probabilities 1 − p and p. Thus the patient perfectly learns from the test whether X = 0 or

X = 1. In the case where θ = 1, i.e., for a patient whose interests are dominated by anticipatory

utility, V is concave and thus V ≡ V . Accordingly, we are in case (i) of the proposition and the

optimal belief B∗ coincides with the prior p. Hence the optimal test does not reveal anything.

In the case where V and V coincide on some interval, it depends on the prior p whether the

optimal test should reveal something or not.
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Proposition 1 characterizes the structure of optimal beliefs. In particular, it shows that optimal

beliefs B∗ lie in the subset B2 ⊂ B. Here, B2 is defined as the set of random variables on [0, 1]

which have mean p and which take only two values bl and bh where bl ≤ bh. Thus, to derive the

optimal signals, it suffices to show that for any B ∈ B2 there exists a signal S which induces B.

This is the result of the following proposition.

Proposition 2. Fix 0 ≤ bl < p < bh ≤ 1 and consider the random variable S with values in

{“Good”, “Bad”} that is generated upon observing X as follows:

If X = 1 then

S =

 “Good” with probability α

“Bad” with probability 1− α.

If X = 0 then

S =

 “Good” with probability β

“Bad” with probability 1− β,

where α, β ∈ [0, 1] are given by

α =
bh
p

p− bl
bh − bl

and β =
1− bh
1− p

p− bl
bh − bl

.

The resulting belief B = P [X = 1|S] only takes values in {bl, bh} and E[B] = p.

Here, S = “Good” is better news than S = “Bad” since it induces the higher posterior prob-

ability bh of the good state of the world X = 1. It is straightforward to rewrite the test of

Proposition 2 in a way that X only needs to be observed with some probability.

We close this section with some qualitative results on optimal tests. The first result confirms

the intuition that smaller values of θ – representing a higher significance of the cost term – lead

to more precise tests.

Proposition 3. Fix p ∈ (0, 1) and θ > θ′. Denote by {bl, bh} and {b′l, b′h} the values taken by

the optimal belief under, respectively, θ and θ′. Then bl ≥ b′l and bh ≤ b′h. Thus the optimal test

under θ′ leads to beliefs which are closer to knowledge of X than the optimal test under θ.
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The next result further illustrates the structure of optimal tests and states the following: Con-

sider only tests which take two values and fix the lower of the induced beliefs dl to a value which

is less informative than optimal, dl ∈ (bl, p). What is the optimal induced upper belief d∗h?

Proposition 4 shows that d∗h ∈ (p, bh], implying that if a test is less informative than optimal in

one direction, it is best to leave it less informative than optimal in the other direction, too.

Proposition 4. Define the prior p and the values of an optimal belief {bl, bh} as above. Assume

that bl < p < bh and fix some dl ∈ (bl, p). For dh ∈ (p, 1), denote by D(dl, dh) ∈ B the random

variable with mean p which takes only values dl and dh. Assume there exists dh such that

E[V (D(dl, dh))] > E[V (p)] so that some beliefs D(dl, dh) are better than no information. Then,

if d∗h is a solution to

max
dh

E[V (D(dl, dh))],

it must hold that d∗h ≤ bh.

We have considered the case where dl is fixed and dh is variable. The argument for the opposite

case is analogous.

4 Accuracy on Good News

Sometimes it may be difficult to observe, or communicate, the utility function V in its en-

tirety. Moreover, even if V is completely known, constructing the optimal test remains a two-

dimensional optimization problem. Thus, even though the optimal test is easy in the sense that

it just provides two potential results, there may still be challenges when designing it. In this

section, we restrict the functions U(·) and C(·, ·) a bit more. The quality of a life plan will hinge

on how far away it is from the ex post optimal one, and the patient will be specifically scared

about receiving very bad news. Designing the optimal test then reduces to determining one

single parameter. The optimal test structure becomes as follows: The test may perfectly reveal

the good state of the world, but it never perfectly reveals the bad state. In other words, there

are no false signals of disease-freeness, while false positives occur. A patient thus either learns

that he remains healthy for sure, or he receives a pooling signal. In the latter case, his belief
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of staying healthy is corrected downwards, but not to zero.16 In the terminology of Proposition

2, the optimal test is characterized by α ∈ (0, 1) and β = 0. Such a test structure emerges for

example if V is concave on pessimistic beliefs and convex on optimistic ones as we will see in

the following.

Assumption 1. Let V be continuously differentiable and assume there exists a point bc ∈ (0, 1)

such that V (b) is strictly concave on [0, bc] and strictly convex on [bc, 1].

The idea is that for pessimistic beliefs about staying healthy, the anticipatory utility term is

dominant, while the cost term dominates for optimistic beliefs. Such situations occur if costs of

making suboptimal plans hinge on the distance to the ex-post optimal plan, while anticipatory

utility is more sensitive to small changes in beliefs near the undesirable diagnosis X = 0. If

patients are specifically scared of ending in a situation of no or very low hope, this assumption

should be fulfilled. The following example provides concrete functional assumptions on U and

C which describe such a setting. The calculations are in the appendix.

Example 1. Suppose U is three times continuously differentiable with U ′′′ > 0. For x ∈ {0, 1},

the function C(x, y) is given by C(x, y) = (x−y)2. In this case, there exist thresholds θl ≤ θh in

[0, 1] such that V is strictly concave for θ ≥ θh and strictly convex for θ ≤ θl. For all θ ∈ (θl, θh),

there exists a point bc ∈ (0, 1) such that V (b) is strictly concave on [0, bc] and strictly convex on

[bc, 1].

