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Abstract : Applying an outlier robust extension of the data envelopment analysis (DEA) 

followed by a geoadditive regression analysis, this study identifies and decomposes the 

efficiency of 439 German regions in using infrastructure and human capital. The findings 

show that the regions’ efficiency is driven by a spatial and a non-spatial, arguably structural 

factor. As a consequence, concrete regional funding schemes, shaped by best practice results, 

might not be appropriate for all regions. Instead, a more differentiated funding scheme that 

accounts for both spatial and structural factors seems more promising. 
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DECOMPOSING REGIONAL EFFICIENCY 

1. INTRODUCTION 

If Germany is analyzed at regional level, a clear East-West divide in terms of per-capita 

income and labor productivity can be found. Twenty years after unification, income and 

productivity are generally still significantly lower in East German regions (Federal Statistical 

Office 2009). As a consequence, national and European funds have been used extensively to 

enhance the level of region-specific production factors such as transport infrastructure and 

human capital.  

 

There is a broad consensus among regional scientists that the availability of human capital 

and modern transport infrastructure defines, among other factors, a necessary (but generally 

not sufficient) requirement for regional growth.1 At the same time, the presence of these 

factors is of little help if they are not used effectively. 

 

This paper follows this line of thought and identifies the efficiency of 439 German regions in 

their use of infrastructure and human capital. For this purpose, the so-called order- frontier 

analysis is applied (Daouia and Simar, 2005, 2007). This analysis, which can best be 

described as an outlier-robust extension of the traditional data envelopment analysis (DEA), 

reveals a spatial pattern of regional efficiency very similar to the East-West divide known in 

terms of per-capita income and labor productivity. In general, the efficiency of Western 

regions exceeds the efficiency of their Eastern counterparts. At the same time, results still 

differ significantly within the group of West and EastGerman regions. Therefore, we apply an 

extended kriging model, introduced by Kammann and Wand (2003) as the geoadditive 

approach, in the next step to further decompose the main drivers of regions’ efficiency into a 

smoothed spatial and a non-spatial, arguably structural, factor.  

 

The results of the study underline the importance of both spatial and structural factors for 

future funding. On the one hand, investments can indeed be justified on the grounds of the 

spatial factor. Regions in East Germany, for example, are still handicapped due to their 

location in the East. On the other hand, the appropriate type of funding heavily relies on the 

regions’ internal economic structure. Regions with a sufficient ability to attract private capital, 

                                                 
1  The role of human capital as a determinant of labor productivity traces back to the seminal papers of Lucas 

(1988) and Romer (1990). A different line of research points to the importance of modern transport 
infrastructure. Nijkamp (2000) presents a comprehensive survey of relevant studies in the regional growth 
literature. 
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which in turn drives efficiency and the capacity utilization of the available region-specific 

factors (such as infrastructure and human capital), might benefit most from further 

investments into these factors. In contrast, regions with low efficiency scores (compared to 

the scores of the regions nearby) seem to lack the ability to attract private capital. In this case, 

public funding should focus on programs with the aim of attracting private capital in a more 

direct way. 

 

The paper is organized as follows: Section 2 briefly discusses the role of traditional DEA and 

kriging models for regional studies. Section 3 introduces extensions of the traditional 

concepts and sets up the mathematical basis for the analysis. Application of the model follows 

in Section 4. Finally, Section 5 concludes with a summary of the main findings and policy 

implications. 

 

2. THEORETICAL FRAMEWORK AND RELATED LITERATURE 

DEA models in the regional context 

The application of regional non-parametric frontier analysis traces back to a number of 

comparative studies on the economic performance of Chinese cities. In this context, 

Macmillan (1986) established DEA as an appropriate tool to measure the cities’ efficiency. 

Charnes et al (1989) applied the same tool in order to monitor urban industrial performance 

and to assess regional planning tools in China. Eventually, the study of Seifert and Zhu (1998) 

used DEA to analyze the productivity growth of China’s industries between the mid-1950s 

and the late 1980s. 

 

The studies of China inspired further research in this field which includes, but is not limited 

to, analysis of the attractiveness of Japanese cities (Hashimoto and Ishikawa, 1993), the 

performance of manufactures in Mexico (Bannister and Stolp, 1995), the technical efficiency 

of U.S. farms (Thompson et al, 1990), the efficiency of public investments (Karkazis and 

Thanassoulis, 1998, Athanassopoulos, 1996) and the ranking of regions (Martic and Savic, 

2001). 

 

 DEA methods have advantages and drawbacks. For a long time they were considered to be 

non-statistical techniques, so have been discredited in the world of econometricians for their 

apparent lack of statistical background. Today, DEA is recognized as an estimator and its 

statistical properties have been derived. Therefore inference, using bootstrap methods, is now 
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available for building confidence intervals for efficiencies or testing hypothesis on returns to 

scale, etc. (see Simar and Wilson, 2008 for a recent survey on these topics and the references 

herein). Studies on regional efficiency have therefore often turned to other concepts such as 

stochastic frontier analyses or parametric efficiency measures, derived from regional 

production functions (e.g. Battese et al, 2004, Chen and Song, 2008, Kumbhakar et al, 1991, 

Meeusen and van den Broeck, 1977). The benefits of the frequently more challenging 

econometrics of parametric frontier analysis (compared to DEA models) were often seen in 

the lower degree of uncertainty of the results. This is true to the extent that there is no 

uncertainty as to the accuracy of the underlying regional production function (Stolp, 1990, p. 

