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Abstract

We consider the problem of testing for an omitted multiplicative long-term com-

ponent in GARCH-type models. Under the alternative there is a two-component

model with a short-term GARCH component that fluctuates around a smoothly

time-varying long-term component which is driven by the dynamics of an explana-

tory variable. We suggest a Lagrange Multiplier statistic for testing the null hypoth-

esis that the variable has no explanatory power. We derive the asymptotic theory

for our test statistic and investigate its finite sample properties by Monte-Carlo

simulation. Our test also covers the mixed-frequency case in which the returns are

observed at a higher frequency than the explanatory variable. The usefulness of our

procedure is illustrated by empirical applications to S&P 500 return data.
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1 Introduction

The financial crisis of 2007/8 has highlighted the need for a better understanding of the

interplay between risks in financial markets and economic conditions. Among others,

Engle and Rangel (2008), Christiansen et al. (2012), Paye (2012), Engle et al. (2013)

and Conrad and Loch (2015a) provide recent evidence for a counter-cyclical behavior of

financial volatility. For example, Conrad and Loch (2015a) show that changes in the

secular component of stock market volatility can be anticipated from variables such as

the term spread, housing starts or survey expectations on future industrial production.

While Christiansen et al. (2012) and Paye (2012) employ predictive regressions, Engle

et al. (2013) and Conrad and Loch (2015a) base their analyses on a multiplicative two-

component GARCH-MIDAS model. In this model, a short-term GARCH component

fluctuates around a smooth long-term component that is driven by macroeconomic con-

ditions. For further multiplicative component GARCH models see, for example, Feng

(2004), Engle and Rangel (2008), Amado and Teräsvirta (2013, 2017) and Silvennoinen

and Teräsvirta (2016). A recent survey on multiplicative component models and their

properties is provided by Amado et al. (2018).

The findings in Engle et al. (2013) and Conrad and Loch (2015a) suggest that one-

component GARCH models are misspecified in the sense that they omit a multiplicative

component that is driven by an explanatory variable. However, standard procedures for

misspecification testing in GARCH models do not cover the case of explanatory variables

(see, e.g., Bollerslev, 1986, Lundbergh and Teräsvirta, 2002, or Halunga and Orme, 2009).

As most of them also require additive separability of the additional component under

the alternative, their adaption to a general multiplicative two-component structure is not

straightforward (see Han and Kristensen, 2014, and Francq and Thieu, 2018, for properties

and estimation of GARCH models with explanatory variables that enter in an additive

fashion).

For this reason, we develop a new misspecification test for GARCH-type models such

as GARCH(p, q), GJR-GARCH or fractionally integrated GARCH. While under the null

hypothesis the true model is a pure (one-component) GARCH, under the alternative there

is a second multiplicative component. We propose a Lagrange Multiplier (LM) statistic,

which is based on the parameter estimates under the null, and checks for an omitted long-

term component. By construction, the implementation of the LM test statistic does not
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depend on the functional form of the long-term component. For the case of a GARCH(1,1)

under the null hypothesis, we provide a detailed derivation of the asymptotic properties

of the LM statistic, whereby we allow for a large class of functions under the alternative.

The arguments in the derivation rely on the results for the quasi-maximum likelihood

estimator (QMLE) for pure GARCH models in Francq and Zaköıan (2004). However,

due to the multiplicative structure under the alternative, many technical derivations are

non-standard and require additional steps. In order to obtain the asymptotic distribution

of the test statistic, we impose the standard assumptions on the GARCH parameters

and the innovation term for the pure GARCH model. As is standard in testing, we also

require assumptions on the moments of the explanatory variable as well as on the observed

return process. Furthermore, the test statistic is χ2 distributed independent of whether

the alternative hypothesis is two- or one-sided. This feature of the LM test has been

discussed in Francq and Zaköıan (2009) and does not hold for Wald and Likelihood ratio

tests.

Moreover, we propose a regression-based version of our test that can be applied in

settings with mixed-frequency data and, thus, can be used as a preliminary check before

estimating the GARCH-MIDAS model of Engle et al. (2013) with an explanatory variable

that is observed at a lower frequency than the returns. Although this model is frequently

used in empirical applications (see, e.g., Asgharian et al., 2013, Conrad and Loch, 2015a,

2015b, Dorion, 2016, Opschoor et al., 2014), there exists no asymptotic theory for the

QMLE yet. The most recent theoretical results by Wang and Ghysels (2015) are specific

to linear long-term components that are driven by realized volatility and only hold in

a restricted parameter space which does not admit our null hypothesis. The regression-

based version of the test statistic links our paper to the literature on predictive regressions

and, more generally, to regression models involving mixed-frequency data (see Andreou

et al., 2010 and Andreou, 2016).

We also discuss in detail the relation between our test statistic, the ‘ARCH nested

in GARCH’ test proposed by Lundbergh and Teräsvirta (2002) and a specific variant of

the misspecification tests for multiplicative time-varying GARCH models introduced in

Amado and Teräsvirta (2017). In particular, the specification of the short-term component

in Lundbergh and Teräsvirta (2002) is different from ours and, hence, their model does not

encompass the GARCH-MIDAS under the alternative. Moreover, Amado and Teräsvirta

3



(2017) do not provide an asymptotic theory for the test with exogenous explanatory

variables.

Thus, to the best of our knowledge, our test is the first with a complete statistical

theory that allows to check GARCH specifications against GARCH-MIDAS-type alter-

natives. Our work also complements recent research on misspecification testing in the

HYGARCH model by Li et al. (2011) and in the Realized GARCH model by Lee and

Halunga (2015).

In a Monte-Carlo simulation, we cover the case of a GARCH(1,1) as well as a GJR-

GARCH(1,1) under the null and find good size and power properties in finite samples.

We also show by simulations that the LM test is relatively insensitive with respect to a

misspecification of the short-term component. Finally, we illustrate the usefulness of our

procedure by two empirical applications to S&P 500 return data.

The plan of the paper is as follows. In Section 2, the two-component GARCH model

is introduced and the LM test statistic is derived. This section also contains the main

asymptotic results. Section 3 provides some finite sample evidence in a Monte-Carlo

study. In Section 4, we illustrate how the test can contribute to modeling S&P 500 return

data. Section 5 concludes. All proofs are contained in Appendix A. Additional material

can be found in Appendices B-D.

2 Model and Test Statistic

In Section 2.1, we first introduce the multiplicative two-component GARCH specifica-

tion, discuss the null hypothesis of our test and explore the relationship between the

two-component model and the GARCH-MIDAS specification. We derive the likelihood

function and the test indicator in Section 2.2 and present our main result on the asymp-

totic distribution of the test statistic in Section 2.3. Section 2.4 provides a comparison

with the ‘ARCH nested in GARCH’ test and Section 2.5 extends the LM test to other

GARCH-type models under H0. Finally, Section 2.6 covers the mixed-frequency case.

2.1 The Two-Component GARCH Model

We define the log-returns as given by

εt = σ0tZt, (1)
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where Zt is independent and identically distributed (i.i.d.) with mean zero and variance

equal to one.1 σ2
0t is measurable with respect to the information set Ft−1 and denotes the

conditional variance of the returns. We consider the following multiplicative decomposi-

tion of σ2
0t into a GARCH component (‘short-term component’) and a component that is

driven by an explanatory variable:

σ2
0t = h̄∞0t τ 0t. (2)

Following the terminology used in Engle et al. (2013), we refer to the second component as

a ‘long-term component’, because the second component is typically much smoother than

the GARCH component. As we will discuss below, the long-term component is driven by

the lagged values of an explanatory variable xt. The short-term component is specified

as a mean-reverting GARCH(1,1):

h̄∞0t = ω0 + α0

ε2
t−1

τ 0,t−1

+ β0h̄
∞
0,t−1 (3)

with α0 > 0, β0 > 0 and α0 + β0 < 1. As will be discussed in Section 2.5, it is straight-

forward to allow for other types of GARCH processes (e.g., GJR-GARCH, higher-order

GARCH or long-memory GARCH) in the short-term component. For simplicity in the

notation and derivations, we focus on the simple GARCH(1,1).

We denote the vector of true parameters in the GARCH component as η0 = (ω0, α0, β0)′

and make the following assumptions about η0 and the innovation Zt.

Assumption 1. η0 lies in the interior of the compact parameter space Θ = {η =

(ω, α, β)′ ∈ R3|0 < ω ≤ ω ≤ ω <∞, 0 < α ≤ α ≤ α, 0 < β ≤ β ≤ β, α + β ≤ φ < 1}.

Assumption 2. We denote by Ft−1 the σ-field generated by {(εs, xs); s < t}. As defined

in equation (1), let Zt be i.i.d. with E[Zt|Ft−1] = 0, E[Z2
t |Ft−1] = 1 and E[Z4

t |Ft−1] = κZ,

where κZ is a finite constant. Further, Z2
t |Ft−1 has a non-degenerate distribution.

Assumptions 1 and 2 imply that
√
h̄∞0tZt is a covariance-stationary process with un-

conditional variance σ2
0. Furthermore, they imply that E[ln(α0Z

2
t +β0)] < 0 which ensures

that
√
h̄∞0tZt is strictly stationary and ergodic (see, e.g., Francq and Zaköıan, 2004). Fi-

nally, the assumption on the existence of a fourth-order moment of Zt is necessary to

ensure that the variance of the score vector exists.
1Throughout the paper we assume that the conditional mean of the returns is zero. For GARCH

misspecification testing in the presence of a non-zero conditional mean see Halunga and Orme (2009).
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The τ 0,t component describes smooth movements in the conditional variance as a

function of the weighted sum of the K lagged values of an explanatory variable xt:

τ 0,t = f(π′0xt), (4)

where π0 = (π0,1, . . . , π0,K)′ and xt = (xt−1, . . . , xt−K)′. We make the following assump-

tions on the parameter space Π and the function f(·).

Assumption 3. The parameter space Π is a compact subset of RK and π0 ∈ Π.

Assumption 4. Let τ t = f(π′xt) be a positive, non-constant, continuously differentiable

function with f(0) = 1 and f ′0 = ∂τ t
∂π′xt

∣∣
π=0
6= 0.

Note that Assumption 4 allows τ t not only to depend on π but also on η, namely if

xt depends on the GARCH component (see Section 2.4 for an example).

Assumption 5. c′xt is not degenerate for any non-zero c ∈ RK.

Assumption 5 ensures that the long-term component is minimal in the sense that no

equivalent representation of lower order exists. Thus, Assumption 5 is an identification

assumption and implies that f(π′0xt) is non-constant with probability one unless π0 = 0.

The assumption that f(·) > 0 allows us to consider explanatory variables that take

positive as well as negative values. Further, we do not have to require that the π0,k are

all positive. That is, in our model the explanatory variable xt can have a positive as well

as a negative effect on the volatility (see Assumption 3). The main example that we have

in mind for f(·) is the exponential specification

τ 0,t = f(π′0xt) = exp(π′0xt). (5)

The exponential specification has been used, among others, in Engle et al. (2013), Op-

schoor et al. (2014) and Conrad and Loch (2015a).

Using the above notation, we are interested in testing H0 : π0 = 0 against the two-

sided alternative H1 : π0 6= 0.2 Under H0, the long-term component is equal to one and

the two-component model reduces to the nested GARCH(1,1) with unconditional variance

σ2
0 = ω0/(1−α0−β0). The test statistic will be based on a fitted version of ε2

t/h̄
∞
0t , whereby

2Later on, we also consider the one-sided alternative H1 : π0 6= 0, π0 ≥ 0 (see Remark 4 in Sec-

tion 2.3).
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the estimate of h̄∞0t is obtained under H0. Note that under H0, E[ε2
t/h̄

∞
0t |Ft−1] = 1, while

under the alternative E[ε2
t/h̄

∞
0t |Ft−1] = τ 0t. Our test uses this insight to check if the fitted

version of ε2
t/h̄

∞
0t is predictable using information included in Ft−1, in particular xt.

Finally, note that equation (3) can be rewritten as an ARCH(∞)

h̄∞0t = ω0 + (α0Z
2
t−1 + β0)h̄∞0,t−1 =

∞∑
i=0

βi0

(
ω0 + α0

ε2
t−1−i

τ 0,t−1−i

)

which means that εt/
√
τ 0t =

√
h̄∞0tZt follows a GARCH(1,1) both under the null and

under the alternative.

Our two-component model is closely related to the GARCH-MIDAS model suggested

in Engle et al. (2013). In their model, the long-term component is typically of linear or

exponential form. For the model with a linear long-term component, Wang and Ghy-

sels (2015) use a rolling window realized variance of the last N days as the explanatory

variable, provide conditions for the strict stationarity of εt and establish consistency and

asymptotic normality of the QMLE. However, the proof of the asymptotic normality of

the QMLE crucially relies on an assumption which rules out testing H0 : π0 = 0 (see

Assumption 4.3 in Wang and Ghysels, 2015).

Most importantly, the GARCH-MIDAS specification allows for the possibility that the

explanatory variable is observed at a lower frequency, say monthly or quarterly, than the

daily returns. In this case, the long-term component varies at the lower-frequency only.

Although the mixed-frequency version of the GARCH-MIDAS is highly relevant from an

empirical perspective, there is no asymptotic theory for the general model yet. However,

in Section 2.6, we propose an extension of our LM test to the mixed-frequency case.

2.2 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors η = (ω, α, β)′

and π = (π1, . . . , πK)′ given initial observations for εt and xt by h̄t and τ t. It is im-

portant to distinguish between the observed quasi-likelihood which is based on h̄t =∑t−1
j=0 β

j(ω + αε2
t−1−j/τ t−1−j) + βth̄0 and the unobserved quasi-likelihood function based

on h̄∞t =
∑∞

j=0 β
j(ω + αε2

t−1−j/τ t−1−j) which depends on the infinite history of all past

observations. The unobserved Gaussian quasi-log-likelihood function (omitting the con-
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stant) can be written as L∞T (η,π|εT , xT , εT−1, xT−1, . . .) =
∑T

t=1 l
∞
t with

l∞t = −1

2

[
ln(h̄∞t ) + ln(τ t) +

ε2
t

h̄∞t τ t

]
. (6)

Similarly, conditional on initial values (ε0, h̄0 = 0) the observed quasi-log-likelihood can

be written as LT (η,π|εT , xT , εT−1, xT−1, . . . , ε1, x1, x0, x−1, . . . , xK−1) =
∑T

t=1 lt with

lt = −1

2

[
ln(h̄t) + ln(τ t) +

ε2
t

h̄tτ t

]
. (7)

We assume that the sample contains T + K observations for xt. Thus, there is no need

to impose initial values for the explanatory variable and, hence, the same τ t appears in

the observed and unobserved likelihood.