In the example, either costs or anticipatory utility dominate for extreme values of θ. This leads

to perfectly revelatory or non-revelatory optimal tests. For intermediate values of θ we are in

the setting of Assumption 1. Anticipatory utility dominates at pessimistic beliefs while the cost

term dominates for optimistic beliefs. The idea behind the example is the following. Regarding

anticipations, learning a bit more feels particularly risky if very bad outcomes are possible.17

16A similar class of tests was found optimal in Rosar (2014) in a model of strategic conflicts in information
transmission. Caplin and Eliaz (2003) choose this type of test for implementing an “infection-free” equilibrium
in their model of testing for AIDS.

17Recall that U is concave and thus U ′′ being increasing means that U ′′(b) is closer to zero for larger b. The
assumption of an increasing second derivative of U , U ′′′ > 0, was coined “prudence” by Kimball (1990). It is
a necessary condition for decreasing absolute risk aversion and thus satisfied by many of the standard utility
functions.
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With regard to the costs of an unsuited life-plan, it is only the distance to the ex-post optimal

plan that matters.

The construction of V is depicted in Figure 2. Define for z ∈ R the linear function gz : [0, 1]→ R

as the straight line connecting (0, z) and (1, V (1)). Pick a value z∗ such that gz∗ is tangential to

V at some point (bt, V (bt)). Set V equal to V on [0, bt] and equal to gz∗ on [bt, 1]. In the picture,

it is evident that this construction yields a concave function which weakly dominates V . The

next proposition shows that this construction always works and that the resulting function is

indeed V .

Figure 2: Construction of V under Assumption 1

Proposition 5. Under Assumption 1, the function V can be constructed as follows.

(i) If gV (0)(b) ≥ V (b) for all b ∈ [0, 1], set V = gV (0) and bt = 0.

(ii) Otherwise, there exist a unique z∗ ∈ R and bt ∈ (0, bc] such that gz∗(b) ≥ V (b) for all b

and gz∗ is a tangent to V in bt. Set

V (b) =

 V (b) if b ≤ bt

gz∗(b) if b > bt.

The boundary case (i) corresponds to the situation where the straight line connecting (0, V (0))

and (1, V (1)) dominates the graph of V for all b. In this case, full revelation is optimal at all
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priors. Case (ii) is depicted in Figure 2. In that case, the function V is first concave and then

linear, making the optimal test prior-dependent. Combining the preceding analysis with the

result of Proposition 2, allows us to explicitly state the optimal tests:

Proposition 6. Under Assumption 1, the optimal test is as follows.

(i) If p ≤ bt, the optimal test is perfectly non-revealing, e.g., α = β = 0.

(ii) If p > bt, the optimal belief B∗ takes only values bl = bt and bh = 1. The resulting optimal

test is given by

α =
1

p

p− bt
1− bt

and β = 0.

Here, α and β are as defined in Proposition 2. Thus, for bt > 0, the optimal test sometimes

reveals X = 1 but never X = 0.

The analysis in this section shows that simple binary tests with α ∈ [0, 1] and β = 0 may

be promising candidates to include into menus of tests. If a doctor wishes to propose some

test options to a patient – in addition to the perfectly revelatory and perfectly non-revelatory

tests represented by α ∈ {0, 1} and β = 0 – it might be a good starting point to include a

discretization of the range of α, e.g. the three tests corresponding to α ∈ {14 ,
1
2 ,

3
4}, and β = 0.

In the case bt > 0 of Proposition 6, we see that patients with a small prior probability of the

favorable outcome18 refuse any further information. Patients with a larger prior will instead like

a partially revealing test best.19 The demand for information thus depends on the prior.

In contrast, Eliaz and Spiegler (2006) have argued that anticipatory utility cannot explain this

intuitive type of preference reversal (see their Example 2). Their critique is based on the following

result (their Proposition 2): Suppose the fully revealing test is either the best possible or the

worst possible test for p close to 0 or for p close to 1. Then the fully revealing test is either

best or worst for all p ∈ [0, 1].20 Yet note that this claim does not stand in conflict with our

18These people are in a sad kind of lottery-like situation as they only have a small chance of the good outcome.
19Moreover, under Assumption 1, patients with a sufficiently large prior typically prefer complete information

over no information. This holds whenever the straight line connecting (0, V (0)) and (1, V (1)) is greater than V
near 1.

20This can be seen as follows: Proposition 1 implies that for any prior full revelation can only be best or worst
when the straight line connecting (0, V (0)) and (1, V (1)) lies above or below the graph of V for all b. This a
global property which is prior-independent.
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results.21 For bt > 0, the fully revealing test is never optimal. For all priors, full revelation is

dominated either by no revelation or by partial revelation. With a similar argument, one finds

that full revelation is never the worst either. Instead, a partially revealing test turns out as the

worst for small priors, and a perfectly non-revealing test is worst for large priors.22 Thus, under

Assumption 1, the premise of the analysis of Eliaz and Spiegler (2006) that full revelation is

either best or worst is typically not fulfilled.

5 Biased Perceptions of Probabilities

The previous section showed that the interplay between anticipatory utility and the instrumental

value of information can give rise to tests that are more accurate on good than on bad news.

This happens whenever Assumption 1 is fulfilled such that the function V is concave up to some

point and convex from there on. This section demonstrates that situations where Assumption

1 holds also arise if the patient relies on probability weighting, even if there is no instrumental

value of information. Probability weighting, i.e. a biased perception of probabilities, is thus a

second, independent argument in favor of the structure of optimal tests identified in Proposition

6.