105).  If the restrictive parametric specifications are wrong, all the inference is flawed and the 

interpretation of the results is uncertain. 

 

DEA methods, in contrast, do not rely on the particular choice of a parametric model for the 

production function and for the stochastic part of the model (distribution of the error terms). 

DEA is nonparametric and the results are only determined by the data. This is considered an 

advantage for the present study, as the main aim is to receive directly observable evidence 

with respect to regions’ efficiency, useful for the development of future funding schemes. 

Nonetheless, the strong orientation on the data comes along with another shortcoming. Since 

the estimated frontiers generally envelop all data, the sensitivity to outliers is problematic for 

most DEA models. This paper deals with this problem by using an outlier robust enhancement 

of DEA, the so-called order-α-frontier approach (Daouia and Simar, 2005, 2007).2 As a 

consequence, the frontier does not reflect the maximum achievable output anymore, but some 

outliers are allowed to lie above the frontier. To our knowledge, this approach has not yet 

been applied in the context of regional efficiency.  

 

Productivity spillovers among regions 

The efficiency scores of the order-α-frontier approach point to a region’s capacity utilization 

of the available infrastructure and human capital which is, to a large extent, driven by the 

region’s ability to attract private capital. Therefore, efficient regions (with high capacity 

utilization) were considered preferred places for firm location in the past and are expected to 

be considered so in the future. In fact, the logic of maximizing profits even suggests that firms 

                                                 
2 This paper presumes a basic familiarity with DEA. Among others, Boussofiane et al, 1991, Charnes et al, 

1994 or Cooper et al, 2006 provide a good introduction into DEA. Fried et al (2008) present comprehensive 
recent surveys of many aspects of frontier estimation, including parametric approaches and  DEA methods 
with  its extensions and properties . The order--frontier approach is described in more detail in Section 3. 
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would all move to regions on the frontier in the long run. However, a rather high efficiency in 

using the available factors might turn into an over-utilization of the available factors, yielding 

congested infrastructure and a scarcity of specialist workers. Leaving aside external effects, 

such as noise and air quality, the provision of additional infrastructure (e.g. by directing funds 

into this region) could remove the bottleneck. Alternatively, firms could opt for a location in a 

neighboring region. This would be reasonable, if the firms expect productivity spillovers 

between the two regions.  

 

From a theoretical point of view, the existence and relevance of those spillovers is not clear. 

A significant part of the non-spatial literature presumes that a region’s level of productivity or 

income is, in line with the concept of the order--frontier approach, highly independent from 

the levels achieved in regions nearby. At the same time, a large body of the empirical 

literature in spatial econometrics is based on the concept of spatial dependence, which 

explicitly allows for spillovers among regions.3 Some studies consider these two approaches 

complementary rather than conflicting and support the idea of modelling both simultaneously 

(among others, Abreu et al, 2005 and Ramajo et al, 2008). Following this line of thought, the 

order-α-frontier is succeeded by an extended kriging approach that accounts for the regions’ 

spatial dependence. This, in turn, allows for decomposing the regions’ overall efficiency 

scores into a smoothed spatial and a non-spatial structural part. 

 

From kriging to geoadditive models 

The concept of spatial dependence and the availability of spatial prediction has first been of 

interest in the broader field of geology. Among various techniques for spatial analysis that 

originated in this field, the so-called kriging can be considered one of the most popular 

methodologies to identify a spatial pattern prevalent in a given set of data.4 This approach 

describes an interpolation technique for spatially-dependent variables which is still used in the 

field of mining and soil research but nowadays goes beyond this field. Interest in and 

applications for the kriging approach include data-intensive fields such as environmental 

monitoring or agriculture and forestry management (Diodato and Ceccarelli, 2004, Jost et al, 

2005, Tavares et al, 2008).  

 

The need to process ever more complex data sets points to one of kriging’s major drawbacks: 

                                                 
3 Abreu et al (2005) present a comprehensive survey of studies using spatial and non-spatial econometric 

techniques and also discuss the importance of regional spillovers. 
4  See Trangmar et al (1985) and Goovaerts (1999). for surveys on studies dealing with kriging. 



 6

Computational cost increases rapidly with a rising complexity of the application. As a 

counter–measure, Hartman and Hössjer (2008) propose developing a kriging predictor based 

on Markov random fields, which would substantially decrease computation time. 