2.2.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

D∞(η0) =

 D∞η (η0)

D∞π (η0)

 =
1

T

T∑
t=1

d∞t (η0) =
1

T

T∑
t=1

 d∞η,t(η0)

d∞π,t(η0)

 ,

where d∞η,t(η0) = ∂l∞t /∂η
∣∣
η0,π=0

and d∞π,t(η0) = ∂l∞t /∂π
∣∣
η0,π=0

. Next, we derive explicit

expressions for d∞η,t(η0) and d∞π,t(η0). First, consider the partial derivative of the log-

likelihood with respect to η:

∂l∞t
∂η

=
1

2

[
ε2
t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂η

+
1

τ t

∂τ t
∂η

)
(8)

with ∂τ t/∂η = (∂f/∂π′xt)(∂xt/∂η)′π. Under the null hypothesis, the long-term com-

ponent reduces to unity and the short-term component simplifies to h∞t = h̄∞t |π=0 =

ω + αε2
t−1 + βh∞t−1. Note that h∞t corresponds to the standard expression of the condi-

tional variance in a GARCH(1,1). We then distinguish between

d∞η,t(η) =
∂l∞t
∂η

∣∣∣∣
π=0

=
1

2

[
ε2
t

h∞t
− 1

]
y∞t (9)

with

y∞t =
1

h̄∞t

∂h̄∞t
∂η

∣∣∣∣
π=0

=
1

h∞t

∞∑
i=0

βis∞t−i, (10)
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where s∞t = (1, ε2
t−1, h

∞
t−1)′, and the corresponding quantity evaluated at η0:

d∞η,t(η0) =
1

2

[
ε2
t

h∞0,t
− 1

]
y∞0,t, (11)

with h∞0,t = ω0 + α0ε
2
t−1 + β0h

∞
0,t−1 and y∞0,t = (h∞0,t)

−1
∑∞

i=0 β
i
0s
∞
0,t−i.

The partial derivative with respect to π leads to:

∂l∞t
∂π

=
1

2

[
ε2
t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂π

+
1

τ t

∂τ t
∂π

)
, (12)

whereby the partial derivative of h̄∞t is given by

∂h̄∞t
∂π

= −α
∞∑
j=0

βj
ε2
t−1−j

τ 2
t−1−j

∂τ t−1−j

∂π
. (13)

Since ∂τ t/∂π = (∂f/∂π′xt)(xt + (∂xt/∂π)′ π), we have ∂τ t/∂π|π=0 = xtf
′
0 and, hence,

d∞π,t(η) =
∂l∞t
∂π

∣∣∣∣
π=0

=
1

2

[
ε2
t

h∞t
− 1

]
r∞t (14)

with

r∞t =

(
xt − α

1

h∞t

∞∑
j=0

βjε2
t−1−jxt−1−j

)
f ′0. (15)

Similarly as before, the corresponding expression evaluated at η0 is given by:

d∞π,t(η0) =
1

2

[
ε2
t

h∞0,t
− 1

]
r∞0,t (16)

with

r∞0,t =

(
xt − α0

1

h∞0,t

∞∑
j=0

βj0ε
2
t−1−jxt−1−j

)
f ′0. (17)

In summary, we have

D∞(η0) =
1

T

T∑
t=1

d∞t (η0) =
1

2T

T∑
t=1

[
ε2
t

h∞0,t
− 1

] y∞0,t

r∞0,t

 . (18)

Using that under H0: E[ε2
t/h

∞
0,t] = E[Z2

t ] = 1, it follows that E[d∞t (η0)|Ft−1] = 0 and

Var[d∞t (η0)] = Ω =

 Ωηη Ωηπ

Ωπη Ωππ

 =

 E[d∞η,t(η0)d∞η,t(η0)′] E[d∞η,t(η0)d∞π,t(η0)′]

E[d∞π,t(η0)d∞η,t(η0)′] E[d∞π,t(η0)d∞π,t(η0)′]


=

1

4
(κZ − 1)

 E[y∞0,t(y
∞
0,t)
′] E[y∞0,t(r

∞
0,t)
′]

E[r∞0,t(y
∞
0,t)
′] E[r∞0,t(r

∞
0,t)
′]

 . (19)

In the proof of Theorem 1 we will show that Ω is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to 1√
T

∑T
t=1 d∞t (η0).
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2.2.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

∂d∞η,t(η)

∂η′
= −1

2

ε2
t

h∞t
y∞t (y∞t )′ +

1

2

[
ε2
t

h∞t
− 1

]
∂y∞t
∂η′

(20)

and

∂d∞π,t(η)

∂η′
= −1

2

ε2
t

h∞t
r∞t (y∞t )′ +

1

2

[
ε2
t

h∞t
− 1

]
∂r∞t
∂η′

. (21)

We then define

Jηη = −E

[
∂d∞η,t(η0)

∂η′

]
=

1

2
E[y∞0,t(y

∞
0,t)
′] (22)

and

Jπη = −E

[
∂d∞π,t(η0)

∂η′

]
=

1

2
E[r∞0,t(y

∞
0,t)
′]. (23)

Note that d∞η,t(η0) corresponds to the score of observation t in a standard GARCH(1,1)

model and ∂d∞η,t(η0)/∂η′ to the respective second derivative. Under Assumptions 1 and 2,

it then directly follows from the results for the pure GARCH model in Francq and Zaköıan

(2004) that Jηη is finite and positive definite. Finally, note that Ωηη = 1
2
(κZ − 1)Jηη

and Ωπη = 1
2
(κZ − 1)Jπη. If Zt is normally distributed (i.e. the quasi-log-likelihood is

correctly specified), then κZ = 3 and Ωηη = Jηη and Ωπη = Jπη, respectively.

2.3 The LM Test Statistic

The LM test statistic will be based on the observed quantity Dπ(η̂) = 1
T

∑T
t=1 dπ,t(η̂),

where η̂ is the QMLE of η0 estimated under the null. We derive the asymptotic dis-

tribution of the test statistic in three steps. In the first step, we derive the asymptotic

normality of the average score evaluated at η0. We then show that the lower part of the

score evaluated at the QMLE can be related to the average score evaluated at η0 in the

following way:
√
TD∞π (η̂) = [JπηJ−1

ηη : I]
√
TD∞(η0) + oP (1). (24)

In the final step it is necessary to show that the observed quantity
√
TDπ(η̂) has the same

asymptotic distribution as
√
TD∞π (η̂). The LM statistic follows the usual χ2 distribution.

The structure of the proof builds on the arguments used in the proof of Theorem 2 in

Halunga and Orme (2009). However, our set-up differs substantially from theirs because
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we focus on an omitted multiplicative component that is driven by an explanatory variable,

which may or may not be generated ‘outside the model’. Both features lead to substantial

differences in the likelihood and test statistic.

Since the test statistic is based on the QMLE of η0, we can rely on the following

result from Francq and Zaköıan (2004). If Assumptions 1 and 2 hold and the model is

estimated under the null, the QMLE of the GARCH(1,1) parameters will be consistent

and asymptotically normal:

√
T (η̂ − η0)

d−→ N (0, (κZ − 1)(E[y∞0,t(y
∞
0,t)
′])−1). (25)

Remark 1. In principle, we can relax the assumption that Zt is i.i.d. Following Escan-

ciano (2009) and Francq and Thieu (2018), the asymptotic normality of the QMLE can

also be obtained under the weaker assumption that Zt is strictly stationary and ergodic

with E[Zt|Ft−1] = 0 and E[Z2
t |Ft−1] = 1. This allows for a time-varying conditional

kurtosis of Zt. Under this weaker assumption the asymtotic distribution of the QMLE is

given by
√
T (η̂ − η0)

d−→ N (0,J−1
ηηΩ̃ηηJ−1

ηη), (26)

where Ω̃ηη = E[(E[Z4
t |Ft−1] − 1)y∞0,t(y

∞
0,t)
′]. Clearly, if E[Z4

t |Ft−1] is constant, (26) sim-

plifies to (25).

In the following theorem, we derive the asymptotic distribution of the average score

evaluated at η0. In order to ensure the finiteness of the covariance matrix of the average

score, we impose the following assumption on xt.

Assumption 6. xt is strictly stationary and ergodic with E[|xt|2q] <∞ for some q > 1.

By Assumption 2, the explanatory variable xt is assumed to be weakly exogenous,

i.e. E[Zt|xt] = 0. This allows for explanatory variables from ‘outside the model’, but also

covers the case that xt is ‘generated within the model’. In the empirical literature a variety

of explanatory variables from outside the model – such as GDP growth, the term spread or

the unemployment rate – has been used. Wang and Ghysels (2015) show that the GARCH-

MIDAS model with a rolling window realized volatility as the explanatory variable can be

rewritten such that xt = ε2
t , while the specification of Lundbergh and Teräsvirta (2002)

selects xt = ε2
t/h0t which is generated inside the model (see Section 2.4). For testing the

simple GARCH model against the GARCH-MIDAS with xt = ε2
t , Assumption 6 requires

that under the null E[|εt|4q] <∞ for some q > 1.
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Theorem 1. If Assumptions 1-6 hold, then
√
TD∞(η0)

d−→ N (0,Ω).

Next, we consider the asymptotic distribution of the relevant lower part of the score

vector evaluated at η̂. As an intermediate step, we show that Jπη can be consistently

estimated by − 1
T

∑T
t=1

∂d∞π,t(η̃)

∂η′
, where η̃ = η0 + oP (1). The result is presented in Proposi-

tion 1 in Appendix A. The proof requires the following Assumption 7 which ensures that

Jπη(η) is finite with a uniform bound for all η ∈ Θ.

Assumption 7. E[|εt|4(1+s)] <∞ for some 0 < s� 1.

Remark 2. Recall that no moment conditions on the observed process, εt, are needed for

the asymptotic normality of the QMLE of the GARCH(1,1) when the GARCH parameters

lie in the interior of the parameter space. However, as shown in Francq and Zaköıan

(2007), if one is interested in testing whether some of the GARCH parameters are zero

this requires the existence of E[|εt|6]. Our setting requires a weaker moment condition

on εt (see also Halunga and Orme, 2009).

Theorem 2. If Assumptions 1-7 hold, then
√
TD∞π (η̂)

d−→ N (0,Σ) with

Σ = Ωππ − JπηJ−1
ηηΩ′πη

=
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)
′]− E[r∞0,t(y

∞
0,t)
′]
(
E[y∞0,t(y

∞
0,t)
′]
)−1

E[y∞0,t(r
∞
0,t)
′]
)
. (27)

To prove Theorem 2, we use the fact that

√
T (η̂ − η0) = J−1

ηη

√
TD∞η (η0) + oP (1), (28)

which again follows from Assumptions 1 and 2. As discussed in Francq and Zaköıan (2007,

p.1280) the above equation holds only if the true parameters are not on the boundary of

the parameter space. Assumption 1 thus excludes the ARCH(1) case where β0 = 0.

The actual test statistic will be based on the observed quantity Dπ(η̂). The following

theorem states the test statistic and its asymptotic distribution.

Theorem 3. Consider the model given by equations (1-3), where τ 0,t = f(π′0xt), and let

Assumptions 1-7 be satisfied. Then, under H0 : π0 = 0 the test statistic

LM = TDπ(η̂)′Σ̂−1Dπ(η̂)

=
1

4T

(
T∑
t=1

[
ε2
t

ĥt
− 1

]
r̂t

)′
Σ̂−1

(
T∑
t=1

[
ε2
t

ĥt
− 1

]
r̂t

)
, (29)
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where η̂ = (ω̂, α̂, β̂)′ is the vector of parameter estimates from the model under the null,

r̂t = (xt − (α̂/ĥt)
∑t−1

j=0 β̂
j
ε2
t−1−jxt−1−j)f

′
0, ĥt = ω̂ + α̂ε2

t−1 + β̂ĥt−1 and

Σ̂ =
1

4T
̂(κZ − 1)

 T∑
t=1

r̂tr̂
′
t −

T∑
t=1

r̂tŷ
′
t

(
T∑
t=1

ŷtŷ
′
t

)−1 T∑
t=1

ŷtr̂
′
t

 (30)

with ̂(κZ − 1) = 1/T
∑T

t=1(ε2
t/ĥt − 1)2 and ŷt = (ĥt)

−1
∑t−1

j=0 β̂
j
(1, ε2

t−1−j, ĥt−1−j)
′ is a

consistent estimator of Σ, has an asymptotic χ2 distribution with K degrees of freedom.

Theorem 3 illustrates that the LM test is a general misspecification test which is robust

with respect to the functional form of f(·). That is, the test statistic in equation (29) does

not depend on the constant f ′0 because the (f ′0)2 in the ‘numerator’ and the ‘denominator’

of the test statistic cancel out. Moreover, our simulations in Section 3.2 suggest that the

power of the test is only mildly affected by the specific functional form of f(·) under the

alternative.

Remark 3. The covariance matrix Σ̂ in Theorem 3 takes the same form as in Lundbergh

and Teräsvirta (2002). The fact that we can factor out the term ̂(κZ − 1) follows from the

assumption that Zt is i.i.d. A modified version of the test statistic can be obtained under

the weaker assumption discussed in Remark 1. However, this would require to further

strengthen the assumptions on xt and εt.

Essentially, the test statistic checks for a correlation between the squared standardized

residuals from the model estimated under the null and the elements of the K-dimensional

vector r̂t. In empirical applications, the true lag length is unknown. Although the LM

statistic can be easily computed for a variety of K’s, our simulation experiments have

shown that for reasonable weighting schemes, choosing K = 1 is sufficient in order to de-

tect whether xt has an effect on long-term volatility or not (for details see Appendix C.3).