In the following, let us set the instrumental value of information to zero, i.e., θ = 1. Unlike

before, we assume that the patient’s anticipatory utility does not depend on the posterior belief

B directly, but rather on a weighted version w(B) of that belief. Such probability weighting

has been discussed extensively in the behavioral literature, mostly in the context of prospect

theory and rank-dependent utility.23 Following that literature, we assume that the probability

weighting function w is an increasing function with w(0) = 0 and w(1) = 1 so that probabilities

of certain events are evaluated correctly. Further, the typical form of w is an inverse S-shape:

w grows quickly near 0 and near 1. The patient thus perceives differences between intermediate

probabilities, e.g. 40% and 70%, smaller than they really are. To such a patient, a coarse test

21Epstein (2008) provides an alternative reconciliation using richer classes of preferences which may depend on
the prior in more general ways than under classical, expectation-based anticipatory utility.

22The worst possible test can be read off from the smallest convex function below V in an analogous fashion to
the optimal test. As seen in Figure 2, this smallest convex function is linear starting in (0, V (0)) until some point
bw in the concavity region where it is tangential to V . The worst possible test induces beliefs bl = 0 or bh = bw
for p < bw while it is non-revealing for p > bw.

23See Wakker (2010), especially Chapter 7, for an introduction.
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that involves a clear-cut signal of disease-freeness may be specifically appealing. The chance of

learning to be perfectly healthy outshines the potential risk of bad, yet still coarse, news. The

following analysis confirms this intuition.

The doctor’s test design problem now becomes

max
B∈B

E[V (B)] where V (b) = U(w(b)). (2)

When optimizing over potential tests, the doctor takes an unbiased expectation over the patient’s

long-term well-being as affected by the respective test results.24 25

As long as the function V is continuous, this problem falls under the analysis of Section 3.

Section 5.1 provides conditions under which Section 4 applies as well. Optimal tests sometimes

confirm perfect health but only provide coarse bad news. Section 5.2 studies the so-called neo-

additive probability weighting function w(b) which has discontinuities at b = 0 and b = 1, thus

incorporating an even sharper distinction between certain and uncertain prospects. While the

analysis is technically a bit different, we show that again, the test structure from the previous

section remains optimal. Finally, we provide some results that disentangle the influences of

“overweighting of small probabilities” and “underweighting of large probabilities” on optimal

tests.

5.1 Smooth Probability Weighting

In this section, we assume that the function w is three times continuously differentiable and

strictly increasing with w(0) = 0 and w(1) = 1. Moreover, we assume that there exists bc ∈

(0, 1) such that w is strictly concave over [0, bc] and strictly convex over [bc, 1]. The latter is

the assumption of an inverse S-shape which is satisfied by most common smooth probability

24A patient will likely have to live many years with a test result, such that biases in risk perception could play
important roles for the utility he derives from that result. Studies document that patients tend to estimate health
risk from genetic disease with less bias than risk resulting from unhealthy behavior (Weinstein, 1984). This may
be driven by an illusion of control rather that by an unrealistic optimism per se (compare McKenna, 1993). Yet
also with regard to genetic risk, biases in perception have been documented in patients (e.g. Erblich et al., 2000).

25A patient may be in addition short-term biased regarding probabilities of test results. Yet such biases become
irrelevant right after the test has been conducted. We therefore assume that the doctor optimizes the patient’s
welfare taking into account how the patient will feel about the test result in the decades to come but not how the
patient may distort the probabilities of test outcomes right before the test is carried out.
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weighting function such as those of Tversky and Kahneman (1992) and Prelec (1998) over the

commonly studied parameter regions. The following observation is immediate.

Corollary 1. Suppose that the patient’s anticipatory utility is linear in perceived beliefs, i.e.,

V (b) = w(b). Then V satisfies Assumption 1.

Thus, even for a patient who is neutral to variations in his biased probabilities, the optimal test

is of the form described in Proposition 6 and thus involves coarse signals. This finding is in

contrast to the case V (p) = w(p) = p of unbiased perceptions of probabilities where any test

is as good as any other since E[V (B)] = p for any admissible B. We next return to the case

where the patient is averse to variations in his biased beliefs so that U is concave. Proposition

7 formulates sufficient conditions such that the interplay of U and w induces a function V that

is first concave and then convex and thus fulfills again Assumption 1.

Proposition 7. Suppose U is twice continuously differentiable and DARA, i.e., −U ′′(x)/U ′(x)

is decreasing. Denote by h(y) = w−1(y) the inverse of w and assume −h′′(y)/h′(y) is strictly

increasing with limy↑1−h′′(y)/h′(y) =∞. Then, the function V (b) = U(w(b)) satisfies Assump-

tion 1.

Intuitively, what needs to be ensured for the result is that the concavity of U dominates for small

b while the convexity of w dominates for large b. The DARA assumption implies that U becomes

increasingly less concave. The assumption on h = w−1 goes into the opposite direction. Being

the inverse of w, h is S-shaped and switches at bc from convexity to concavity. The “IARA”

assumption ensures that this switch is also a local property so that the function first becomes

less and less convex and then more and more concave.

We next show that the probability weighting function proposed by Prelec (1998) satisfies the

requirements of Proposition 7 over a wide range of parameters.