 

Another drawback of pure kriging is the missing control of covariates. This problem can be 

addressed if an extended version is applied. The so-called universal kriging allows for the 

control of covariates by incorporating them directly into the model (Cressie, 1993). However, 

universal kriging is limited in a sense that covariate effects are presumed linear in nature. If 

non-linear relationships of the covariate with the response variable can be expected, 

Kammann and Wand (2003) propose a fusion of kriging and additive models to geoadditive 

models. Additionally, these types of models also allow for a more differentiated definition of 

neighborhood. In contrast to most kriging models, the concept of neighborhood is not limited 

to a binary definition (regions are neighbors or they are not) or a point-to-point relation (e.g. 

distance between the centers of two neighboring regions) but could account for more detailed 

data such as the length of the common border.  

 

Recent applications of geoadditive models include the geographical variability of infants’ 

health conditions in Massachusetts (ibid), gender-specific health status in Germany and forest 

health outcomes in Bavaria (Brezger and Lang, 2006). 

 

In the present study, the geoadditive approach is used to decompose the regions’ efficiency 

scores (derived from the order--frontier analysis) into a spatially driven and a non-spatial 

factor. The smoothed spatial factor shows the effect that is primarily determined by the 

general performance of a regions’ greater surrounding area. The non-spatial structural factor 

gives an idea on a region’s efficiency compared to the regions nearby.  

 

3. MODEL SETUP 

The analysis is carried out through a two-step approach. In a first step, an outlier robust DEA, 

the order--frontier analysis, is applied to identify the regions’ efficiency. The second step 

seeks to decompose the efficiency by using a geoadditive regression analysis. We are aware 

that two-stage procedures in this setup should be carefully implemented (see Simar and 

Wilson, 2007 for details). First, a two-stage procedure can be applied only if some separable 

condition between the inputs x outputs space and the explanatory variable used in the second 

stage is reasonable. In our case here, it means that the set of feasible inputs x outputs is the 
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same for all the regions.  

 

Second, the inference on the results of the second stage regression is non-standard, because 

the response variable (the efficiency measures) are not directly observed but result from a 

complicated estimation procedure, implying inter-dependence, etc. The point is of no concern 

here because for the study at hand, the geoaddtive regression of the second stage remains, at 

this stage, at a descriptive level. We provide a geoadditive fit of the efficiencies without 

confidence intervals for the effect and/or testing hypothesis on the model. As suggested by 

Simar and Wilson (2007), bootstrap techniques would be helpful to provide such inferences; 

implementing this in the setup here  certainly remains a topic for future research. 

 

Order--frontier analysis 

Traditional DEA has emerged as one of the most popular instruments to identify efficiency 

boundaries of firms, production branches or regions. At the same time, the approach is often 

found to be rather sensitive to extreme observations. The order--frontier analysis aims to 

overcome this shortcoming by defining a frontier function that excludes outliers. The 

mathematical formulations below reflect a reduced version of this enhanced DEA model that 

is described in full detail by Daouia and Simar (2005, 2007).  

 

Presuming that regions improve their efficiency more likely by growing outputs rather than 

decreasing inputs, we focus on the output-oriented version of the model. Equations (1) to (3) 

briefly set up the traditional model which serves as a starting point for the extended model, 

further specified by equations (4) and (5).  

 

Any region disposes of a set of inputs x  R
p  to produce a set of outputs y  R

q . Feasible 

combinations of (x,y)  are defined as: 

(1)   (x,y)  R
pq  x can produce y . 

The boundaries of   reflect maximum outputs that can be generated with given inputs and 

therefore define the regions’ efficient frontier as:  

(2) Y (x)  (x,y (x)) y (x)  Y (x) : y (x)  Y (x),  1  

where Y (x)  describes the set of technologically feasible outputs, and y (x)  denotes the 

maximum achievable output, of a unit that produces at input level x . This, in turn, allows the 



 8

definition of a unit’s efficiency score as: 

(3) (x,y)  sup  (x,y)    sup  y  Y (x)  

where (x,y) 1 is the proportionate increase of output y  a region operating at input level x  

has to attain to be efficient. 

 

In order to determine Ψ, which is generally unknown, nonparametric estimators have been 

proposed. One such estimator is the free disposal hull (FDH, Deprins et al, 1984), which 

relies on a minimal set of assumptions5. However, as most of these estimators envelop all data 

points, traditional FDH/DEA is rather sensitive to extreme observations. 

 

More robust estimators might solve this problem by treating outliers in a different way. 

Instead of defining the efficient boundary according the uppermost technically achievable 

output (for any given input), extreme observations are allowed to lie above a partial frontier 

(Cazals et al, 2002). In this context, Aragon et al (2005) introduced the concept of the order- 

partial frontier ([0,1]) for a univariate output. Daouia and Simar (2007) extended the 

concept for a full multivariate setup, which is applied for the present study.  