Moreover, it is straightforward to construct a regression version of our test (see also

Lundbergh and Teräsvirta, 2002). The corresponding test statistic is given by LM =

T (SSR0 − SSR1)/SSR0, where SSR0 =
∑T

t=1(ε2
t/ĥt − 1)2 and SSR1 is the sum of

squared residuals from a regression of (ε2
t/ĥt − 1) on r̂′t and ŷ′t. Hence, LM is simply T

times the uncentered R2 of the regression.

Remark 4. Wang and Ghysels (2015) consider the linear long-term component

f(π′xt) = 1 + π′xt, (31)
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which again ensures that f(0) = 1. However, this specification requires π ≥ 0 as well

as non-negative explanatory variables, i.e. xt ≥ 0, almost surely, in order to ensure the

positivity of the conditional variance. This is in analogy to the ARCH(K) model in which

ε2
t−j ≥ 0 corresponds to our xt−j and where the assumption that all ARCH parameters are

non-negative is needed to ensure that the conditional variance is positive. Although the

alternative hypothesis becomes one-sided in this case, i.e. is given by H1 : π0 6= 0, π0 ≥ 0,

this does not affect the asymptotic distribution of our test statistic which is still χ2(K).

This result follows from the fact that the score vector is still asymptotically Gaussian under

the null (see Francq and Zaköıan, 2009). However, as suggested by Demos and Sentana

(1998), it may be possible to construct a one-sided version of our LM test that would be

more powerful.

Remark 5. In principle, we could also use our approach to test for the joint significance

of several explanatory variables, say, vt, wt, . . .. In this case xt would include the lagged

values of the different explanatory variables, i.e. xt = (vt−1, wt−1, . . .), and K would rep-

resent the number of different explanatory variables times the lags to be included. In this

case, the exponential long-term component from equation (5) could be further multiplica-

tively decomposed as τ 0,t = exp(π0,1vt−1) · exp(π0,2wt−1) · . . ..

Remark 6. Although we are primarily interested in testing for an omitted multiplicative

component, for certain specifications of the long-term component the test can also be used

to check for an additive misspecification of the short-term component. For example, if

the long-term component is given by equation (31) and we choose K = 1 and xt =

(1{εt−1<0}ε
2
t−1)/h̄∞0,t, where 1 is an indicator function, we obtain

σ2
0t = h̄∞0t + π0,11{εt−1<0}ε

2
t−1. (32)

Under H0 : π0,1 = 0, σ2
0t follows a GARCH(1,1), while under the alternative there is an

additive asymmetry term. Indeed, equation (32) is similar to the models considered in

Engle and Ng (1993) for testing for asymmetry in the conditional variance.

Finally, it is interesting to consider two special cases that are nested within our frame-

work when there are no GARCH effects, i.e. when α0 = β0 = 0 and h̄∞0t = ω0. In this case,

the model under H0 has constant conditional and unconditional variance equal to σ2
0 = ω0.

Under the alternative, the conditional variance is given by Var[εt|Ft−1] = σ2
0τ t. Without
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GARCH effects and under H0, the average score in equation (18) can be rewritten as

D∞(η0) =
1

2T

T∑
t=1

[
ε2
t

σ2
0

− 1

] σ−2
0

f ′0xt

 . (33)

As a result, the regression-based test simplifies to regressing the squared returns on a

constant and xt and computing TR2 which resembles the Godfrey (1978) test for multi-

plicative heteroskedasticity. Finally, the Engle (1982) test for ARCH effects is obtained

when choosing xt = (ε2
t−1, ε

2
t−2, . . . , ε

2
t−K)′.

2.4 Relation to LM test of Lundbergh and Teräsvirta (2002)

Next, we compare our test statistic to the Lundbergh and Teräsvirta (2002) test for

misspecification in GARCH models. Their test is based on the following specification

εt =
√
h∞0t ξ0t =

√
h∞0t τ 0tZt, where h∞0t is defined as before and τ 0t = 1+π′0xt, i.e. they as-

sume a linear long-term component. Lundbergh and Teräsvirta (2002) make the specific

choice of xt = ξ2
0t = ε2

t/h
∞
0t for the explanatory variable. Because under this assump-

tion ξ0t =
√
τ 0tZt follows an ARCH(K), Lundbergh and Teräsvirta (2002) refer to this

specification as ‘ARCH nested in GARCH’ and test the null hypothesis H0 : π0 = 0.

Although the ‘ARCH nested in GARCH’ is remarkably similar to our model, there is

an important conceptual difference. Since the short-term component is based on h∞0t

(instead of h̄∞0t ), it depends on the squared observation ε2
t−1 (instead of ε2

t−1/τ 0,t−1). Be-

cause of this,
√
h∞0tZt follows a GARCH(1,1) process under the null but not under the

alternative. Due to this difference in the specification, their model does not encom-

pass the GARCH-MIDAS under the alternative. Moreover, it follows that ∂h∞t /∂π = 0

and, hence, in the Lundbergh and Teräsvirta (2002) setting equation (17) reduces to

r∞0,t = (ε2
t−1/h

∞
0,t−1, ε

2
t−2/h

∞
0,t−2, . . . , ε

2
t−K/h

∞
0,t−K)′. Thus, their LM test statistic is based

on [
ε2
t

ĥt
− 1

]
r̂LTt , (34)

where ĥt = ω̂ + α̂ε2
t−1 + β̂ĥt−1 and r̂LTt has entries ε2

t−k/ĥt−k, k = 1, . . . , K. Intuitively,

equation (34) is used to test whether the squared standardized returns are still correlated.

In this sense, the test is intended to be a very general misspecification test with omitted

ARCH under the alternative (instead of a well-specified alternative).
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In the Section 3, we will compare the ‘ARCH nested in GARCH’ test of Lundbergh

and Teräsvirta (2002) to our new LM test. We denote the test statistic based on r̂LTt

instead of r̂t by LMLT . In addition, we consider a modified version of the Lundbergh

and Teräsvirta (2002) test, in which we allow for a general regressor xt. In this case,

equation (17) is simply given by r∞0,t = xt = r̂LT,modt . We denote the corresponding test

statistic LMLT,mod. Since r̂t − r̂LT,modt = (α̂/ĥt)
∑t−1

j=0 β̂
j
ε2
t−1−jxt−1−j, our new test, LM ,

and LMLT,mod can be expected to perform similarly if, for example, α̂ is small. On the

other hand, we expect that our test will have better power properties than the modified

Lundbergh and Teräsvirta (2002) test when the ARCH effect is strong. The modified

test, LMLT,mod, coincides with a test proposed in Section 4.4 of Amado and Teräsvirta

(2017), if their deterministic component is assumed to be one (in their notation: gt ≡ 1)

and xt is used as the explanatory variable (see their equation (6)).

2.5 Generalization of LM Test: Alternative h̄∞0t Components

Next, we discuss how the LM test statistic can be constructed when assuming an al-

ternative short-term component. We focus our attention on the GJR-GARCH which

allows positive and negative innovations to have an asymmetric effect on volatility. When

assuming a GJR-GARCH(1,1) short-term component, we have to replace equation (3) by

h̄∞0t = ω0 +
(
α0 + γ01{εt−1<0}

) ε2
t−1

τ 0,t−1

+ β0h̄
∞
0,t−1, (35)

where ω0 > 0, α0 > 0, α0 + γ0 > 0, β0 > 0 and α0 + γ0/2 + β0 < 1. The long-term

component remains unchanged. For the GJR-GARCH under H0, equation (11) has the

same structure as before but with

h∞0,t = ω0 + α0ε
2
t−1 + γ01{εt−1<0}ε

2
t−1 + β0h

∞
0,t−1 (36)

and y∞0,t = (h∞0,t)
−1
∑∞

i=0 β
i
0s
∞
0,t−i, where now s∞0,t = (1, ε2

t−1,1{εt−1<0}ε
2
t−1, h

∞
0,t−1)′. That is,

by taking the asymmetry into account, y∞0,t and s∞0,t become (4 × 1) vectors. Similarly,

equation (17) becomes

r∞0,t =

(
xt −

1

h∞0,t

∞∑
j=0

βj0(α0 + γ01{εt−1−j<0})ε
2
t−1−jxt−1−j

)
f ′0, (37)

but remains a (K× 1) vector. In order to implement the LM test, one now estimates the

GJR-GARCH under the null hypothesis. As before, the actual LM test statistic can be
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computed based on the respective estimates ĥt, ŷt and r̂t. The asymptotic distribution

of the test statistic will again be χ2 with K degrees of freedom. To formally show this,

our assumptions on the model parameters and our proofs could be adapted to the case of

a GJR-GARCH under H0 based on the asymptotic theory for the corresponding QMLE

provided in Hamadeh and Zaköıan (2011).

In a similar fashion, the LM test can be constructed for other GARCH-type specifica-

tions of the short-term component such as higher-order GARCH models or long-memory

specifications (e.g. the FIGARCH model).

2.6 Mixed-Data Sampling

As mentioned in Section 2.1, the two-component model is often applied in settings where

the explanatory variable is observed at a lower frequency than the daily returns. In order

to capture such a setting we have to slightly adapt our notation. As before, we use xt to

denote the explanatory variable, but now t refers to, for example, a monthly or quarterly

frequency. We denote the daily returns by εi,t, where i = 1, . . . ,M refers to the M days

within each month/quarter. Equation (1) can then be rewritten as

εi,t =
√
h̄∞0,i,tτ 0,tZi,t, (38)

whereby Assumption 2 now holds for Zi,t with Fi,t defined accordingly. Note that the

long-term component has an index t only, since it is constant within each month/quarter.

On the other hand, the GARCH component varies at the daily frequency.

We propose two versions of the test for the mixed-frequency case. The first version

again leads to an LM test and, for space considerations, is presented in Appendix B.

The second version is regression-based and links our test to the empirical literature on

predictive regressions for financial volatility. This version is presented in the following.

The regression-based test makes use of what we call the volatility-adjusted realized

variance, R̃V t. We define this quantity as the sum of the squared daily deGARCHed

returns, ε2
i,t/h̄

∞
0,i,t, within each month/quarter:

R̃V t =
M∑
i=1

ε2
i,t

h̄∞0,i,t
= τ 0,t

M∑
i=1

Z2
i,t = τ 0,tZ̃t. (39)

To further simplify the analysis, we assume that the long-term component is given by

τ 0,t = exp(π′0xt). This assumption is reasonable since it is the most common specification
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of τ 0,t in the empirical literature. It is then natural to consider the log of equation (39)

as a regression model:

ln(R̃V t) = π′0xt + ln(Z̃t) = c̃+ π′0xt + ζ̃t, (40)

where c̃ = E[ln(Z̃t)] and ζ̃t = ln(Z̃t)− c̃. Note that by Assumption 2 the innovation ζ̃t is

i.i.d.. That is, under H0 : π0 = 0 the volatility-adjusted realized variance ln(R̃V t) should

be unpredictable. In order to obtain an estimable version, we have to replace R̃V t in

equation (40) with the estimate
̂̃
RV t =

∑M
i=1 ε

2
i,t/ĥi,t, where ĥi,t is the estimate from the

model under the null.

Equation (40) is very much in analogy to the predictive regression model often used

when analyzing the link between financial volatility and macro conditions (see Paye,

2012, Christiansen et al, 2012, and others). The important difference is that predictive

regressions directly try to explain the realized variance, i.e. are based on regressions of

the following type:

ln(RVt) = c+ π′0xt + ζt, (41)

where RVt =
∑M

i=1 ε
2
i,t. From equation (38) it follows that the innovation in equation (41)

is given by ζt = ln(
∑M

i=1 h̄
∞
0,itZ

2
i,t) − E[ln(

∑M
i=1 h̄

∞
0,itZ

2
i,t)]. Note that ζt is a low-frequency

process that depends on the sum of a squared high-frequency GARCH process. That is,

while ζ̃t is i.i.d., we can expect that ζt has a higher variance and is strongly autocorrelated.

This intuition is in line with the fact that ln(RVt) is typically found to be highly persistent.

These considerations suggest that the relationship between xt and financial volatility is

more difficult to detect when using equation (41) rather than equation (40) as a regression

model.

Finally, note that in predictive regressions typically the lagged realized variance is also

included as an additional explanatory variable. This leads to the regression

ln(RVt) = c+ π′0xt + ρ ln(RVt−1) + ζt. (42)

The point that predictive regressions like in equation (42) might be problematic has

already been made by Engle et al. (2013) who argue that ln(RVt) is a noisy measure of

the true unobservable long-term component. This creates problems due to measurement

error on both the left as well as the right hand side of the equation. In the empirical

application in Section 4.2, we estimate a variant of equation (42) in which we replace
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ln(RVt) with ln(
̂̃
RV t). Providing a complete treatment of the asymptotic theory of the

predictive regression version of the test is beyond the scope of the current paper. However,

in Appendix C.7 we provide detailed simulation results suggesting that the test works well

in practice.

3 Simulations

In this section, we examine the finite sample behavior of the proposed test in a Monte-

Carlo experiment. We simulate return series with T = 1000 observations and use R =

1000 Monte-Carlo replications. The innovation Zt is assumed to be either standard nor-

mally distributed or (standardized) t-distributed with seven degrees of freedom. In order

to consider a realistic example under the alternative, we will base the long-term compo-

nent on actual data. As an explanatory variable, we use the squared daily VIX index,

V IXt, for the period October 2010 to October 2014. More specifically, we define V IXt as

1/365 times the squared VIX index so that the squared annualized observations are trans-

formed to daily units. In addition, we construct monthly and quarterly rolling window

versions of the squared VIX as V IX
(N)
t = 1

N

∑N−1
j=0 V IXt−j, with N = 22 and N = 65.

Figure 1 shows the evolution of the VIX and its rolling window versions over the sample

period. The spikes in the third quarter of 2011 correspond to the financial turmoil during

the European sovereign debt crisis.

3.1 Size Properties

We first discuss the size properties of the test statistic. Three alternative GARCH(1,1)

specifications are considered. The three GARCH specifications reflect different degrees

of persistence (Low: G-L, Moderate: G-M, High: G-H) in the conditional variance,

whereby we measure persistence by α0 + β0. We keep β0 fixed at 0.9 and choose α0 ∈
{0.05, 0.07, 0.09}. ω0 is always chosen such that under the null σ2

0 = 1.