Proposition 8. Let

w(b) = exp(−κ(− log(b))ρ)

where ρ ∈ (0, 1) and κ < ρ−ρ. Then for h(y) = w−1(y) we have that −h′′(y)/h′(y) is increasing

with limy↑1−h′′(y)/h′(y) =∞.
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ρ ∈ (0, 1) guarantees that w has an inverse S-shape rather than an S-shape. Moreover, as

ρ−ρ > 1, κ can take any value in [0, 1] and even larger values. The result thus covers the one-

parameter case of Prelec’s probability weighting (κ = 1) but also many cases with κ > 1, as long

as κ does not become too large. For instance, Wakker (2010) proposes ρ = 0.65 and κ = 1.05 as

plausible values. With ρ = 0.65, the restriction becomes κ ≤ ρ−ρ ≈ 1.32 which clearly includes

the case κ = 1.05.

The probability weighting function due to Tversky and Kahneman (1992)

w(b) =
bρ

(bρ + (1− b)ρ)
1
ρ

is analytically not as tractable as Prelec’s but we can easily verify visually that its curvature

satisfies our assumptions for common estimates of the parameter ρ. Here, we make use of the

fact that instead of monotonicity of −h′′(y)/h′(y) we can equivalently study monotonicity of

w′′(b)/(w′(b))2 as is shown in the proof of Proposition 7. As seen in Figure 4 in the appendix,

the curve w′′(b)/(w′(b))2 is increasing and divergent at b ↑ 1 in all cases. The values of ρ between

0.56 and 0.71 are taken from Table 1 of Bleichrodt (2001) who reports estimates from various

studies.

5.2 Neo-additive Probability Weighting

Finally, let us consider the case in which probability weighting takes the form of the neo-additive

weighting function w(0) = 0, w(1) = 1 and w(b) = ρ+ b(κ− ρ) for 0 < ρ < κ < 1 and b ∈ (0, 1).

The weight function is thus linear over (0, 1) but discounts probabilities which are between zero

and one, treating them as if they lay between the values ρ and κ. ρ > 0 can thus be interpreted

as the perceived likelihood of very unlikely yet still possible outcomes, while κ corresponds to

outcomes which are almost certain but not guaranteed. Varying these parameters can give

further insight into how the interplay of probability weighting and anticipatory utility works.

To warm up, let us consider the simple case where utility translates directly into weighted beliefs,

i.e., V (b) = w(b). As w is no longer continuous, we cannot directly apply our previous results.

It turns out that the optimum is no longer characterized by the concave hull of V . In fact,
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the optimum does not even exist anymore. Yet there are ε-optimal tests. These implement the

beliefs (bεl , bh) = (ε, 1). Thus, the patient either learns that he is healthy for certain, or ill with

a high probability.

Proposition 9. Define ŵ(b) = ρ+ b(1− ρ) for all b ∈ [0, 1] and consider the case V (b) = w(b).

Then, any admissible belief B ∈ B satisfies E[V (B)] ≤ ŵ(E[B]) = ŵ(p). For ε ∈ (0, p), the

family of tests inducing the beliefs Bε which take values (bεl , bh) = (ε, 1) satisfies

lim
ε↓0

E[V (Bε)] = ŵ(p).

In this setting, the smallest concave function dominating V is given by w(b) = ŵ(b) for b > 0

and w(0) = 0.26 Arguing as in Section 3 would thus suggest an optimal test which is perfectly

revealing. Yet such a test is now dominated by tests which are only almost perfectly revealing.

This difference emerges due to the jump of V at zero.27

Let us now analyze the more general case where V (b) = U(w(b)) for some twice continuously

differentiable, increasing, strictly concave function U . The patient thus considers variation in

posterior beliefs as undesirable again. The function V jumps from U(0) to U(ρ) at zero and

from U(κ) to U(1) at one. Over the interval (0, 1), V is strictly concave. As depicted in Figure

3, two cases emerge analogously to the two cases in Proposition 5.

(i) Consider the function V̂ (b) = U(ρ)+b(U(1)−U(ρ)), the straight line connecting (0, V (0+))

and (1, V (1)) where V (0+) = U(ρ). If V̂ (b) ≥ V (b) for all b ∈ [0, 1], then we are essentially

back in the setting of Proposition 9. V̂ (b) is identical to the smallest concave function

greater than V over (0, 1] but does not jump at zero. ε-optimal tests are highly revealing

but they avoid a signal no hope.

(ii) If V̂ (b) ≥ V (b) is violated for some b > 0, then V , the smallest concave function dominating

V , is identical to V up to some point bt and linear from there on. bt is the unique point

at which the tangent to V (b) passes through (1, V (1)), see Lemma 2 below.

26A concave function on a closed interval can have jumps on the interval’s end points.
27In particular, V is no longer upper semi-continuous, a property that guarantees existence of optimal signals,

e.g., in Kamenica and Gentzkow (2011).
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Figure 3: Case (i) on the left and (ii) on the right with V in black and V̂ in gray. In case (ii)
the tangent for the construction of bt is in light gray.

A simple condition determines whether we are in case (i) or case (ii).

Lemma 2. If

U ′(ρ) · (κ− ρ) ≤ U(1)− U(ρ) (3)

holds, we are in case (i), i.e., we have V̂ (b) = U(ρ) + b(U(1) − U(ρ)) ≥ V (b) for all b ∈ [0, 1].

When (3) is violated, we are in case (ii), i.e., there exists b > 0 such that V̂ (b) > V (b) and a

unique point bt ∈ (0, 1) at which the tangent to V (b) passes through (1, V (1)).