 

With SY |X (y | x)  defined as the probability Prob(Y  y | X  x)  and FX (x)  as the probability 

Prob(X  x), Daouia and Simar (2007) define the order--quantile output efficiency score for 

each unit (x,y)    as:  

(4)    1)|(sup),( | xySyx XY  for FX (x)  0  for [0,1] 6 

 

Following this approach, note that each unit is only benchmarked against units disposing of 

similar or lower input levels.7 A unit (x,y)  is efficient at level , if it lies on the calculated 

frontier, this means if  (x,y) 1. In this case the unit is dominated by a unit with lower input 

with a probability  1-. Units below the efficient boundary (  (x,y) 1) are considered 

inefficient. This means a unit with similar or lower input delivers higher output with a 

                                                 
5  The FDH estimator only relies on free disposability assumptions for the inputs and the outputs. If convexity 

of Ψ is also assumed, the DEA estimator is more appropriate. 
6 The efficiency score converges from below to the Debreu-Farell output efficiency measure (x,y) as  tends 

to 1. 
7  In case a unit’s input equals the minimum level, which means FX(x) = 0, the unit cannot be dominated by a 

unit with less input and is therefore considered to be efficient ((x,y) = 1). 
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probability > 1-. Conversely, units above the frontier (  (x,y) 1) could reduce their outputs 

but would remain output efficient at the  level.  

 

The applied nonparametric estimator of  (x,y) is obtained by substituting SY |X (y | x)  with its 

empirical correspondent S Y |X ,n (y | x), based on the samples (X1,Y1) , …, (Xn ,Yn )  where X is the 

observed input and Y the output. This results in the empirical efficiency score ,n (x,y). 

(5) ,n (x,y)  sup  S Y |X ,n (y | x) 1  
 

The properties of this estimator have been established in Daouia and Simar (2007) ( -

consistency and asymptotic Normal distribution). The strength of this approach becomes 

particularly apparent for samples with extreme observations as they might easily occur for a 

sample of regions. Note that if  tends to 1, this estimator converges to the FDH estimator of 

the full frontier, but the latter will envelop all the data points. Furthermore, the approach 

accounts for the heterogeneity of the sample, as each region is only compared with regions 

whose input levels are equal or worse. This in turn implies that the number of comparable 

units decreases with the increasing number of considered inputs. 

 

Geoadditive regression analysis 

The applied order--frontier analysis generally presumes a high independence of the units’ 

activities. However, the assumption is at least questionable if the sample encloses spatial 

entities. By contrast, we presume the existence of productivity spillovers caused, for example, 

by knowledge spillovers or the easy access to modern transport infrastructure serving 

neighboring regions (Bronzini and Piselli, 2009, Cohen, 2010, Ramajo et al, 2008). As a 

consequence, the regions’ efficiency is – at least to some extent – driven by neighbors’ 

performance. At the same time, neighborhood cannot be considered the only determinant but 

is complemented by intra-regional drivers. In this context, the geoadditive approach outlined 

below aims to identify the relevance of the different drivers by decomposing efficiency into a 

spatial and a non-spatial effect.  

 

The basic principle of the approach is to smooth the observed data, which yields decreasing 

deviations of the variables assigned to neighboring units. The difference between observed 

and smoothed data identifies the non-spatial factor driven by the units’ structure rather than 
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their location in space. 

 

The first step seeks to define neighborhood. While distance between points might serve as a 

good indicator for neighborhood in the continuous case, the indicator is more problematic for 

analyzing regions, where localization is discrete (Brezger, 2004). Instead, two regions r and s 

are defined as neighbors r ~ s , if they share a border. Thus, the smoothing algorithm, which 

is weighted by the length of the common border ( rs ) , presumes a growing regional 

interdependence with increasing length of  rs .  

 

The mathematical formulation of the model follows the principles of structured additive 

regression analysis and therefore aims to substitute a usual parametric with a flexible 

nonparametric parameter, containing in this case spatial information (Fahrmeir et al, 2001, 

Hastie and Tibshirani, 1990). Since the focus of the present study is exclusively on the spatial 

distribution of efficiency as the response variable, no parametric covariables are considered. 

Therefore, the nonparametric regression model is set up in the following way (Fahrmeir and 

Lang, 2001, Kammann and Wand, 2003):  

(6)  ,n ( xi , yi )  fgeo ( i)  frand ( i)  

where ,n (xi ,yi)  is the empirical efficiency score of region i (defined by equation (5)) 

and fgeo(i) the spatially smoothed factor of region ni ,...,1 . The remaining term frand(i), 

generally considered the normally distributed error ei , is interpreted as structural factor that 

cannot be explained by the spatial correlation.8  

 

To smooth the regions’ spatial factor, a penalizing term, based on the least square method 

(PLS), is introduced in equation (7). In this preliminary step, the weights  rs  remain 

unconsidered. 

(7) PLS()  (yi  fgeo(si ))
2   ( fgeo(r )  fgeo(s))

2

rN (s),rs


s 2

d


i1

n

  

where N(s) is the set of neighbors surrounding region s  and  is a parameter to control the 

smoothing intensity. The first term sums up the squared differences of observed data and 

modeled spatial factor. The smoothing process, defined in the second term, multiplies  with 

the cumulated squared differences of spatial factors for all neighborhood relations.  