G-L: h̄∞0t = 0.05 + 0.05
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1

G-M: h̄∞0t = 0.03 + 0.07
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1

G-H: h̄∞0t = 0.01 + 0.09
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1
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Figure 1: The figure shows the evolution of V IXt (grey line), V IX
(22)
t (dashed black line)

and V IX
(65)
t (solid black line) for the period October 2010 to October 2014. The three

variables are presented in daily units.

In addition, we consider GJR-GARCH(1,1) specifications for the short-term component.

These models are given by

GJR-L: h̄∞0t = 0.05 + (0.02 + 0.06 · 1{εt−1<0})
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1

GJR-M: h̄∞0t = 0.03 + (0.02 + 0.10 · 1{εt−1<0})
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1

GJR-H: h̄∞0t = 0.01 + (0.02 + 0.14 · 1{εt−1<0})
ε2
t−1

τ 0,t−1

+ 0.90h̄∞0,t−1.

For the GJR-GARCH models persistence is measured by α0 + γ0/2 + β0. Note that we

have chosen α0 and γ0 such that the persistence in GJR-L, GJR-M and GJR-H coincides

with the persistence in models G-L, G-M and G-H above.

To implement the test, we have to specify the explanatory variable. In Panels A and C

of Table 1 we test for remaining ARCH effects by choosing xt = ε2
t/ĥt and in Panels B and

D we choose xt = V IXt. In Panels A/B the model under H0 is the GARCH(1,1), while in

Panels C/D the model under H0 is the GJR-GARCH(1,1). We report the empirical size

for the LM test given in equation (29) as well as for the original, LMLT , and modified,

LMLT,mod, test statistics of Lundbergh and Teräsvirta (2002). For all three tests we choose

K = 1. We first discuss the results when testing for remaining ARCH effects. As Panels

A/C of Table 1 show, the empirical size of both versions of the test statistic is very close

to the nominal size when Zt is normally distributed. In case of Student-t distributed
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Table 1: Empirical size.

Zt ∼ N (0, 1) Zt ∼ t(7)

H0 : GARCH G-L G-M G-H G-L G-M G-H

Panel A: xt = ε2t/ĥt

LM 4.6 5.0 5.2 3.1 3.7 3.9

LMLT 5.2 5.2 5.1 3.4 3.8 3.9

Panel B: xt = V IXt

LM 6.4 6.0 5.7 6.0 6.1 5.5

LMLT,mod 7.0 7.1 7.9 5.5 6.4 7.1

H0 : GJR-GARCH GJR-L GJR-M GJR-H GJR-L GJR-M GJR-H

Panel C: xt = ε2t/ĥt

LM 5.3 5.4 6.0 3.7 4.0 4.0

LMLT 5.7 6.0 5.9 4.1 4.4 4.0

Panel D: xt = V IXt

LM 7.2 6.2 6.1 6.5 6.8 6.3

LMLT,mod 7.5 8.1 7.7 5.9 6.2 6.1

Notes: The number of observations is T = 1000. Entries are rejection rates in percent over the

R = 1000 replications at the 5% nominal level. In Panels A and B the model for the conditional

variance is a GARCH(1,1) with β0 = 0.90. G-L, G-M and G-H refer to GARCH models with low

(α0 = 0.05), moderate (α0 = 0.07) and high (α0 = 0.09) persistence. In Panels C and D the model

for the conditional variance is a GJR-GARCH(1,1) with α0 = 0.02 and β0 = 0.90. GJR-L, GJR-M

and GJR-H refer to models with low (γ0 = 0.06), moderate (γ0 = 0.10) and high (γ0 = 0.14)

persistence, respectively. ω0 is chosen such that σ2
0 = 1. All test statistics are based on K = 1.

innovations, the two test statistics are slightly undersized. For the LMLT test statistic,

this is an observation also made in Lundbergh and Teräsvirta (2002) and Halunga and

Orme (2009). However, in Appendix C.1, we show that the size distortion fades away with

increasing sample size. As Panels B/D show, both tests are modestly oversized when the

squared VIX is used as an explanatory variable.

3.2 Power Properties

We simulate the model under the alternative using the exponential specification from

equation (5). Three alternative weighting schemes π0 are considered. The first one

includes only the first lag of xt with a weight of π0,1 = 0.3. We refer to this weighting

scheme as one with immediate (I) decay. The second and third weighting schemes are
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shown in Figure 2. The solid and dashed lines represent weights that either have a fast

(F) or a slow (S) decay. The second and third weighting schemes are scaled such that

their weights add up to 0.3. The weights were generated using a Beta polynomial (see

Ghysels et al., 2007).

Figure 2: Alternative weighting schemes π0,k, for lags k = 1, . . . , 12, with fast (F; solid

line) and slow (S; dashed line) decay.

Table 2 presents size-adjusted rejection rates that were obtained from the Monte-

Carlo simulations. The LM (LMLT,mod) test statistics are based on r̂t (r̂LT,modt ) with

xt ∈ {V IXt, V IX
(22)
t , V IX

(65)
t }. As before, LMLT is based on r̂LTt with xt = ε2

t/ĥt and,

hence, tests for ‘ARCH nested in GARCH’. For all three test statistics we choose K = 1,

i.e. the tests are based on the first lag of xt. Thus, the results in Table 2 illustrate the

performance of the test statistics when K is correctly chosen but also when K is smaller

than the true lag length. The upper/lower part of Table 2 shows the size-adjusted power

for the test with GARCH/GJR-GARCH under H0.

For the time being, consider the upper part of Table 2. At first, we choose xt = V IXt

and report the size-adjusted power for the two GARCH models with high (G-H) and

moderate (G-M) persistence in combination with the different weighting schemes. In

addition, we report the variance ratio: V R = V̂ar(ln(τ 0t))/V̂ar(ln(τ 0th̄
∞
0t )), which reflects

the fraction of the sample variance of the log conditional variance that is due to the sample

variance of the log long-term component (see Conrad and Loch, 2015a). For example, for

α0 = 0.09 (G-H) in combination with an immediately decaying weighting scheme, 15.6%

of the total conditional variance is due to the long-term component. When α0 is decreased
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Table 2: Empirical size-adjusted power for an exponential long-term component.

xt V IXt V IX
(22)
t V IX

(65)
t

weighting scheme I F S I F S I I

H0 : GARCH G-H G-M G-H

LM 74.4 71.0 49.9 79.9 77.3 59.4 36.8 19.9

LMLT,mod 42.2 39.9 31.2 70.9 69.5 59.0 15.6 11.1

LMLT 5.6 5.6 5.9 5.9 5.6 5.6 5.0 4.7

V R 15.6 15.5 14.8 35.5 35.2 34.1 14.7 12.0

H0 : GJR-GARCH GJR-H GJR-M GJR-H

LM 77.1 74.9 54.2 82.8 80.6 62.1 41.5 24.8

LMLT,mod 51.6 49.6 39.2 71.6 70.3 59.6 21.9 14.4

LMLT 5.7 5.7 5.8 5.8 5.8 5.5 5.3 5.5

V R 11.7 11.6 11.1 26.9 26.7 25.7 11.0 8.9

Notes: The table reports the empirical size-adjusted power at the 5% nominal level. The spec-

ification of the long term component is given by τ0,t = exp(π′0xt) with weighting schemes with

immediate (I), fast (F) and slow (S) decay. The GARCH parameters are α0 = 0.09 (G-H) or

α0 = 0.07 (G-M) in combination with β0 = 0.90 and ω0 = 1 − α0 − β0. The GJR-GARCH pa-

rameters are α0 = 0.02, γ0 = 0.14 (GJR-H) or γ0 = 0.10 (GJR-M) in combination with β0 = 0.90

and ω0 = 1−α0− γ0/2−β0. Innovations Zt are standard normal distributed. The variance ratio,

V R = V̂ar(ln(τ0t))/V̂ar(ln(τ0th̄
∞
0t )), is the fraction of the sample variance of the log conditional

variance that is due to the sample variance of the log long-term component. All test statistics

are based on K = 1. The number of observations is T = 1000. Results are based on R = 1000

replications.

to 0.07 (G-M), the V R increases to 35.5%. Clearly, decreasing α0 means to weaken the

GARCH effect and, hence, to reduce the variability with which the short-term component

fluctuates around τ 0t.
3

First, consider the case where α0 = 0.09 (G-H). For the immediately decaying weight-

ing scheme, the LM test rejects the null hypothesis in 74.4% of the simulations at the

nominal 5% level. In contrast, the rejection rate of the modified Lundbergh and Teräsvirta

(2002) test, LMLT,mod, is 42.2% only. Next, we consider the weighting schemes with fast

and slow decay. In these cases, the long-term component becomes less variable and, hence,

more difficult to detect. Consequently, the power of both tests deteriorates. Nevertheless,

3For α0 → 0 the GARCH component approaches a constant and all the variation in σ2
0,t is due to

movements in the long-term component.
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the LM test still has considerably higher power than LMLT,mod. When α0 is decreased

to 0.07 (G-M), this increases the power of both tests. For example, for the immediately

decaying weighting scheme the size-adjusted power at the nominal 5% level is now 79.9%

for the LM test. Clearly, with lower α0 and thus less volatile GARCH component, the

long-term component can be detected more easily. As before, having more slowly de-

caying weights, i.e. increasing the smoothness of the long-term component, reduces the

power of the tests. In line with the arguments at the end of Section 2.4, the difference

in the power of the LM and LMLT,mod statistics is less strong when α0 is decreased to

0.07. Finally, the last two columns of Table 2 show the rejection rates for the case that

the long-term component is based on the monthly and quarterly rolling window versions

of the squared VIX. Then, even for the immediately decaying weighting scheme, the long-

term components are very smooth and the lowest V R’s are observed. As expected, the

size-adjusted powers are the lowest for these two cases. Note that in all eight scenarios

the original version of the Lundbergh and Teräsvirta (2002) test, LMLT , has only trivial

power against deviations from the null hypothesis. This is not surprising since LMLT is

searching for an omitted ARCH component and, hence, is ‘searching in the wrong place’.

The lower part of Table 2 confirms all findings for GJR-GARCH models with high

(GJR-H) and moderate (GJR-M) persistence.

In summary, the size-adjusted power of the newly proposed test, LM , is higher the

more volatile the long-term component is and the less volatile the short-term component

fluctuates around the long-term component (i.e. the lower α0 is).

We performed the same analysis as in Table 2 for the case of Student-t distributed

innovations Zt (see Table 6 in Appendix C.2). As the table shows, for each specification the

t distributed innovations decrease the V R in comparison to the one that we obtained for

normally distributed innovations. The lower V R’s then lead to a loss of power, i.e. under t

distributed innovations the long-term component is more difficult to detect. However, all

qualitative results regarding the different versions of the test statistics remain unchanged.

3.3 Practical Implementation and Robustness Checks

First, we consider two issues related to the practical implementation of the LM test.

Choice of K: We performed simulations to investigate how important it is to correctly

choose K. The simulations suggest that for all practically relevant weighting schemes the
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choice of K = 1 is very reasonable. Even in extreme cases where all weight is put on lags

greater than one, choosing K = 1 only leads to a modest loss in power relative to the

correct choice of K (see Appendix C.3). Nevertheless, if the LM test does not reject for

K = 1 and xt has low persistence, it may be advisable to successively increase K to check

whether there is some dependence on higher lags.

Persistence in the GARCH component: In empirical studies, the sum of the

estimated GARCH parameters, α̂ + β̂, is often found to be close to one or, occasionally,

even greater than one. The simulations in Appendix C.4 investigate the power of the LM

test in situations in which α0 +β0 is close to (but below) one. Using various specifications

of the long-term component, we show that – despite an omitted (stationary) long-term

component – the median of the parameter estimates of α and β for the GARCH model

under the null hypothesis is close to the true parameter values. Only if the sum of the

true GARCH parameters is very close to one, some of the simulations lead to parameter

estimates such that α̂+ β̂ ≥ 1. This effect is the stronger the more relevant the long-term

component is. Although the variance ratio decreases considerably in cases in which α0+β0

is close to (but below) one (because the GARCH component becomes more volatile), the

LM test has still very reasonable power to reject the null hypothesis. Thus, the simulation

results suggest that the LM test can be applied even if α̂+ β̂ ≥ 1 (as long as α0 +β0 < 1).

However, whenever α̂+β̂ is close to one, we suggest to investigate more than one source

of potential misspecification. For example, it is well known that neglected parameter

changes (see Hillebrand, 2005) or neglected long-memory (Baillie et al., 1996) can lead

to the so-called ‘IGARCH effect’. In particular, if a researcher estimates α̂ + β̂ ≥ 1, he

would not want to rely on the GARCH(1,1) specification but rather check for potential

sources of misspecification. If α̂+ β̂ ≥ 1 and the LM test rejects the null hypothesis, then

the misspecification may indeed be due to an omitted long-term component. If α̂+ β̂ ≥ 1

and the test does not reject, neglected parameter changes or neglected long-memory in

the GARCH component are likely sources of the misspecification and should be tested

for.

Finally, we performed several robustness checks.

Linear long-term component: In order to evaluate the effect of different choices

for f(·) on the power of the test statistic, we replaced the exponential specification of τ 0,t

with the linear specification in equation (31). The corresponding results for normally and
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Student-t distributed innovations can be found in Tables 9/10 in Appendix C.5 and, again,

qualitatively confirm our previous findings. Note that (for the same weighting schemes

as in the exponential specification) the linear specification leads to lower variance ratios

which explains the difference in power.

Sample size: Given that a sample size of T = 1000 is relatively modest for applica-

tions in financial econometrics, the power of the LM test is very satisfactory. However,

in order to evaluate the effect on the power of increasing the sample size, we performed

the same simulations as before but with T = 2000. As expected, in the larger sample the

power of LM and LMLT,mod increased substantially under all scenarios.

Misspecification of the Short-Term Component:

We also investigated how sensitive the LM test is with respect to a misspecification

of the short-term component. A potential objection against our LM test might be that

the test could ‘confuse’ a misspecified short-term component with an omitted long-term

component. In Appendix C.6, we investigate the consequences of implementing the LM

test under the null of a GARCH(1,1) although the true short-term component is a GJR-

GARCH(1,1), a higher-order GARCH or a fractionally integrated GARCH (FIGARCH).