Condition (3) compares the slope of V in 0+ to the the slope of V̂ . As seen in Figure 3, the

interior tangential point bt cannot exist when the slope of V̂ is globally larger than the slope

of V . From (3), we see that it depends on κ whether we are in case (i) or (ii). By the strict

concavity of U , it follows that (3) is always satisfied for sufficiently small κ ∈ (ρ, 1), and violated

for sufficiently large κ. The case distinction thus depends on how strongly high probabilities are

underweighted. When underweighting is strong and κ is small, the jump of V near one dominates

the information aversion induced by a concave U . We are thus in case (i) and ε-optimal tests

are almost fully revelatory. When κ is sufficiently large, so that underweighting is moderate,

we observe an interplay between probability weighting and anticipatory utility, leading to the

optimality of partially revealing tests which have the same structure as in Proposition 6.

Proposition 10. Suppose that (3) is violated so that we are in case (ii). The tangential point
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bt ∈ (0, 1) is characterized by

U(1)− U(w(bt)) = (1− bt)(κ− ρ)U ′(w(bt)). (4)

Optimal tests are characterized as in Proposition 6:

(i) If p ≤ bt, then the optimal test is perfectly non-revealing.

(ii) If p > bt, then the optimal belief takes only values bl = bt and bh = 1.

Thus, if the prior probability of being healthy is too small, the patient avoids further information.

When the prior probability is sufficiently large, the patient prefers a test which sometimes reveals

perfect health but never the opposite.

We next discuss how this effect depends on ρ and κ, the overweighting of small probabilities of

being healthy and the underweighting of larger ones. To this end, we study how the threshold

bt reacts to small changes in ρ and κ. We interpret a decrease in bt as an increase in the utility

from information: A decrease in bt implies both that the range of priors under which patients

benefit from information is greater, and that the optimal test (bl, bh) = (bt, 1) is more dispersed.

Proposition 11. Suppose that (3) is violated and denote by bt a solution to (4). We have

dbt
dρ < 0 and

dbt
dκ

> 0 ⇔
(
−U

′′(bt)

U ′(bt)

)
bt(1− bt)(κ− ρ) < 1.

In particular, −U ′′(bt)
U ′(bt)

< 4 implies dbt
dκ > 0.

Thus, an increase in ρ, i.e. a stronger overweighting of small probabilities, always increases the

benefit of information. A decrease in κ, i.e. a stronger underweighting of large probabilities, has

the same effect if the absolute risk aversion term −U ′′/U ′ is not too large. The effect is reversed

when U is very concave, corresponding to a strong aversion against information in the absence

of probability weighting.

6 Conclusion

Precise tests can be scary. Patients, for example, may shy away from tests that reveal whether

they have a hereditary disease anchored in their genes or not, due to anticipatory feelings. We
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show that if there is an instrumental need for information, such as career or family planning,

coarse test structures turn out optimal. Such tests typically avoid providing precise bad news.

They give one of two signals – a precise good one, or a coarse bad one. The same test structure

turns out optimal if patients rely on prominent forms of probability weighting with regard to

their anticipatory well-being.

Creating such binary tests that involve coarse signals is easy. One way is to work with pooled

samples. If several blood samples of different patients are mixed and only screened thereafter,

the detection of a marker of disease does not imply that all people in the sample are concerned,

but only that one certainly is. Testing pooled samples has been frequently used in other contexts.

For example, in order to ensure safety of blood transmission while keeping costs manageable,

pooled samples of donated blood are screened for infectious diseases, compare e.g. Stramer,

Caglioti and Strong (2002). Another option is to work with computerized methods that involve

randomization in the communication between the doctor and the laboratory.

Our paper does not suggest to give up perfectly revelatory testing. Rather, it argues that in

many situations, providing a menu of tests including the precise test but also coarse ones, would

be good. This way, patients can choose an information structure depending on their needs and

feelings. So far, if patients are too scared to take the precise test, they are just left with the

option to walk away and learn nothing.

With regard to Huntington’s disease, some may think of more conventional economic explana-

tions for avoiding the precise test. One may argue that conducting the test is costly, or worry

that finding a health insurer becomes impossible if the test result is bad.28 But neither of these

explanations can fully capture what is going on. To see this, recall the thought experiment from

the introduction about a reliable test which told you whether you would live for another t years.

The test in the thought experiment is costless. Assume the test predicted only relatively early,

sudden deaths. Then, finding a health insurer becomes easy in case of a bad test result. Still it

remains difficult to decide whether to take the test or not.

28Whether this is the case depends on the country. Germany, for example, does not allow health insurers to
discriminate based on genetic test results. For the relevant legal guidelines, see Gendiagnostikgesetz §18.
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A Proofs

Proof of Lemma 1. Fix a, b, ρ ∈ [0, 1] and define m = ρa + (1− ρ)b. Then by the optimality of

y∗, we have concavity:

c∗(ρa+ (1− ρ)b)

= (ρa+ (1− ρ)b)C(1, y∗(m)) + (1− (ρa+ (1− ρ)b))C(0, y∗(m))

= ρc(a, y∗(m)) + (1− ρ)c(b, y∗(m))

≥ ρc(a, y∗(a)) + (1− ρ)c(b, y∗(b))

= ρc∗(a) + (1− ρ)c∗(b).

Concavity over [0, 1] implies continuity over (0, 1). Continuity in 0 follows from c∗(0) = c(0, 0) =

0, and from the facts that 0 ≤ c∗(b) ≤ c(b, 0) and

lim
b→0

c(b, 0) = lim
b→0

(1− b)C(0, 0) + bC(1, 0) = 0.

Continuity in 1 follows analogously.