                                                 
8  Presuming that the observed data are correct, we consider the remaining error as irrelevant. 
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In this context, the penalizing approach, which includes the minimization of PLS(), can be 

interpreted in Bayesian way (Fahrmeir and Lang, 2001, Brezger and Lang, 2006). This in turn 

yields markov random fields. Therefore, the application of the model follows a Bayesian 

approach (with fully Bayesian inference) and is simulated by markov-chain-monte-carlo 

(MCMC) technique.9  

 

Finally, the expected value i  of the nonparametric spatial factor fgeo(i)  can be defined as the 

average of the expected values of neighboring regions. Given the distribution of r for all 

neighbors and introducing the weights  rs  the conditional distribution of the expected spatial 

factor of region s (s) is defined normally distributed as:  

(8) s  r N
sr

s
r ,

 2

srs










 

where s is the set of neighbors of region s and sr  the weight of neighbor r. s denotes the 

cumulated weights of all regions neighboring s. The variance parameter  2 controls the level 

of variation between the model result and the expected value.10 

 

The remaining non-spatial factor is considered normally distributed as well and can be 

defined as frand(si )N(0, 2).  

 

Based on the conditional expectation s|r defined by equation (8), the MCMC-simulation 

results in a common distribution for the vector   (1,2,...,n ) . Thus, the estimated spatial 

factor can be identified for all regions in the last step. 

 

To illustrate the order--frontier and the geoadditive regression analysis, both methodologies 

are applied to identify and decompose the efficiency of German regions in the next section. 

 

4. APPLICATION 

Efficiency of German regions 

The identification of German regions’ efficiency follows the mathematical model of the 

                                                 
9  For this purpose the software BayesX has been applied. The algorithm and its computation is described in 

detail by Brezger et al (2009). 
10  Note that the model behind equation (8) is equivalent to the penalizing model defined by equation (7) (see 

Fahrmeir et al, 2007, p. 390). 
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order--frontier analysis outlined in Section 3. For this purpose, DMUs as well as inputs and 

outputs are defined first, followed by a discussion of the results and a brief sensitivity analysis 

for the parameter . 

 

DMUs are characterized by a uniform production function to transfer a set of inputs into one 

or multiple outputs. Technological efficiency, for example, is often analyzed at the level of 

firms that produce the same goods or services. If the focus is on regional efficiency, DMUs 

are generally defined as spatial entities.  

 

Following the territorial system of the European Union – the so-called Nomenclature 

Territorial Statistical Units (NUTS) – efficiency could be considered at four regional levels of 

aggregation. NUTS 1 defines the most aggregated regional level and complies, in the case of 

Germany, with the Federal States. NUTS 2 is the basic administrative unit chosen by the EU 

for a broad set of regional policies. NUTS 3 corresponds to the county level and finally NUTS 

4, the most disaggregated spatial unit, complies with the community level. With regard to data 

availability the presented study is based on the NUTS 3 level which, in the case of Germany, 

encloses 439 regions.11 

 

The input-output system in regional frontier analyses generally accounts for variables that 

reflect and determine socio-economic performance of the considered territorial units.  

 

On the output-side, the gross regional product (GRP), total employment, private investments 

and trade volumes can be considered (Athanassopoulos, 1996, Karkazis and Thanassoulis, 

1998). However, due to the different sizes of the considered regions (in particular in terms of 

population), the significance of these indicators is sometimes limited. Therefore, intensive 

variables such as labor productivity or per-capita income might reflect economic performance 

in a more appropriate way for comparative regional analyses (Dunford, 1993, LeSage and 

Fischer, 2008). The present study follows this research stream and defines the output indicator 

according the per-capita income for the year 2004. 

 

Following the idea that regional production (and subsequently income) is mainly determined 

by the regions’ endowment with, in the medium run, immobile factors, input indicators are 

                                                 
11  In fact, Germany counts 440 NUTS 3 regions. However, the county of Rügen has no common border with 

any other county and remains for technical reasons unconsidered.  
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defined by the region-specific human capital and transport infrastructure for the year 2004 

(Biehl 1995, Bronzini and Piselli 2009).   

 

With regard to infrastructure capital, the input factor accounts for the intra-regional 

equipment with transport infrastructure (defined by the sum of the weighted road and railway 

density and the potential capacity utilization12) and the regions’ connectivity (determined by 

the minimal travel time between the considered regions and other regions within and outside 

of Germany). 13 

 

The regions’ human capital is further divided into a quantitative factor and a qualification 

indicator. The qualification indicator derives from the weighted educational achievements of 

the available workforce. The quantitative factor could either be defined as the absolute 

number of employees or the share of employees in the regional population. On the one hand, 

the relative share seems to be attractive as the factor would not be affected by the regions’ 

different sizes of population. On the other hand, the size effects might be of interest as they 

partly reflect the regions’ characters as metropolitan or rural areas. Based on the results of a 

simple OLS regression, the absolute number seems to be the more appropriate indicator. The 

results, presented in Table 1, also confirm the presumed positive and significant correlation of 

per-capita income and the other inputs.   