In summary, the simulation results show that in the absence of a long-term component

the LM test based on an exogenous explanatory variable, xt, is insensitive with respect

to a misspecified short-term component. When testing for remaining ARCH effects, both

tests, LM and LMLT , correctly detect a deviation from the null if the misspecification is

sufficiently severe. That is, by choosing xt = ε2
t/ĥt, our test is able to detect other forms of

misspefication than omitted multiplicative components only (see also Remark 6). Finally,

in the presence of a long-term component the power of the LM test decreases only slightly

when using a misspecified GARCH model under H0.

Mixed-frequency test: In Appendix C.7, we provide simulations for the mixed-

frequency version of the test. In line with our arguments in Section 2.6, the simulations

clearly show that predictive regressions based on
̂̃
RV t are more powerful than predictive

regressions based on RVt.
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4 Empirical Application

We consider two empirical applications. The first one deals with daily, weekly and monthly

return data that are combined with explanatory variables which are available at the

same frequency. The second one applies the test in a mixed-frequency setting. For both

applications we use log-returns on the S&P 500.

4.1 Daily, Weekly and Monthly Data

First, we apply our test to four variables that are observed at a daily frequency and

check whether these variables might be useful in a two-component GARCH specification.

The data sample starts in December 1987 (i.e. after the crash in October 1987) and ends

in June 2016. The first explanatory variable is the squared VXO, V XOt. The VXO

volatility index is disseminated by the Chicago Board Options Exchange (Cboe) and is

based on S&P 100 index options. In contrast to the VIX, the VXO is already available

from 1986 onwards. As a crude measure of daily realized variance (RV), we rely on the

squared daily return, RVt = ε2
t . While the VXO and RV measure stock market volatility,

we employ the index suggested by Baker et al. (2016) as a measure of general economic

policy uncertainty (EPU, EPUt). Last, we use the ADS Business Conditions Index, ADSt,

suggested by Aruoba et al. (2009). This variable is meant to proxy for macroeconomic

conditions. Data on the ADS were obtained from the website of the Federal Reserve Bank

of Philadelphia. All other data were obtained from the FRED database maintained by the

Federal Reserve Bank of St. Louis. In addition to the daily variables, we also consider the

22-days rolling window versions, defined as x
(22)
t = 1/22

∑21
j=0 xt−j. The contemporaneous

correlations between the four variables are in line with intuition: financial volatility (VXO,

RV) and political uncertainty (EPU) are positively correlated, while the three variables are

negatively correlated with business conditions (ADS) (see Tables 14/15 in Appendix D).

For the daily log-returns on the S&P 500, we estimate a GJR-GARCH(1,1) and a

GARCH(1,1). The parameter estimates for the GJR-GARCH(1,1) are

ht = 0.019
(0.004)

+ (0.002
(0.006)

+ 0.136
(0.020)

· 1{εt−1<0})ε
2
t−1 + 0.913

(0.013)
ht−1

with robust standard errors in parentheses. Thus, the estimates suggest that there is

significant asymmetry in the volatility of S&P 500 returns. The parameter estimates for
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the simple GARCH are

ht = 0.014
(0.004)

+ 0.075
(0.011)

ε2
t−1 + 0.913

(0.012)
ht−1.

We then apply our test with the GJR-GARCH under H0, LMGJR, and alternatively with

the GARCH under H0, LMGA. In addition, we show the outcome of the LMLT,mod test.

As Panel A of Table 3 shows, all three LM tests reject the null hypothesis for V XOt,

EPUt and ADSt at the 1% level. Thus, these variables might be useful predictors of stock

market volatility and could be drivers of an omitted second component. While LMGJR

rejects the null for RVt, LM
GA and LMLT,mod do not. Overall, the test outcome is in line

with the previous literature: long-term volatility is well known to be closely related to

expected future volatility/uncertainty and behaves in a counter-cyclical fashion (see, e.g.,

Engle et al., 2013, Conrad and Loch, 2015a, and Dorion, 2016).

All three LM tests lead to the same conclusions when applied to the 22-day rolling

window versions of the explanatory variables. The tests reject the null in case of V XO
(22)
t

and ADS
(22)
t , but do not reject for RV

(22)
t and EPU

(22)
t . For all variables but ADS

(22)
t ,

the test statistics now take smaller values than when using the non-smoothed data. This

is in line with the simulations in Section 3.2, which have shown that the power of the

tests decreases when the explanatory variables are smoother.

It is important to note that (with only one exception), the LM tests based in the

GJR-GARCH and the simple GARCH lead to the same conclusion. That is, although

LMGA is based on the misspecified GARCH model, this does not distort the test outcome.

Finally, we apply the LM test to weekly and monthly data. For this, we calculate

weekly/monthly returns as the sum of the daily log-returns within each week/month.

We construct weekly/monthly explanatory variables as the average of the explanatory

variables within each week, x
(W )
t , or month x

(M)
t . For the weekly and monthly return data,

the preferred specification is a simple GARCH with the following parameter estimates:

weekly: ht = 0.117
(0.061)

+ 0.084
(0.025)

ε2
t−1 + 0.894

(0.029)
ht−1

monthly: ht = 0.592
(0.315)

+ 0.143
(0.045)

ε2
t−1 + 0.831

(0.040)
ht−1.

The time index t now refers to a weekly or monthly frequency. Panels B and C of Table 3

show that the LMGA test now rejects the null hypothesis for all four variables. An

explanation could be that the fraction of the total conditional variance that is due to
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Table 3: LM test for S&P 500 returns.

Panel A: daily returns

xt V XOt RVt EPUt ADSt V XO
(22)
t RV

(22)
t EPU

(22)
t ADS

(22)
t

LMGJR 28.82
[<0.01]

5.39
[0.02]

6.97
[<0.01]

5.99
[0.01]

4.55
[0.03]

1.26
[0.25]

0.00
[0.96]

6.60
[0.01]

LMGA 87.84
[<0.01]

0.83
[0.36]

17.22
[<0.01]

5.05
[0.02]

12.71
[<0.01]

0.13
[0.72]

1.56
[0.21]

6.30
[0.01]

LMLT,mod 40.93
[<0.01]

0.93
[0.33]

9.76
[<0.01]

5.61
[0.02]

4.44
[0.04]

0.00
[0.97]

0.25
[0.62]

4.72
[0.03]

Panel B: weekly returns Panel C: monthly returns

xt V XO
(W )
t RV

(W )
t EPU

(W )
t ADS

(W )
t V XO

(M)
t RV

(M)
t EPU

(M)
t ADS

(M)
t

LMGA 38.16
[<0.01]

34.21
[<0.01]

17.91
[<0.01]

7.97
[<0.01]

7.04
[0.01]

15.78
[<0.01]

9.56
[<0.01]

19.85
[<0.01]

LMLT,mod 20.63
[<0.01]

29.12
[<0.01]

7.48
[0.01]

7.93
[<0.01]

2.98
[0.08]

8.76
[<0.01]

1.28
[0.25]

11.88
[<0.01]

Notes: The table reports test statistics for GJR-GARCH under H0, LMGJR, for GARCH under H0,

LMGA, and for LMLT,mod. Numbers in brackets are p-values. All tests are based on K = 1 and the

1987M12 - 2016M06 period.

the long-term component and, hence, due to xt, is larger for low-frequency (weekly or

monthly) than for high-frequency (daily) returns.

In summary, our test results provide convincing evidence that a simple one-component

GARCH is misspecified for the given sample. However, which variable and frequency

should be selected for modelling the second component will ultimately depend on the

specific application. For example, one variable might dominate when one is interested

in forecasting tomorrow’s conditional variance, but another one when the interest lies in

forecasting next month’s variance.

4.2 Mixed-Frequency Data

For the mixed-frequency application we use the same data as in Conrad and Loch (2015a).

We construct quarterly realized variances RVt from daily S&P 500 stock returns for the

1973Q1 to 2010Q4 period. Eleven macroeconomic variables are then used to test whether

macroeconomic conditions can predict financial volatility. The macro variables are: real

GDP, industrial production, the unemployment rate, housing starts, corporate profits,

the GDP deflator, the Chicago Fed national activity index (NAI), the new orders index

of the Institute for Supply Management, the University of Michigan consumer sentiment

index, real personal consumption and the term spread. All variables are considered at
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the quarterly frequency. We include the NAI and the new orders index in levels and take

the first difference of the respective level for the unemployment rate and the consumer

sentiment index. For all other variables, we calculate annualized quarter-over-quarter

percentage changes. For a more detailed description of the macro variables see Section 3

in Conrad and Loch (2015a).

We focus on the predictive regression version of our test statistic. Conrad and Loch

(2015a) estimate a predictive regression as in equation (42) and find that the π1 parameter

estimate is insignificant for each macro variable (see their Section 4.4). This result is in

line with the common notion that macro conditions do not help to forecast quarterly stock

market volatility once one controls for lagged stock market volatility. We now show that

this conclusion is premature. Following the discussion in Section 2.6, we first estimated

equation (40) for the same data (again with K = 1) and found a significant effect for six

out of the eleven variables (results not reported). Table 4 shows that these results are

robust to including the first lag of the volatility-adjusted realized variance as an additional

regressor, i.e. we consider the regression:

ln(
̂̃
RV t) = c̃+ π1xt−1 + ρ ln(

̂̃
RV t−1) + ζ̃t. (43)

For simplicity, we rely on the critical values from the t distribution when testing for the

significance of π1 although
̂̃
RV t is an estimated quantity.

As Table 4 shows, real GDP, industrial production, the NAI and new orders are

significant at the 1% level. The unemployment rate and corporate profits are significant

at the 5% and 10% level. The fact that we do find a significant relationship between macro

conditions and financial volatility when estimating equation (43) instead of equation (42)

suggests that (the log of) the volatility-adjusted realized variance is indeed the appropriate

dependent variable. When reestimating equation (43) by including more lags of the macro

variables the picture remains the same. In conclusion, we provide strong evidence that the

apparent inability of macro conditions to forecast financial volatility which is documented

when using predictive regressions as in equation (42) seems to be driven by the fact that

RVt is a very noisy measure of the underlying long-term component which then masks

the existing relationship.
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Table 4: Predictive regressions.

xt c̃ π1 ρ adj. R2

∆ real GDP 6.4007???
(0.6885)

−0.0107???
(0.0040)

0.1829??
(0.0866)

4.81

∆ Ind. prod. 6.4174???
(0.6891)

−0.0052???
(0.0018)

0.1789??
(0.0866)

4.85

∆ Unemp. 6.4461???
(0.6644)

0.0799??
(0.0349)

0.1735??
(0.0834)

4.39

∆ Housing 6.2327???
(0.7114)

−0.0004
(0.0004)

0.2014??
(0.0894)

3.29

∆ Corp. prof. 6.3006???
(0.7037)

−0.0009?
(0.0005)

0.1939??
(0.0883)

4.14

∆ GDP deflator 6.2222???
(0.7196)

−0.0029
(0.0075)

0.2039??
(0.0899)

2.94

NAI 6.5619???
(0.6545)

−0.0521???
(0.0173)

0.1586??
(0.0823)

6.35

New orders 6.8507???
(0.7127)

−0.0058???
(0.0021)

0.1622???
(0.0866)

6.07

∆ Cons. sent. 6.2262???
(0.7171)

0.0010
(0.0034)

0.2020??
(0.0900)

2.89

∆ real cons. 6.3365???
(0.7083)

−0.0072
(0.0060)

0.1905??
(0.0895)

3.64

Term spread 6.3032???
(0.6857)

−0.0186
(0.0149)

0.1961??
(0.0867)

3.84

Notes: The table reports parameter estimates for the predictive regression

given by equation (43). Robust standard errors are presented in parentheses

and ∗∗∗,∗∗ ,∗ indicate significance at the 1%, 5%, and 10% level. The adjusted

R2 is reported in percentages. The sample covers the 1973Q1 - 2010Q4 period.

5 Conclusions

We develop a Lagrange Multiplier test for the null hypothesis of a one-component GARCH

model against a multiplicative two-component specification. The test provides a first

solution to statistically evaluate if there is a separate long-term time-varying volatility

component driven by an explanatory variable, besides the standard short-term GARCH

part. For the case of a GARCH(1,1) under the null, we derive the asymptotic properties

of our test and study its finite sample performance. We also illustrate how the test can be

implemented for other GARCH-typ models under the null. In particular, we consider the

GJR-GARCH which allows for asymmetry in the conditional variance. Our simulation

results show that the LM test is robust with respect to a misspecification of the GARCH

component and that it is powerful even if the GARCH component is highy persistent.

The test covers the case that the returns as well as the explanatory variable are observed
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at the same frequency but also the empirically relevant mixed-frequency setting. In an

application to S&P 500 returns, we find that the test provides useful guidance in model

specification. We also provide an explanation as to why standard predictive regressions

might fail to find a relationship between macro conditions and financial volatility.
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A Proofs

Proof of Theorem 1. First, we show that Ω is finite and positive definite.

Finiteness of Ω:

From Francq and Zaköıan (2004) it follows that Ωηη is finite and positive definite.