Proof of Proposition 1. We first show that E[V (B)] ≤ V (p) for all B ∈ B and then construct

B∗ such that it attains this upper bound. For the upper bound fix some B ∈ B and observe

that since V is weakly greater than V and concave we obtain

E [V (B)] ≤ E
[
V (B)

]
≤ V (E[B]) = V (p)

by Jensen’s inequality. Therefore, we can at most achieve V evaluated at the prior belief p.

Thus, B∗ = p is optimal whenever V (p) = V (p). To see that we can always achieve V (p) we

construct a random variable B∗ with

E[V (B∗)] = V (p)

for the other case where V (p) < V (p). Note that by its minimality, V is linear on all open

intervals J with V (b) < V (b) for all b ∈ J . Denote by I = (bl, bh) the largest interval with the

27



properties that p ∈ I and V (b) < V (b) for all b ∈ I. Since this is the maximal interval, V and

V must coincide in bl and in bh.29 Now choose B∗ as the unique random variable which takes

only values bl and bh and which has expected value p. B∗ is given explicitly in the proposition.

Since V and V agree on the two values of B∗ and by the linearity of V on I, we have

E[V (B∗)] = E[V (B∗)] = V (E[B∗]) = V (p)

and thus B∗ indeed attains the upper bound.

Proof of Proposition 2. Applying Bayes’ rule, we immediately obtain the requirements

P [X = 1|S = “Good”] =
αp

αp+ β(1− p)
!

= bh

and

P [X = 1|S = “Bad”] =
(1− α)p

(1− α)p+ (1− β)(1− p)
!

= bl.

Solving for α and β yields the solution given in the proposition. It remains to check that

α, β ∈ [0, 1]. For β this is clear since it is the product of two fractions which obviously lie in

[0, 1] by 0 ≤ bl < p < bh ≤ 1. α ≥ 0 also follows immediately. α ≤ 1 is a consequence of the fact

that

p− bl
bh − bl

≤ p

bh
.

Proof of Proposition 3. Since the optimal test is invariant to multiplying V by a constant, we

can reinterpret decreasing θ as adding a convex function to V . Recalling the definition of bl and

bh as the boundaries of maximal intervals over which V strictly dominates V , the result follows

from the following claim: Let f be a convex function and denote by V + f the smallest concave

function greater than V + f . Then, if V is strictly greater than V on an open interval I, V + f

is strictly greater than V + f over I as well. The main step in proving the claim consists of

29In particular, for the case of I = (0, 1) where this does not immediately follow from the definition of I, it is
easy to check that by the minimality of V , V and V always coincide in 0 and 1: Otherwise we could modify V
on a small interval to make it smaller.
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proving the inequality

V (b) + f(b) ≤ V + f(b) (5)

for all b ∈ [0, 1]. To see this inequality, fix some q ∈ [0, 1], denote by Bq the random variables

on [0, 1] with mean q and denote by B∗V a solution to maxB∈Bq E[V (B)]. Then by Proposition

1 and the convexity of f we conclude

V (q) + f(q) = max
B∈Bq

E[V (B)] + min
B∈Bq

E[f(B)]

≤ V (B∗V ) + f(B∗V )

≤ max
B∈Bq

V (B) + f(B)

= V + f(q)

which proves (5). The claim now follows from (5) via

V (b) < V (b) ⇒ V (b) + f(b) < V (b) + f(b) ≤ V + f(b).

Proof of Proposition 4. For fixed dl the constrained optimal test can be constructed as follows:

For d ∈ (p, 1], define gd as the straight line connecting (dl, V (dl)) and (d, V (d)). For all dh, we

have E[V (D(dl, dh))] = gdh(p) and by assumption there exists dh such that gdh(p) > V (p). Let

g be the straight line through (dl, V (dl)) with the property that g has the smallest slope among

all straight lines which are weakly greater than V over [p, 1]. Clearly, g(p) ≥ E[V (D(dl, dh))] for

all dh ∈ (p, 1]. Moreover, by the continuity of V this inequality is an equality for some values

of dh and, accordingly, g ≡ gdh for these values. Denote by d∗h the smallest value in [p, 1] such

that gd∗h ≡ g. By assumption, d∗h > p. Thus we have identified a constrained optimal belief

D(dl, d
∗
h) and it remains to show that d∗h ≤ bh. Note first that gbh(b) ≤ gd∗h(b) for all b > dl

by the definition of d∗h. Denote by f the straight line connecting (bl, V (bl)) and (bh, V (bh)) and

note that f(b) = V (b) for b ∈ [bl, bh] and f(b) ≥ V (b) for b ≥ bh by the concavity of V . Since

f(dl) = V (dl) > V (dl) = gbh(dl) and f(bh) = V (bh) = gbh(bh), it follows that gbh(b) > f(b) for
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b > bh as both functions are linear. Yet this implies that for b > bh

gd∗h(b) > gbh(b) > f(b) ≥ V (b) ≥ V (b).

Since gd∗h(d∗h) = V (d∗h) we must have d∗h ≤ bh.

Proof of Example 1. We have to show that the second derivative V ′′(b) = θU ′′(b)− (1− θ)c∗′′(b)

switches signs at most once and if it does then from negative to positive. Under our assumption

on C(x, ·), the function c∗(b) is given by c∗(b) = b(1 − b) and thus c∗′′(b) = −2 for all b. Since

U ′′ is monotone, θU ′′(b) and (1 − θ)c∗′′(b) intersect at most once and it is easily checked that

the resulting signs of V ′′ match the claims in the lemma.