 
TABLE 1: Correlation of the input variables with the per-capita-income 

 
Infrastructure 

capital 

Human capital 

 Qualification
No. of 

employees 
Share of employees 
in total population1 

Correlation co-
efficient (Pearson) 

0.579** 0.333** 0.163** 0.042 

Significance 0.000 0.000 0.001 0.378 

N 439 439 439 439 

     
1   Indicator remains unconsidered for the presented order--frontier analysis 
**  The correlation is significant on the level of 0.001   

 

                                                 
12  The weighting reflects the differences of construction and maintenance cost (e.g. Reynaud and Braun, 2001, 

Williams, 2002). 
13 The exact definition of all input indicators is given in the Appendix. 
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Despite the relevance of the chosen inputs, it can indeed be argued that the NUTS 3 regions’ 

role in the decisions making process on new infrastructure projects or educational investments 

is limited, which in turn conflicts with the regions’ definition of decision-making units. 

However, since we apply the output-oriented version of the order--frontier analysis, regions 

decide how to use a given infrastructure and human capital and not whether or not to increase 

the inputs. In this sense a region, or more precisely the stakeholders of a region, can indeed be 

more or less efficient in using the defined inputs. 

 

Following the model outlined in Section 3, the first findings derive from the application of the 

order--frontier analysis. 14 Figure 1 shows the regional efficiency for  = 0.95.   

 

FIGURE 1: Efficiency score ,n of German NUTS 3 regions, order-α-frontier analysis, 2004 

 

A region is considered comparatively inefficient if one or more other regions equipped with a 

similar or worse level of infrastructure and/or human capital generate(s) higher levels of 

output (GRP per capita). These regions are red-shaded. On the contrary, the green-shaded 

regions show the highest level of efficiency, as they deliver comparatively high per-capita 

                                                 
14 In the context of this paper, efficiency only refers to the considered input and output variables. Thus, rather 

inefficient regions could indeed be efficient in another context.  
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income with the given inputs. 

 

Following the order--frontier analysis, a unit (x,y) is efficient at level , if another unit with 

lower inputs dominates the unit with a probability  1-. As a consequence, the analysis 

gains in robustness versus outliers. At the same time, the results are mainly driven by the 

choice of , which in turn requires a careful definition of .  

 

For the presented study the selection of  = 0.95 and this choice is to some extent arbitrary. 

The literature on robust frontiers, like the order-α frontier we use here, does not provide 

formal rules for selecting the order α. Common sense often leads to the selection of values 

near the usual 95% level. It is also recommended to proceed to a sensitivity analysis (the 

computing time is quite negligible) and compare the results for values near the usual 90% 

level, and look at  the percentage of data points that remain outside the order-α frontier.  

Simar (2003) suggests this approach to detect outliers in a more systematic way. Therefore, 

first we compare the efficiency scores of the traditional FDH ( = 1) with the scores derived 

from the order--frontier analysis for  = 0.99,  = 0.95 and  = 0.9 respectively. The results, 

illustrated by Figure 2, show that efficiency scores differ clearly. This, in turn, points to the 

existence of a significant number of outliers in the sample when  = 0.95 and even when  = 

0.99.15 For this reason, the analysis indeed benefits from the application of an outlier-robust 

model. 

 

 

FIGURE 2: Efficiency scores for traditional FDH and order--frontier analysis. 
                                                 
15  According to Simar (2003), the potential outliers are those points having α-scores less than 1 (points that 

remain outside the estimated α-frontier) even when α is converging to 1 (when , there are no such 
points). These points appear on the bottom left of Figure 2. 
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To complement the sensitivity analysis, the efficiency scores for  = 0.95 are plotted against 

the scores for  = 0.99 and  = 0.9 respectively (figure 3).  

 

FIGURE 3: Efficiency scores for  = 0.95 against the scores for  = 0.99 and  = 0.9 

 

The left plot (0.95 vs. 0.99) is characterized by a relatively strong difference of the scores. In 

contrast, the spread is considerably lower in the right plot (0.95 vs. 0.9). This means that the 

number of outliers that are allowed to lie above the frontier significantly increases, if we opt 

for  = 0.95 instead of  = 0.99, but hardly changes if  is set to 0.9 instead of 0.95. This is 

confirmed by looking at the bottom left parts of the pictures in Figure 2. Thus, for the sample 

at hand, the option for  = 0.95 seems to be an appropriate choice. 

 

Decomposing the regions’ efficiency 

The findings of the order--frontier analysis, illustrated by Figure 1, suggest a likely 

dependency of a region’s efficiency with the performance of its greater neighboring area. 

Consequently, a region surrounded by very efficient regions might deliver above-average 

results compared to the full sample, even if the region’s performance is below-average 

relative to nearby regions. 

 

The application of geoadditive regression analysis, described in Section 3, allows for a more 

in-depth analysis of this effect by decomposing the regions’ efficiency (Figure 1) into a 

spatial and a non-spatial factor respectively. Following the geoadditve regression analysis, 

Figure 4 identifies the smoothed spatial effect. 
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FIGURE 4: Efficiency of German NUTS 3 regions, smoothed spatial factor fgeo(i) , 2004 

 

Green-shaded regions can, due to their well-performing neighbors, be expected to use their 

inputs in a comparatively efficient way. By contrast, red-shaded regions are surrounded by 

comparatively inefficient regions which, in turn, yields to rather low expectations in terms of 

efficiency. 