What remains to be shown is that Ωππ is finite and positive definite. If this is true,

then by the Cauchy-Schwarz inequality the “off-diagonal matrices” will also be finite

and positive definite. Recall from equation (19) that Ωππ = 1
4
(κZ − 1)E[r∞0,t(r

∞
0,t)
′]. It

follows from Assumption 2 that 0 < κZ − 1 < ∞. Moreover, ||E[r∞0,t(r
∞
0,t)
′]|| is finite if

E[||r∞0,t(r∞0,t)′||] <∞ (throughout the paper || · || denotes the Euclidean norm). A typical

element of the K × 1 vector r∞0,t is given by

r∞0,kt = (xt−k − α0
1

h∞0,t

∞∑
j=0

βj0ε
2
t−1−jxt−1−k−j)f

′
0. (44)

First, f ′0 is bounded by Assumption 4 and E[|xt−k|2] <∞ by Assumption 6. Second,E

∣∣∣∣∣
∑∞

j=0 α0β
j
0ε

2
t−1−jxt−1−k−j

h∞0,t

∣∣∣∣∣
2
1/2

≤

 ∞∑
j=0

E

∣∣∣∣∣α0β
j
0ε

2
t−1−j

h∞0,t
xt−1−k−j

∣∣∣∣∣
2
1/2

(45)

≤
∞∑
j=0

E

∣∣∣∣∣ α0β
j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣
2
1/2

(46)

≤
∞∑
j=0

E

∣∣∣∣∣
(
α0β

j
0

ω0

ε2
t−1−j

)s

xt−1−k−j

∣∣∣∣∣
2
1/2

(47)

≤ αs0
ωs0

(
E
[
|εt−1−j|4sp

])1/(2p) (
E
[
|xt−1−k−j|2q

])1/(2q)

∞∑
j=0

βjs0 <∞

for any p > 1 and q > 1 such that p−1 +q−1 = 1. The arguments used above are similar to

the ones in Francq and Zaköıan (2004, Eq. (4.19), p.619). In particular, in equation (45)

we employ Minkowski’s inequality. In equation (46) we use that h∞0,t ≥ ω0 + α0β
j
0ε

2
t−1−j.

Next, in equation (47) we use the fact that w/(1+w) ≤ ws for all w > 0 and any s ∈ (0, 1).

In the next equation, we apply the Hölder inequality. Finally, Assumptions 1 and 2 imply

that under the null there exists some u > 0 such that E [|εt−1−j|2u] <∞ (see Proposition
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1 in Francq and Zaköıan, 2004, p.607). Thus, for any p > 1, we can always choose an s

small enough such that 2sp = u. By Assumption 6, E
[
|xt−1−k−j|2q

]
<∞.

This implies E[|r∞0,kt|2] < ∞ and E[|r∞0,ktr∞0,jt|] < ∞ by Cauchy-Schwarz inequality

which yields that Ωππ is finite.

Positive definiteness of Ω:

As κZ − 1 > 0, it remains to be shown that c′E

 y∞0,t

r∞0,t

( (y∞0,t)
′ (r∞0,t)

′
) c > 0

for any non-zero c ∈ R(3+K)×1. Assume the contrary, i.e., there exists a c 6= 0 such that

c′E

 y∞0,t

r∞0,t

( (y∞0,t)
′ (r∞0,t)

′
) c = 0. This implies E

c′

 y∞0,t

r∞0,t

2 = 0 and,

thus, c′

 y∞0,t

r∞0,t

 = 0 a.s.. The last expression can be written as

0 = c′

 (h∞0,t)
−1s∞0,t

f ′0xt

+ c′

 (h∞0,t)
−1β0

∂h̄∞t−1

∂η

∣∣∣∣
π=0

−f ′0α0(h∞0,t)
−1ε2

t−1xt−1 + f ′0(h∞0,t)
−1β0

∂h̄∞t−1

∂π

∣∣∣∣
π=0

 . (48)

Using the notation c = (c′1 c′2)′ where c1 = (c11 c12 c13)′ and c2 = (c21 . . . c2K)′ this can

be expressed as

c′1s
∞
0,t + f ′0h

∞
0,tc
′
2xt − f ′0α0ε

2
t−1(c′2xt−1) = −

(
β0c

′
1

∂h̄∞t−1

∂η

∣∣∣∣
π=0

+ f ′0β0c
′
2

∂h̄∞t−1

∂π

∣∣∣∣
π=0

)
(49)

or

c11 + c12Z
2
t−1h

∞
0,t−1 + f ′0(ω0 + α0Z

2
t−1h

∞
0,t−1 + β0h

∞
0,t−2)(c′2xt)− f ′0α0Z

2
t−1h

∞
0,t−1(c′2xt−1)

= −c13h
∞
0,t−1 −

(
β0c

′
1

∂h̄∞t−1

∂η

∣∣∣∣
π=0

+ f ′0β0c
′
2

∂h̄∞t−1

∂π

∣∣∣∣
π=0

)
= Ft−2,

where Ft−2 is a measurable function of {Zt−1−j,xt−1−j, j ≥ 1}. This implies that the

expression in the upper line must be degenerate. Hence,

Z2
t−1 =

−c11 + f ′0(ω0 + β0h
∞
0,t−2)(c′2xt)

h∞0,t−1(c12 − f ′0α0(c′2xt−1) + f ′0α0)
= At−2 +Bt−2(c′2xt)

with At−2 and Bt−2 measurable functions of {Zt−1−j,xt−1−j, j ≥ 1} is degenerate. This

equation could only be fulfilled either is left and right hand side are both degenerate, or

c′2xt is a linear function of Z2
t−1. The latter case, however, implies that Z2

t−1 is measurable
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with respect to {Zt−1−j,xt−1−j, j ≥ 1} which contradicts Assumption 2. The former case

is ruled out since c′2xt is non-degenerate by Assumption 5 and Z2
t is non-degenerate by

Assumption 2. Thus, Ω must be positive definite.

Next, E[d∞t (η0)|Ft−1] = 0. From Francq and Zaköıan (2004) and Assumptions 1-6 it

then follows that d∞t (η0) is a stationary and ergodic martingale difference sequence with

finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale

differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 1-7, we have that

− 1

T

T∑
t=1

∂d∞π,t(η̃)

∂η′
P−→ Jπη = −E

[
∂d∞π,t(η0)

∂η′

]
, (50)

where η̃ = η0 + oP (1).

Proof of Proposition 1. We obtain (50) by showing that Jπη(η) = −E
[
∂d∞π,t(η)

∂η′

]
is finite

with a uniform bound for all η ∈ Θ. Then a uniform weak law of large numbers (see, e.g.,

Theorem 3.1. in Ling and McAleer, 2003) implies

supη

∣∣∣∣∣∣∣∣− 1

T

T∑
t=1

∂d∞π,t(η)

∂η′
− Jπη(η)

∣∣∣∣∣∣∣∣ = oP (1).

Equation (50) follows from the triangle inequality and the fact that η̃ = η0 + oP (1).

Using equation (21) we obtain∣∣∣∣∣∣∣∣∂d∞π,t(η)

∂η′

∣∣∣∣∣∣∣∣ ≤ 1

2

(∣∣∣∣ ε2
t

h∞t

∣∣∣∣ · ||r∞t || · ||(y∞t )′||+
∣∣∣∣ ε2

t

h∞t
− 1

∣∣∣∣ · ∣∣∣∣∣∣∣∣∂r∞t
∂η′

∣∣∣∣∣∣∣∣)
≤ C|ε2

t + ω|
(
||r∞t || · ||(y∞t )′||+

∣∣∣∣∣∣∣∣∂r∞t
∂η′

∣∣∣∣∣∣∣∣) . (51)

The last inequality follows with a generic constant 0 < C <∞ and h∞t ≥ ω > 0.

First, consider the three elements of ||(y∞t )′||. To simplify the notation note that
∂h̄∞t
∂η
|π=0 =

∂h∞t
∂η

. Since
∂h∞t
∂ω

= 1/(1 − β), we have | 1
h∞t

∂h∞t
∂ω
| ≤ 1/(ω(1 − β)) < ∞. Then

α
∂h∞t
∂α

=
∑∞

j=0 αβ
jε2
t−1−j ≤ h∞t and, therefore, | 1

h∞t

∂h∞t
∂α
| ≤ 1/α < ∞. Finally,

∂h∞t
∂β

=
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∑∞
j=0 jβ

j−1(ω + αε2
t−1−j). We then obtain∣∣∣∣ 1

h∞t

∂h∞t
∂β

∣∣∣∣ ≤
∣∣∣∣∣ 1β

∞∑
j=0

jβj(ω + αε2
t−1−j)

ω + βj(ω + αε2
t−1−j)

∣∣∣∣∣
≤ 1

βωs

∞∑
j=0

j
∣∣βjs(ω + αε2

t−1−j)
s
∣∣ , (52)

where we again use the fact that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). It

follows that ||(y∞t )′|| ≤ C ′(1 +
∑∞

j=0 j
∣∣βjs(ω + αε2

t−1−j)
s
∣∣) for some constant C ′ > 0.

Hence, using the Cauchy-Schwarz inequality, the first summand in equation (51), i.e.

E
[
supη |ε2

t + ω| · ||r∞t || · ||(y∞t )′||
]
, can be bounded from above by the terms√

E[supη|ε2
t + ω|2]E[supη||r∞t ||2] (53)

and

supη

∞∑
j=0

jβjsE[supη(ω + αε2
t−1−j)

s|ε2
t + ω| ||r∞t ||] ≤

supη

∞∑
j=0

jβjs
√

E[supη(ω + αε2
t−1−j)

2s|ε2
t + ω|2]E[supη||r∞t ||2]. (54)

The finiteness of (53) follows from Assumption 7 and similar arguments as in the proof

of Theorem 1. The finiteness of (54) follows by applying Hölder’s inequality, since for the

elements in the sum which involve expectations of the squared observations we have

E[supη(ω + αε2
t−1−j)

2s|ε2
t + ω|2] ≤(

E[supη(ω + αε2
t−1−j)

2(1+s)]
)s/(1+s) (

E[supη|ε2
t + ω|2(1+s)]

)1/(1+s)
(55)

and Assumption 7 applies again.

Using the Cauchy-Schwarz inequality for the two factors in the second term in (51),

we are left with the need to show that E
[
supη

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2] is finite. This follows from

(f ′0)−1∂r∞t
∂η′

=
∂

∂η′
xt −

∂

∂η′

(
1

h∞t

∞∑
j=0

αβjε2
t−1−jxt−1−j

)

=
∂

∂η′
xt −

1

h∞t

(
∞∑
j=0

αβjε2
t−1−j

∂

∂η′
xt−1−j

)

+

(
1

h∞t

∞∑
j=0

αβjε2
t−1−jxt−1−j

)
(y∞t )′

− 1

h∞t

∞∑
j=0

xt−1−j

(
∂

∂η′
αβjε2

t−1−j

)
. (56)
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The first two terms vanish in the model with an explanatory variable xt from outside the

model as ∂xt

∂η′
= 0 or in a model with xt−k = ε2

t−k.

Remark 7. There also exists a bound for E
[
supη

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2] in the case of xt with ele-

ments xt−k =
ε2t−k

h∞t−k
(the ‘ARCH nested in GARCH’ case). Here, in the first two terms in

equation (56) we have ∂xt−k

∂η′
= − εt−k

(h∞t−k)2
∂h∞t−k

∂η′
and, hence, explicit bounds for terms of this

type can be obtained as before.

Boundedness of the norm of the third term follows for all η in expectation with a com-

bination of the argument directly above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

1

h∞t


0

∑∞
j=0 β

jε2
t−1−jxt−2−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−2−j

0
∑∞

j=0 β
jε2
t−1−jxt−3−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−3−j

...

0
∑∞

j=0 β
jε2
t−1−jxt−1−K−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−1−K−j

 . (57)

Hence, for typical elements of the second and third column it follows that

Esupη

∣∣∣∣∣ 1

h∞t

∞∑
j=0

βjε2
t−1−jxt−1−k−j

∣∣∣∣∣
2

<∞

and

Esupη

∣∣∣∣∣ 1

h∞t
α
∞∑
j=0

jβj−1ε2
t−1−jxt−1−k−j

∣∣∣∣∣
2

<∞

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of
√
TD∞η (η̂) around the

true value η0

0 =
√
TD∞η (η̂) =

√
TD∞η (η0) +

1

T

T∑
t=1

∂d∞η,t(η̃)

∂η′

√
T (η̂ − η0) (58)

with η̃ = η0 +oP (1). Under Assumptions 1 and 2, Francq and Zaköıan (2004) have shown

that

− 1

T

T∑
t=1

∂d∞η,t(η̃)

∂η′
P−→ Jηη = −E

[
∂d∞η,t(η0)

∂η′

]
(59)
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and, hence, equation (58) can be written as

√
T (η̂ − η0) = J−1

ηη

√
TD∞η (η0) + oP (1). (60)

Similarly, a mean value expansion of
√
TD∞π (η̂) around the true value η0 leads to

√
TD∞π (η̂) =

√
TD∞π (η0) +

1

T

T∑
t=1

∂d∞π,t(η̃)

∂η′

√
T (η̂ − η0). (61)

Combining equation (60) and Proposition 1 leads to

√
TD∞π (η̂) =

√
TD∞π (η0)− JπηJ−1

ηη

√
TD∞η (η0) + oP (1) (62)

= [−JπηJ−1
ηη : I]

√
T

 D∞η (η0)

D∞π (η0)

+ oP (1) (63)

= [−JπηJ−1
ηη : I]

√
TD∞(η0) + oP (1). (64)

Applying Theorem 1 gives the asymptotic distribution

√
TD∞π (η̂)

d−→ N (0, [JπηJ−1
ηη : I]Ω[JπηJ−1

ηη : I]′) (65)

which has the form of AΩA′ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Σ = [−JπηJ−1
ηη : I]Ω[−JπηJ−1

ηη : I]′

= Ωππ + JπηJ−1
ηηΩηηJ−1

ηηJ′πη − JπηJ−1
ηηΩηπ −ΩπηJ−1

ηηJ′πη.

Finally, using equations (19), (22) and (23) the expression for Σ simplifies to:

Σ =
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)
′]− E[r∞0,t(y

∞
0,t)
′]
(
E[y∞0,t(y

∞
0,t)
′]
)−1

E[y∞0,t(r
∞
0,t)
′]
)
. (66)

Proof of Theorem 3. We show that

√
TDπ(η̂) =

√
TD∞π (η̂) + oP (1). (67)

Hence, the observed quantity
√
TDπ(η̂) will have the same asymptotic distribution as

the unobserved
√
TD∞π (η̂). The asymptotic distribution of the test statistic then follows

directly from Theorem 2. Standardization with the consistent estimator Σ̂ instead of the
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theoretical Σ, has no effect on the final χ2-distribution of the LM test statistic. This can

be easily seen from similar considerations as the ones outlined above and below in detail.