Proof of Proposition 5. The proof proceeds in two steps: In the first step we show that the

construction of V in the statement of the proposition is always valid, i.e., that there exists a

unique function which can be constructed according to the prescriptions in the proposition.

Denote the constructed function by V̂ . In the second step we verify that V̂ = V , i.e., that the

constructed function is indeed the smallest concave function dominating V .

Step 1 : The construction of V given in the proposition is satisfied by a unique function V̂ .

Case (i) is clear so we turn to case (ii). Note that since V is a continuous function on a compact

set (and thus bounded) and since its derivative in b = 1 must be bounded from below by strict

convexity near 1, we can choose real numbers zl < zh with the following properties: gzh(b) > V (b)

for all b < 1 and gzl(b) < V (b) for some b ∈ [0, 1]. Define the compact set Z = [zl, zh] and define

z∗ via

z∗ = inf{z ∈ Z|gz(b) > V (b) ∀b ∈ [0, 1)}.

By the continuity of V and our choice of Z this infimum is actually attained. Since we are in case

(ii) we also know that z∗ > V (0) since gz is monotonic in z. Since gz∗ is defined as an infimum

over all gz which are greater than V and since gz is continuous in z it follows that there must

exist some bt ∈ (0, 1) for which gz∗(bt) = V (bt). Here we can exclude bt = 0 since z∗ > V (0).

gz∗ and V cannot cross at this intersection because otherwise we could increase z∗ slightly and

still have an intersection, contradicting the minimality of z∗. Thus, gz∗ and V must have the
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same slope in bt, i.e. gz∗ is a tangent to V in bt. Moreover, we must have bt < bc: Since V and

gz∗ coincide in bt and in 1, they must have the same average slope over the interval [bt, 1]. This

average slope equals their common slope in bt where they are tangential since gz∗ has constant

slope. This would immediately give a contradiction if we had bt ≥ bc since in that case V would

be strictly convex (strictly increasing slope) over [bt, 1]. The uniqueness of bt follows from the

strict concavity of V over [0, bc]: A strictly concave function cannot be tangential from below

to the same straight line at more than one point. Thus, we can always construct the function

V̂ described in the proposition. The resulting function is indeed concave since it equals V on

[0, bt] ⊂ [0, bc] and then continues with constant slope. Moreover, by the definition of z∗, we

have V̂ (b) ≥ V (b) for all b > bt.

Step 2 : V̂ from Step 1 is indeed the smallest concave function dominating V , V̂ ≡ V .

Recall that the minimum of two concave functions is again concave. Thus we must have

V (b) ≤ V (b) ≤ V̂ (b) for all b ∈ [0, 1]: If the second inequality was violated at some b then

min(V , V̂ ) would be a concave function dominating V which was strictly smaller than V at

some b, contradicting the minimality of V . Since V and V̂ coincide on [0, bt] and in 1, they must

thus also coincide with V at these values. Yet on the remaining values (bt, 1), V̂ is linear and

thus no concave function which agrees with V̂ at the end points {bt, 1} can be smaller. This

proves V (b) = V̂ (b) for all b ∈ [0, 1].

Proof of Proposition 6. For p ≤ bt we have V (p) = V (p) by Proposition 5 and thus the optimal

test is non-revealing by Proposition 1. By Proposition 5, we also know that V is linear over

[bt, 1]. Thus, for p > bt, a test which induces beliefs bt or 1 attains V (p). By Proposition 1, it is

thus an optimal test.

Proof of Proposition 7. We have to show that

V ′′(b) = u′′(w(b))w′(b)2 + u′(b)w′′(b)

has exactly one interior zero and is negative to its left and positive to its right. Writing V ′′(b) = 0
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as

−u
′′(w(b))

u′(w(b)
=

w′′(b)

(w′(b))2
,

we notice that the left hand side is positive and decreasing. Furthermore, the right hand side is

continuous and positive from some interior point on. It remains to show that our assumptions

on h(y) = w−1(y) imply that w′′(b)/(w′(b))2 is increasing and diverges to +∞ for b ↑ 1. To see

this, we differentiate the identity w(h(y)) = y twice, to obtain w′(h(y))h′(y) = 1 and

w′′(h(y))(h′(y))2 + w′(h(y))h′′(y)) = 0.

Using these two identities, we find that

w′′(h(y)

w′(h(y))2
= −h

′′(y)

h′(y)

which, by strict monotonicity of h, completes the argument as w′′/(w′)2 and −h′′/h′ are identical

up to a monotonic transformation.

Proof of Proposition 7. The inverse h of w is given by

h(y) = exp(−λ(− log(y))γ)

where γ = 1
ρ > 1 and λ = κ

− 1
ρ . The condition κ < ρ−ρ becomes λγ > 1. The first two

derivatives of h are given by

h′(y) = h(y)
γλ

y
(− log(y))γ−1

and

h′′(y) = −h′(y)

(
γ − 1

y(− log(y))
− γλ(− log(y))γ−1

y
+

1

y

)
so that the expression in brackets corresponds to r(y) = −h′′(y)/h′(y). As y ↑ 1, the summand

(γ − 1)/(y(− log(y))) converges to +∞ while the other summands in r remain bounded. Thus,

r(y)→ +∞ for y ↑ 1 as claimed. It remains to show that r′ is positive. Taking derivatives and
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simplifying, we see that r′ can be written as

r′(y) =
G(− log(y))

y log(y)2

where

G(z) = (γ − 1)(1 + γλzγ − z) + z · (γλzγ − z).