 

The findings reveal a clear spatial pattern and identify, 20 years after the unification, a clear 

East-West divide.16 Interestingly, some North-Eastern and South-Western regions hardly fit 

into this general picture.  

 

The low efficiency scores found for the Western and South-Western regions in Rhineland 

Palatinate reflect the rather fragile economic situation in these regions that comes along with 

structural deficits, high unemployment rates and comparatively low per-capita income. The 

surprisingly positive results for the North-Eastern regions of Mecklenburg-Western 

Pommerania can be explained by the logic of the frontier approach. Efficiency turns out to be 

relatively high, as their rather low per-capita income, comes along with a low endowment 

                                                 
16 Remarkably, the findings on efficiency hardly support the idea of a North-South divide for West German 

regions. 
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with infrastructure and human capital.  

 

The findings on the spatial factor (Figure 4) clearly correspond to the rough pattern of the 

overall efficiency scores (Figure 1). At the same time, the smoothing algorithm partly veils 

regional distinctions. It can therefore be concluded that the regions’ efficiency is also driven 

by a non-spatial effect. This effect, illustrated by Figure 5, can be interpreted as a structural 

effect. 

 

 

FIGURE 5: Efficiency of German NUTS 3 regions, non-spatial structural factor frand(i), 2004 

 

According to Figure 5, a red-shaded region k is considered comparatively inefficient, if 

regions in the greater neighboring area of region k, equipped with a similar or worse level of 

infrastructure and/or human capital generate(s) higher levels of per-capita-income. By 

contrast, a green-shaded region is efficient compared to its nearby regions. 

 

Compared to Figures 1 and 4, the East-West divide almost vanishes in Figure 5. While some 

Eastern regions, particularly in the greater areas of Magdeburg, Dresden or Leipzig, turn out 

to be relatively efficient compared to the regions nearby, the opposite trend can, to a minor 
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extent, be observed for some West German regions. This is particularly evident for the greater 

area of the Southern regions of Regensburg and Schweinfurt, the Northern regions Hannover 

and Wolfsburg as well as the regions east of Ludwigshafen.  

 

The effect can partly be explained by the regions’ character as manufacturing centers or 

commuter towns. The high efficiency of Ludwigshafen and Wolfsburg and the low score of 

their neighbors, for example, are certainly driven by BASF and VW respectively. While the 

headquarters and main production sites are located in Ludwigshafen and Wolfsburg, 

employees tend to live in the surrounding regions. A similar effect can be observed for 

Regensburg and Schweinfurt, where most firms are located in the urban centers and 

employees commute from neighboring rural counties. 

 

However, since the number of employees defines one of the input factors, the efficiency 

analysis accounts at least to some extent for the regions’ character as manufacturing centers 

(with a high number of employees) or commuter towns (with a low number). Thus, a low 

(high) non-spatial efficiency might point to a structural deficit (advantage). According to 

Figure 5, regions with a structural advantage include (but are not limited to) the greater areas 

of Hannover, Cologne, Frankfurt and Munich as well as South-Western regions close to the 

Black Forest. In contrast, regions in the Ruhr area (e.g. Recklinghausen, Coesfeld, Unna or 

Wesel) and some East German regions clearly suffer from a structural deficit (see Appendix 

for a map with the regions discussed in this section).  

 

As for the smoothed spatial factor, the identified pattern for the non-spatial factor (Figure 5) 

and the picture for the overall efficiencies are alike. In order to analyze the importance of the 

decomposed factors as drivers for the overall efficiency score, the final step is a multiple 

linear regression with the efficiency score based on the order-α -frontier analysis as explained 

and the two decomposed factors as explaining variables.  

 

TABLE 2: Multiple linear regression analysis with overall efficiency scores as explained 
variable 

 
Spatial factor 

Non-spatial 
(structural) factor

Model fit 

 multiple R2 adj. R2 

Correlation co-
efficient (Pearson) 

0.823** 1.110** 0.71 0.70 
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Significance 0.000 0.000     

N 439 439   

     
**  The correlation is significant on the level of 0.001   

 

Even if we know that p-values computed at the second-stage regression must be taken with 

care (see Simar and Wilson, 2007), the significance level is so small that we can conclude 

safely from the results, presented in Table 2, that both spatial and non-spatial factors have a 

similar positive and highly significant impact on overall efficiency. Here again, as mentioned 

above, some refinement would be obtained by using a more appropriate bootstrap procedure 

still to be implemented in this new setup. 

 

5. POLICY IMPLICATIONS 

The provision of public goods, such as investments into modern transport networks or 

institutional education, plays a crucial role in a broad set of regional policy tools.17 The main 

aim of this instrument is twofold. On the one hand, the economic motive seeks high 

productivity for funds invested in each region (Castells and Solé-Ollé, 2005). A policy 

devoted to this efficiency argument would aim to maximize return on public investments and 

would indeed prefer to give financial aid to the efficient regions.  