Since

supη||
√
TD∞π (η)−

√
TDπ(η)|| ≤ 1√

T

T∑
t=1

supη||d∞π,t(η)− dπ,t(η)||, (68)

we establish equation (67) by showing that

1√
T

T∑
t=1

supη||d∞π,t(η)− dπ,t(η)|| = oP (1). (69)

Consider the following decomposition:
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ε2
t
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ht
− 1

)
rt
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ht
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)
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[(
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t

ht
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t

ht
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)
r∞t

]
=
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t
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t
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)
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(
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t
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− 1

)
(r∞t − rt)

= ε2
t
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h∞t ht

)
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)
(r∞t − rt) +[(

ε2
t
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]
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)
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t

(
ht − h∞t
h∞t ht

)
(r∞t − rt) +

(
ε2
t

h∞t
− 1

)
(r∞t − rt).

Since ht ≥ ω > 0 and h∞t ≥ ω > 0 we have

||d∞π,t(θ)− dπ,t(θ)|| ≤ 1

ω

{
|ε2
t + ω| ||r∞t − rt||+ ε2

t ||r∞t ||
∣∣∣∣h∞t − hth∞t

∣∣∣∣+ ε2
t ||r∞t − rt||

∣∣∣∣h∞t − hth∞t

∣∣∣∣} .
First, note that

(f ′0)−1(r∞t − rt) = −α 1

h∞t

∞∑
j=t

βjε2
t−1−jxt−1−j. (70)
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Next, consider a typical element:

(f ′0)−1
(
Esupη|r∞k,t − rk,t|2

)1/2
=

Esupη

∣∣∣∣∣α 1

h∞t

∞∑
j=t

βjε2
t−1−jxt−1−k−j

∣∣∣∣∣
2
1/2

≤
∞∑
j=t

Esupη

∣∣∣∣∣ αβjε2
t−1−j

ω + αβjε2
t−1−k−j

xt−1−k−j

∣∣∣∣∣
2
1/2

≤
∞∑
j=t

(
Esupη

∣∣∣∣(αβjω ε2
t−1−j

)s
xt−1−k−j

∣∣∣∣2
)1/2

≤
(
E[|εt−1−j|4sp]

)1/(2p) (
E[|xt−1−k−j|2q]

)1/(2q)

supη

(α
ω

)s ∞∑
j=t

βjs (71)

=
(
E[|εt−1−j|4sp]

)1/(2p) (
E[|xt−1−k−j|2q]

)1/(2q)

supη

(α
ω

)s βst

1− βs
, (72)

where in equation (71) we have used the Hölder inequality with the same p and q as in

the proof of Theorem 1. This shows that Esupη||r∞k,t − rk,t||2 = O(βts/2).

Hence,

Esupη|ε2
t | ||r∞t − rt|| ≤

√
Esupη|ε4

t |Esupη||r∞t − rt||2 = O(βts/4)

by Assumption 1 and equation (72). Therefore, 1√
T

∑T
t=1 Esupη|ε2

t | ||r∞t −rt|| = o(1) and,

hence, by Markov’s inequality 1√
T

∑T
t=1 supη|ε2

t | ||r∞t − rt|| = oP (1).

For the treatment of the second term we use the fact that∣∣∣∣h∞t − hth∞t

∣∣∣∣ ≤ αs

ωs

∞∑
j=t

(βs)jε2s
t−j, (73)

where again we use that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). Then,

Esupηε
2
t ||r∞t ||

∣∣∣∣h∞t − hth∞t

∣∣∣∣ ≤ Esupη||ε2
t r
∞
t ε

2s
t−j|| supη

αs

ωs

∞∑
j=t

(βs)j

≤
√

Esupη||r∞t ||2E|ε4
t ε

4s
t−j| supη

αs

ωs
(βs)t

∞∑
j=0

(βs)j

=
√

Esupη||r∞t ||2E|ε4
t ε

4s
t−j| supη

αs

ωs(1− βs)
(βs)t

= O((βs)t). (74)
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The last line follows because it can be shown by similar arguments as in the proof of

Theorem 1 that Esupη||r∞t ||2 < ∞ and because Hölder’s inequality and Assumption 7

imply that E|ε4
t ε

4s
t−j| ≤

(
E|ε4(1+s)

t |
)1/(1+s) (

E|ε4(1+s)
t−j |

)s/(1+s)

<∞. Equation (74) implies

that
1√
T

T∑
t=1

Esupηε
2
t ||r∞t ||

∣∣∣∣h∞t − hth∞t

∣∣∣∣ = o(1), (75)

and, again, by Markov’s inequality 1√
T

∑T
t=1 supηε

2
t ||r∞t || |(h∞t − ht)/h∞t | = oP (1).

The third term can be treated as follows:

1√
T

T∑
t=1

supηε
2
t ||r∞t − rt||

∣∣∣∣h∞t − hth∞t
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√√√√ 1
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}

because
∑T

t=1 w
2
t ≤

{∑T
t=1wt

}2

when wt ≥ 0 for all t. Above, we have already shown

that
∑T

t=1 Esupηε
2
t ||r∞t − rt|| = O(1) and Esupη

∣∣∣h∞t −hth∞t

∣∣∣ = O(βts).
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B Mixed-Frequency LM Test

Here, we present the first variant of the LM test for the mixed-frequency setting from Sec-

tion 2.6. Since τ 0,t varies at the lower frequency only, we calculate the volatility adjusted

low-frequency returns ε̃t from the ‘deGARCHed’ high-frequency returns as follows:

ε̃t =
M∑
i=1

εi,t√
h̄∞0,i,t

=
√
τ 0,tZt, (76)

where Zt =
∑M

i=1 Zi,t is i.i.d. with mean zero and variance M by Assumption 2. This

leads to the score vector:

dt(η0) =
T∑
t=1

(
ε̃2
t

M
− 1

) M−1

f ′0xt

 . (77)

Thus, if ε̃t were observable, we could implement the test by simply regressing ε̃2
t on

a constant and xt. Again, this would be a test for heteroscedasticity in the spirit of

Godfrey (1978). To actually implement the test, we need to replace the unobservable ε̃t

by

ˆ̃εt =
M∑
i=1

εi,t√
ĥi,t

, (78)

where the ĥi,t are obtained by estimating the GARCH model under the null for the daily

data. However, a simple Taylor expansion shows that ˆ̃εt has measurement error due to

pre-estimating h̄∞0,i,t:

ˆ̃εt =
M∑
i=1

εi,t√
h̄∞0,i,t

(
1−

(√
ĥi,t −

√
h̄∞0,i,t

)
/
√
h̄∞0,i,t + oP (

√
T )

)
≈ ε̃t +Wt,

where Wt has mean zero but non-zero variance. Higher-order terms are negligible for

the test performance. Thus, tests based on the critical values from the χ2-distribution

(derived in Theorem 3) will be size distorted (see also Li and Mak, 1994). However, the

correct distribution of the test statistic based on ˆ̃εt can be obtained by simulation.
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C Simulations

C.1 Empirical Size as a Function of Sample Size T .

The following table shows the empirical size for model G-L with xt = ε2
t/ĥt and Zt ∼ t(7).

For this specification, we observed the strongest size distortion in Table 1. The column

labelled T = 1000 contains the same figures as in the respective column of Table 1. The

other columns show that the size distortion diminishes with increasing sample size.

Table 5: Empirical size for model G-L, Zt ∼ t(7) depending on sample size T .

xt = ε2t/ĥt T = 1000 T = 2500 T = 5000 T = 7500 T = 10000

1% 0.7 0.9 0.9 0.9 1.3

LM 5% 3.1 4.2 4.6 4.4 5.2

10% 7.2 7.7 8.5 9.4 10.0

1% 0.9 1.1 0.9 1.1 1.3

LMLT 5% 3.4 3.5 4.4 4.6 5.1

10% 6.7 8.0 8.6 9.3 9.5

Notes: The number of observations is T ∈ {1000, 2500, 5000, 7500, 10000}. Entries

are rejection rates in percent over R = 1000 replications at the 1%, 5% and 10%

nominal level. The model for the conditional variance is a GARCH(1,1) with ω0 =

0.05, α0 = 0.05 and β0 = 0.90 (i.e. model G-L). The LM tests are performed for a

GARCH(1,1) under H0. Otherwise see Table 1.

C.2 Size-Adjusted Power: Exponential Long-Term Component

and t Distributed Innovations.

The following table provides simulation results on the size-adjusted power for the case

that the innovation Zt is Student-t distributed with 7 degrees of freedom.
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Table 6: Size-adjusted power: exponential τ 0,t component, t distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 54.9 44.1 32.1 59.3 57.1 39.3 20.1 13.9

LMLT,mod 30.5 25.8 22.7 50.7 48.7 39.4 12.2 9.5

LMLT 5.8 5.7 5.7 5.0 5.2 5.1 5.6 5.3

V R 12.8 12.4 12.1 28.2 27.9 27.0 12.0 9.7

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. The

specification of the long-term component is given by τ0,t = exp(π′0xt). The number

of observations is T = 1000. Results are based on R = 1000 replications. The LM

tests are performed for a GARCH(1,1) under H0. Otherwise see Table 2.

C.3 Size-Adjusted Power for Different Values of K.

Table 7 illustrates how a misspecification of K affects the power of the LM test. We

simulate return data with the short-term component G-H (high persistence) and the

long-term component as in equation (5). We either choose π0 = 0.3, π0 = (0, 0.3)′ or

π0 = (0, 0, 0.3)′. The first option corresponds to the immediately decaying weighting

scheme from Table 2. The second and third weighting schemes are extreme in the sense

that all weight is put on lag 2 or 3, respectively. Clearly, the correct choice of K in the

LM test is either K = 1, K = 2 or K = 3. In Panel A, we use the VIX as the explanatory

variable. In Panels B-D, we first simulate an AR(1) process with autoregressive coefficient

δ and i.i.d. normal innovations with mean zero and variance 0.025 and use the generated

time series as the explanatory variable. We vary δ between 0.98, 0.9 and 0.8 to check

whether the persistence of the AR(1) process affects our findings.

As Table 7 shows, for all specifications we observe the highest size-adjusted power

when K is chosen correctly. This finding is also independent of the persistence of the

AR(1) process. Clearly, when the persistence of the AR(1) process decreases, the long-

term component becomes less variable relative to the short-term component and, hence,

the variance ratio (VR) decreases. For example, for δ = 0.8 the variance ratio is less than

2%. The low variance ratio then leads to a decline of the power of the test. Nevertheless,

the simulations show that choosing K = 1 always delivers a reasonable power even in

the extreme case when all weight is put on the second or third lag. At first, it might
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be surprising that the power of the test is reasonably high for K = 1, even though zero

weight is attached to the first lag in the weighting scheme. However, for persistent xt, the

information in xt−1 is very similar to that in xt−2 and so the test works reasonably well

despite the misspecification of K. Given that in most real applications we can expect that

the true weighting scheme is declining from the first lag, we recommend always starting

with K = 1. If the test does not reject for K = 1 and xt has low persistence, it may be

advisable to redo the test for K = 2, K = 3, . . . .

Table 7: Size-adjusted power: exponential long-term component, variation in K.

K 1 2 1 2 3 1 2 3 4

weighting scheme π0 = 0.3 π0 = (0, 0.3)′ π0 = (0, 0, 0.3)′

Panel A: xt = V IXt

LM 74.4 68.3 51.4 68.6 67.5 42.7 46.7 67.0 61.1

V R 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6

Panel B: xt is AR(1) with δ = 0.98

LM 63.3 54.8 52.6 53.4 46.6 44.1 43.4 48.0 45.2

V R 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

Panel C: xt is AR(1) with δ = 0.90

LM 37.0 30.3 24.0 29.0 23.6 13.8 18.2 24.8 21.5

V R 2.78 2.78 2.77 2.77 2.77 2.78 2.78 2.78 2.78

Panel D: xt is AR(1) with δ = 0.80

LM 36.0 29.0 21.3 29.1 23.8 13.2 16.2 25.0 21.2

V R 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74 1.74

Notes: The number of observations is T = 1000. The table reports the size-

adjusted power in percent over the R = 1000 replications at the 5% nominal

level. The model for the conditional variance is a GARCH(1,1) with ω0 = 0.05,

α0 = 0.09 and β0 = 0.90 (i.e. model G-H). The specification of the long-term

component is given by τ0,t = exp(π′0xt) with parameter π0 as specified in the

table. We consider the LM test with the GARCH(1,1) under the null hypothesis.

K denotes the number of lags that are used in the test. The bold number indicates

the correct lag length. Otherwise see Table 2.
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C.4 Persistence in the GARCH component.

In this section, we investigate the power properties of the LM test when α̂ + β̂ is close

to or even above one. As in Appendix C.3, we first simulate an AR(1) process with

autoregressive coefficient δ and i.i.d. normal innovations with mean zero and variance 0.025

and use the generated time series as the explanatory variable. We choose δ ∈ {0.9, 0.98}
and impose an immediately decaying weighting scheme with π0 = 0.3 or π0 = 0.4. The

GARCH component has either moderate (G-M), high (G-H) or extreme (G-E, α0 = 0.095,

β0 = 0.90) persistence. As before, we choose T and R as 1000.

Table 8 shows that – despite the fact that the simulation is under the alternative –

the median of the estimates of α and β over the M = 1000 simulations is close to the true

parameter values. In particular, in all scenarios the median of α̂ + β̂ is below (or equal

to) α0 + β0. This suggests that the misspecified GARCH model does not suffer from the

so-called IGARCH effect. This is true even for cases in which the variance ratio is as high

as V R = 39.4.

Further, the table shows that for all specifications in which the GARCH component has

moderate persistence, we never observe that the sum of the estimated GARCH parameters

is greater than or equal to one. For example, in Panel B when α0 = 0.07, β0 = 0.90 (G-M)

and π0 = 0.4, the GARCH component is severely misspecified and the LM test rejects

in 92.9% of the simulations, there is not a single simulation in which α̂ + β̂ ≥ 1.

The picture changes slightly when the persistence in the GARCH component is high

(G-H). For this specification α̂ + β̂ is greater than or equal to one in 6 out of the 1000

simulations when δ = 0.9 and in 11 (π0 = 0.3) or 19 (π0 = 0.4) cases when δ = 0.98.

However, for these cases the LM test has rejection rates which are (in all but one case)

even higher than the average rejections rates over all 1000 simulations. For example, when

δ = 0.98 and π0 = 0.4, the LM test rejects in all 19 cases in which α̂ + β̂ ≥ 1.