We thus have to show that G(z) > 0 for all z ≥ 0, i.e., over the whole range of − log(y). Defining

g(z) = (γ − 1)(1 + zγ − z) + z · (zγ − z) ≥ 0,

it follows from γλ > 1 that G(z) > g(z) so that it suffices to show g(z) ≥ 0. For z ≥ 1, we have

zγ ≥ z which implies g(z) ≥ 0. For the case z ≤ 1, notice first that the function f(z) = zγ − z

is convex and has its unique minimum at z∗ = γ
− 1
γ where it takes the value

f(z∗) = −γ−
γ
γ−1 (γ − 1).

We thus obtain the bound

g(z) ≥ (γ − 1)(1 + f(z∗)) + z · f(z∗).

Using that f(z∗) is negative, we find that this bound implies g(z) ≥ 0 whenever

z ≤ −(γ − 1)

(
1 +

1

f(z∗)

)
= 1 + γ

γ
γ−1 − γ.

As γ > 1 implies γ
γ
γ−1 ≥ γ, we have thus shown g(z) ≥ 0 for z ≤ 1 as well.

Proof of Proposition 9. We have V (b) = w(b) ≤ ŵ(b) for all b ∈ [0, 1]. As ŵ(b) is linear in b, we

obtain for all B ∈ B the upper bound

E[V (B)] ≤ E[ŵ(B)] = ŵ(E[B]) = ŵ(p) = ρ+ p(1− ρ). (6)

As Bε has mean p, it must take the values ε and 1 with respective probabilities 1−p
1−ε and p−ε

1−ε .
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Figure 4: Graph of w′′/(w′)2 for w of Tversky-Kahneman type, depicted for ρ ∈
{0.56, 0.6, 0.61, 0.69, 0.71}. The ordering corresponds to the one from top to bottom at b = 0.8.

It follows that

E[V (Bε)] = E[ŵ(Bε)] =
1− p
1− ε

(ρ+ ε(1− ρ)) +
p− ε
1− ε

.

In the limit ε ↓ 0, E[V (Bε)] thus converges to (1− p)ρ+ p = ρ+ p(1− ρ) which is best-possible

by (6).

Proof of Lemma 2. At the corners b ∈ {0, 1} we always have V̂ (b) ≥ V (b). We can thus replace

V by the function V0(b) = U(ρ + b(κ − ρ)) which is smooth and concave and which coincides

with V over (0, 1). Consider now the case where (3) holds. (3) is equivalent to V ′0(0) ≤ V̂ ′(0).

By the concavity of V0, it thus follows for all b ∈ (0, 1) that

V (b) = V0(b) ≤ V0(0) + V ′0(0)b ≤ V̂ (0) + V̂ ′(0)b = V̂ (b)

where we used that V̂ is linear with V̂ (0). (3) thus implies case (i). When (3) is violated, it

follows from V0(0) = V̂ (0) and V ′0(0) > V̂ ′(0) that V (b) = V0(b) > V̂ (b) for sufficiently small

positive b. We are thus in case (ii). It remains to show existence of the tangential point bt

in case (ii). V̂ and V0 are both increasing where V̂ is linear and V0 is strictly concave. They

thus intersect at most twice. One intersection is at V0(0) = V̂ (0). There must exist a second

intersection bc ∈ (0, 1) as we have V0(b) > V̂ (b) but V0(1) = U(κ) < U(1) = V̂ (b). Now consider
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the function Ṽ (b) = max(V0(b), V̂ (b)). Ṽ is concave and identical to V over (0, bc] and convex

(linear) over [bc, 1]. We can thus argue as in Section 4 that there exists a unique bt ∈ (0, bc) such

that the straight line connecting (bt, V (bt)) and (1, V (1)) is tangential to V .

Proof of Proposition 10. In light of Lemma 2, we only have to prove the characterization of bt.

After that, the remainder of the argument is analogous to the one for Proposition 6. A tangent

to V at a point bt has slope V ′(bt). By construction, the tangent at bt is identical to V at b = 1,

i.e.,

V (bt) + V ′(bt)(1− bt) = V (1).

Plugging in V ′(bt) = (κ − ρ)U ′(w(bt)), V (bt) = U(w(bt)) and V (1) = U(1) and rearranging

yields (4).

Proof of Proposition 11. By (4), we know that bt is characterized by the condition H(bt, κ, ρ) = 0

with

H(bt, κ, ρ) = U(1)− U(ρ+ bt(κ− ρ))− (1− bt)(κ− ρ)U ′(ρ+ bt(κ− ρ)).

The derivatives of H with respect to bt and ρ are given by

∂H(bt, κ, ρ)

∂ρ
= −(1− bt)2(κ− ρ)U ′′(ρ+ bt(κ− ρ)) > 0

and

∂H(bt, κ, ρ)

∂bt
= −(1− bt)(κ− ρ)2U ′′(ρ+ bt(κ− ρ)) > 0

where the signs follows from κ > ρ, bt < 1 and the concavity of U . By the implicit function

theorem, it follows that dbt
dρ < 0. The derivative of H with respect to κ is

∂H(bt, κ, ρ)

∂κ
= −U ′(ρ+ bt(κ− ρ))− bt(1− bt)(κ− ρ)U ′′(ρ+ bt(κ− ρ)).

Rearranging leads to the equivalent condition for ∂H(bt,κ,ρ)
∂κ < 0 and thus dbt

dκ > 0. The simplified

sufficient condition for dbt
dκ > 0 follows from bt(1− bt) ≤ 1

4 and κ− ρ < 1.
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