 

On the other hand, the equity argument justifies the redistribution of funds in order to foster 

cohesion. In this case, the relative per-capita income is often chosen as a yardstick that allows 

us to draw a clear parting line and to allocate funds transparently. However, the distribution of 

financial aid could, at least to some extent, be based on the degree of efficiency as well. 

Following the cohesion argument, the funding should focus on inefficient rather than efficient 

regions (Athanassopoulos, 1996, Camagni, 1990).  

 

The present paper follows this idea and identifies, in a first step, the regions’ efficiency by 

applying a recently developed outlier robust enhancement of the DEA – the order--frontier 

analysis (Daouia and Simar, 2005, 2007). The results presume a generally lower efficiency of 

East compared to West German regions. However, some regions in West Germany, in 

particular in Rhineland-Palatinate turn out to be inefficient as well. 

                                                 
17  See for example Nijkamp (2000) for a summary of the current discussion on the economic impacts of public 

infrastructure investments.  
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A decomposition of the efficiency scores, based on geoadditive regression analysis, revealed 

in a second step that the results are partly driven by a spatial and a non-spatial factor. Thus, 

some regions are primarily considered inefficient due to the low efficiency levels of nearby 

regions rather than to their own failures. On the other hand, some regions might be weak from 

a structural point of view but appear relatively efficient since they benefit from the high 

efficiency of neighboring regions. 

 

The consideration of these results yields a more differentiated funding scheme. Regions 

whose low overall efficiency can be explained by their location in space rather than their 

internal structures are more successful in attracting private capital compared to the regions 

nearby with similar input levels. For these regions, the provision of public goods can be 

considered an appropriate instrument for alleviating existing or potential bottlenecks. On the 

contrary, this instrument loses importance for regions whose low efficiency in using existing 

region-specific inputs is driven by their location in space and their economic structure. In this 

case the potential bottleneck can be seen in the regions’ insufficient ability to attract private 

capital. Therefore, these regions benefit most from funds used for programs that attract 

private capital in a more direct way (e.g. SME programs).   

 

APPENDIX 

Definition of inputs 

The internal part of infrastructure capital Iin of region i is defined according equation (A1): 

(A1) I i
in  pi

r ,i

 
r ,i

ai

, 

where r,i, denotes the weighted length of road and rail network (in km), ai the area (in sqkm), 

and pi the population of region i. The leveling factor  is chosen in a way that the average 

road density equals the product of average capacity utilization and leveling factor (Biehl, 

1995). 

 

The external part of infrastructure capital Iex is defined as the regions’ centrality. For this 

purpose, the travel time between any German region i and any region j within the EU as well 

as the corresponding markets (measured by GRP) are taken into account by equation (A2):  
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(A2) 
  
I i

ex  GRPj e
min( trail ( i, j ),troad ( i, j )) 

j1

m

 , 

where m equals the number of European NUTS 3 regions (EU 25), trail and troad the travel time 

between region i and j by rail and road respectively. Parameter  is a weighting factor that 

fulfils the following condition: 

(A3) e T = 0.5  for T=180 minutes. 

 

Thus, the GRP, which can be reached within 180 minutes, is weighted by 0.5.18 Smaller 

weights are attributed to the GRP further away and higher weights account for the GRP that 

can be reached faster (Schaffer and Siegele, 2009). 

 

The regions’ human capital relies on a quantitative and a qualitative factor. The quantitative 

input is defined by the regions’ number of employees. Since the number of self-employed 

persons is not available for all regions, the employees subject to social insurance are taken as 

a proxy for the total number of employees. Thus, we presume a rather constant ratio of 

employees subject to social insurance and self-employed persons (which can indeed be 

observed for the regions where both numbers are available). 

 

The qualification indicator Q is determined by the educational achievements of the regional 

workforce. Following the International Standard Classification of Education (ISCED) the 

work force is subdivided into three groups in a first step. Members of the workforce with the 

highest educational achievements corresponding to lower secondary education belong to the 

first group (ISCED 1 and 2). The second group encloses all persons with upper- and post-

secondary (non-tertiary) education (ISCED 3 and 4). Finally, the third group is defined by 

persons with tertiary education (ISCED 5 and 6). 

 

The next step is the weighting of the educational achievements according to the average time 

use of students and teachers needed to obtain the corresponding qualification level level. The 

                                                 
18 The half-value period has been set to 180 minutes, which is often cited as acceptable travel time for daily 

business trips and used for calibration of passenger transport models (e.g. Schoch, 2004). The analyses with 
parameters that correspond to a half-value period of 120 and 90 minutes respectively hardly affect the results 
on efficiency.  
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weighting factor is set to 1 for educational achievements of the first group and reaches a value 

of about 1.8 and 2.6 for the second and the third group respectively.19 

 

Thus, the human capital indicator Q can be calculated according the following formula: 

Qi 
 j  fij

j1

3



fij
j1

3


 (7) 

wherej equals the weighting factor according the educational group j and fij denotes the 

members of workforce in region i with educational achievements corresponding to group j . 

 

                                                 
19  See Schaffer and Stahmer (2006) for a detailed derivation of the weighting factors.  
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Map of Germany with regions mentioned in the paper 
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