Finally, when the persistence in the GARCH component is extreme (G-E), α̂ + β̂ is

greater than or equal to one in 54 simulations when δ = 0.9 and in 80 (π0 = 0.3) or

92 (π0 = 0.4) cases when δ = 0.98. Nevertheless, we find that the LM test has very

reasonable power and that the rejection frequency among those cases in which α̂+ β̂ ≥ 1

is typically higher than the average power.

Our results suggest that the main reason for obtaining estimates α̂+ β̂ ≥ 1 is unlikely

to be an omitted long-term component, but rather an extreme persistence in the true
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GARCH component. Nevertheless, the effect is strengthened if the omitted long-term

component is more relevant. However, the simulations also clearly suggest that – for a

given specification – the power of the LM test does not decrease in the persistence of the

estimated parameters (as measured by α̂ + β̂).

Table 8: Size-adjusted power: persistent GARCH component

Panel A: xt is AR(1) with δ = 0.90

G-M G-H G-E

α0 = 0.07, β0 = 0.90 α0 = 0.09, β0 = 0.90 α0 = 0.095, β0 = 0.90

π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4

median(α̂) 0.072 0.073 0.091 0.092 0.096 0.097

median(β̂) 0.890 0.888 0.894 0.893 0.894 0.893

median(α̂+ β̂) 0.965 0.964 0.986 0.986 0.991 0.991

LM 38.7 62.1 37.0 60.8 36.2 59.7

V R 7.68 12.9 2.78 4.82 1.97 3.44

#(α̂+ β̂ ≥ 1) 0 0 6 6 54 54

%reject|(α̂+ β̂ ≥ 1) - - 50.0% 50.0% 33.3% 64.8%

Panel B: xt is AR(1) with δ = 0.98

G-M G-H G-E

α0 = 0.07, β0 = 0.90 α0 = 0.09, β0 = 0.90 α0 = 0.095, β0 = 0.90

π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4

median(α̂) 0.076 0.081 0.095 0.099 0.100 0.103

median(β̂) 0.888 0.885 0.889 0.885 0.891 0.887

median(α̂+ β̂) 0.968 0.970 0.986 0.986 0.991 0.992

LM 73.4 92.9 63.3 86.9 58.2 83.9

V R 26.7 39.4 11.3 18.6 8.32 14.1

#(α̂+ β̂ ≥ 1) 0 0 11 19 80 92

%reject|(α̂+ β̂ ≥ 1) - - 72.7% 100% 70.0% 91.3%

Notes: The number of observations is T = 1000. median(α̂), median(β̂) and median(α̂+ β̂)

present the median of the parameter estimates over the R = 1000 replications. LM is

the size-adjusted power in percent at the 5% nominal level. V R is the variance ratio.

#(α̂+ β̂ ≥ 1) gives the number of simulations in which the condition α̂+ β̂ < 1 is violated.

%reject|(α̂+ β̂ ≥ 1) presents the percentage of cases in which the LM test rejects given that

α̂+ β̂ ≥ 1. The model for the conditional variance is a GARCH(1,1) with moderate (G-M),

high (G-H) or extreme (G-E) persistence. The specification of the long-term component is

given by τ0,t = exp(π′0xt) with parameter π0 as specified in the table. xt is an AR(1) with

autoregressive parameter δ. Otherwise see Table 2.
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This observation is also confirmed by the plots in Figure 3. The figure shows a scat-

terplot of the estimate of the persistence (α̂ + β̂) in the GARCH component (x-axis)

and the corresponding LM statistics (y-axis). The horizontal green line indicates the 5%

critical value of the LM test and the vertical red line a persistence of one. In both plots

the true GARCH component has extreme persistence (G-E), the AR(1) parameter of the

explanatory variable is either δ = 0.90 (left plot) or δ = 0.98 (right plot) and π0 = 0.4.

Again, the figure shows that there is no indication that the power of the test decreases

when the estimated persistence is increasing.
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Figure 3: Scatterplot of estimated persistence (α̂ + β̂) and LM test statistics. Green

horizontal line: critical value 5% level. Vertical red line: persistence of one. The true

GARCH component has extreme persistence (G-E specification). We choose an immedi-

ately decaying weighting scheme with π0 = 0.4. The explanatory variable is an AR(1)

process with autoregressive parameter δ = 0.90 (left) and δ = 0.98 (right).

It is important to highlight that empirically α̂ + β̂ might be close to one for other

reasons than an omitted multiplicative component. For example, as shown in Hillebrand

(2005) the ‘IGARCH effect’ can be due to neglected parameter changes or, as discussed

in Baillie et al. (1996), due to neglected long-memory. Finally, even if the true model

is a stationary but very persistent GARCH model, it may happen that the sum of the

estimated GARCH parameters is above one.
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C.5 Size-Adjusted Power for Linear Long-Term Component.

Table 9: Size-adjusted power: linear long-term component, Zt normally distributed.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 57.2 54.8 39.2 66.5 64.6 51.5 28.9 18.0

LMLT,mod 34.8 34.1 30.3 59.2 58.1 51.1 14.3 10.7

LMLT 5.9 5.9 5.4 5.6 5.6 5.3 4.8 4.6

V R 12.4 12.3 12.1 29.5 29.4 29.0 12.0 10.5

Notes: Innovations Zt are standard normally distributed. The specification of the

long term component is given by τ0,t = 1+
∑K
k=1 π0kxt−k. The number of observations

is T = 1000. Results are based on R = 1000 replications. The LM tests are performed

for a GARCH(1,1) under H0. Otherwise see Table 2.

Table 10: Size-adjusted power: linear long-term component, t distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 39.7 34.5 28.4 48.3 46.7 37.9 17.4 12.3

LMLT,mod 27.4 25.9 24.6 43.0 42.8 38.5 11.1 9.1

LMLT 5.5 5.5 5.6 5.3 5.3 5.3 5.7 5.4

V R 10.0 9.9 9.8 23.0 22.9 22.5 9.7 8.5

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. The

specification of the long term component is given by τ0,t = 1 +
∑K
k=1 π0kxt−k. The

number of observations is T = 1000. Results are based on R = 1000 replications. The

LM tests are performed for a GARCH(1,1) under H0. Otherwise see Table 2.
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C.6 Misspecification of the Short-Term Component.

In the following, we investigate the consequences of implementing the LM test under the

null of a GARCH(1,1) although the true short-term component is a GJR-GARCH(1,1), a

higher-order GARCH or a fractionally integrated GARCH (FIGARCH). We first consider

a situation in which the short-term component is given by a GJR-GARCH(1,1). We

simulate data from a model with a short-term component given by equation (35) with

parameters as specified in GJR-M and GJR-H and either τ 0,t = 1 or τ 0,t = exp(π′0xt).

Table 11, Panel A, presents the empirical size-adjusted rejection rates. First, consider

the case that τ 0,t = 1. When using V IXt as the explanatory variable, we find that the

empirical rejection rates are close to the 5% nominal level. That is, using a truly exogenous

explanatory variable the LM test does not detect a deviation from the null hypothesis.

Even when testing for ‘ARCH nested in GARCH’, i.e. when using the ‘endogenous’ xt =

ε2
t/ĥt as the explanatory variable, we obtain the same result. Second, we consider the case

that τ 0,t = exp(π′0xt). Although the short-term component is misspecified, the empirical

power is only slightly lower than when the short-term component is correctly specified.

For example, for the GJR-M model with an immediately decaying weighting scheme the

LM test rejects in 80.4% of cases at the 5% nominal level. The corresponding figure for

the correctly specified GJR-GARCH model from Table 2 is 82.8%. On the other hand,

when testing for remaining ARCH effects both tests, LM and LMLT , do not detect a

deviation.

Next, we investigate the performance of the LM test when the true short-term com-

ponent is higher-order GARCH or FIGARCH while the long-term component is constant

(τ 0,t = 1). We consider a GARCH(1,2) and denote the second order ARCH parameter

by α̃0. As in model G-L in Section 3.1, we choose ω0 = 0.01, α0 = 0.05, β0 = 0.9 in

combination with α̃0 ∈ {0.02, 0.04}. For the GARCH(2,2) model, we choose the parame-

ter estimates from Nelson and Cao (1992) for the Deutschmark/Dollar exchange rate (see

their Table 1):

h̄∞0t = 0.186 + 0.0573ε2
t−1 + 0.2262ε2

t−2 + 0.3833h̄∞0,t−1 + 0.3100h̄∞0,t−2. (79)

Finally, we consider a FIGARCH(1, d, 1) model which features long-memory in the con-

ditional variance. For this model, the conditional variance is given by

(1− β0L)h̄∞0t = ω0 + [1− β0L− (1− φ0L)(1− L)d0)]ε2
t−1 (80)
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Table 11: Misspecified short-term component.

Panel A τ0,t = 1 τ0,t = exp(π′0xt)

GJR-M GJR-H GJR-M GJR-H

xt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt

LM 5.4 5.8 5.0 5.9 80.4 6.4 70.6 6.2

LMLT /LMLT,mod 6.2 5.7 69.4 6.2 43.8 5.9

Panel B: τ0,t = 1 GARCH(1,2) GARCH(2,2) FIGARCH(1, d, 1)

α0 = 0.05, β0 = 0.9 parameters as in φ0 = 0.95, β0 = 0.9

α̃0 = 0.02 α̃0 = 0.04 equation (79) d0 = 0.3

xt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt

LM 4.2 9.2 3.2 19.4 5.8 88.0 6.1 40.4

LMLT 9.0 20.2 89.3 37.9

Notes: The table reports the empirical size-adjusted rejection rates over R = 1000 replications

at the 5% nominal level. In Panel A, the data generating process is a GJR-GARCH(1,1) with

parameters as given by GJR-M and GJR-H. In Panel B, the model for the conditional variance is

a GARCH(1, 2) with ω0 = 0.01, the GARCH(2,2) given in equation (79) and a FIGARCH(1, d, 1)

with ω0 = 0.05. The long-term component τ0,t is specified in the table. The LM tests are

performed for a GARCH(1,1) under H0. Innovations Zt are standard normal distributed. All test

statistics are based on K = 1. The number of observations is T = 1000.

under H0, where L denotes the lag operator and d0 the fractional differencing parameter.

We set ω0 = 0.05, φ0 = 0.95 and β0 = 0.9. For d0 = 0 the FIGARCH reduces to a

GARCH(1,1) model with α0 = φ0 − β0 = 0.05 and, hence, to model G-L. Also, note that

the parameters satisfy the conditions that ensure the positivity of the conditional variance

(see Conrad and Haag, 2006).

Again, Table 11, Panel B, shows that for all short-term specifications the rejection

rate of the LM test is quite close to the 5% nominal level for xt = V IXt. When searching

for remaining ARCH effects (xt = ε2
t/ĥt), the LM test tends to reject the null hypothesis

with higher rejection rates for models that are further away from the null hypothesis

(GARCH(2,2) and FIGARCH(1, d, 1). The table also shows that for this choice of xt the

LM test has a similar power as the Lundbergh and Teräsvirta (2002) test.
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C.7 Simulation Mixed-Frequency Test.

In this section we provide simulation evidence for the mixed-frequency version of the test.

All results are based on R = 1000 replications. We model xt as either evolving at a

quarterly or monthly frequency and assume that xt follows an AR(1), i.e.

xt = δxt−1 + νt, (81)

with δ = 0.98 and νt ∼ N (0, σ2
ν). As before, the specification of the long-term component

is given by τ 0,t = exp(π′0xt). The model for the short-term component is the GJR-GARCH

with high (GJR-H) or moderate (GJR-M) persistence. In the simulations, we employ the

immediate (I) and slow (S) decaying weighting schemes presented in Section 3.2. We

consider the regression of either
̂̃
RV t or RVt on a constant, xt−1 and its own first lag:

ln(DVt) = c̃+ π1xt−1 + ρ ln(DVt−1) + ζ̃t (82)

with DVt ∈ {
̂̃
RV t, RVt}. Table 12 reports the number of instances in which the null

hypothesis that the coefficient on xt−1 is zero is rejected (by comparing the squared t-

statistic with the critical value from the asymptotic χ2(1) distribution).
̂̃
RV is based on

the estimated conditional variances of the correctly specified GJR model.

Recall that in the mixed-frequency setting returns are denoted by εi,t, where i =

1, . . . ,M refers to the trading days within period t = 1, . . . , T . In the simulations, we first

fixed T = 172 and M = 66, which corresponds to 172 quarters of 66 days each. We then

choose M = 22 days which corresponds to monthly data. For M = 22, we either keep

the number of low frequency observations fixed at T = 172 (which reduces the number of

daily observations) or keep the number of daily observations fixed and, thereby, extend

the low frequency observations to T = 516.

Table 12 shows that under H0 (τ 0,t = 1) the empirical size is close to the nominal

5% level for all scenarios. Next, for M = 66 and under the alternative, we observe that

the test based on
̂̃
RV does indeed have a higher power than the test based on RV . For

example, for model GJR-H, an immediately decaying weighting scheme and σ2
ν = 0.025

the test rejects in 74.8% of cases for
̂̃
RV but only in 40.6% for RV . Interestingly, the

power decreases only modestly when the true weighting scheme has a slow decay but

the regression is still based on xt−1 only. As expected, increasing the variability of the

long-term component (σ2
ν = 0.030) increases the power of both tests. Similarly, reducing
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the persistence of the short-term component (i.e. considering GJR-M), strongly increases

the power of both tests. The same effect was already observed in Table 2. Nevertheless,

the power for the test based on
̂̃
RV still remains higher than the power of the test based

on RV .

Table 12: Empirical size and power of low-frequency regression-based test.

H0 : GJR-GARCH GJR-H GJR-M

τ0,t = 1 τ0,t = exp(π′0xt) τ0,t = 1 τ0,t = exp(π′0xt)

σ2
ν = 0.025 σ2

ν = 0.030 σ2
ν = 0.025 σ2

ν = 0.030

weighting scheme - I S I S - I S I S

M = 66, T = 172 “quarterly” observations of xt̂̃
RV 6.5 74.8 69.4 80.3 77.2 5.7 97.5 94.4 97.0 96.4

RV 4.4 40.6 38.1 48.6 44.1 5.8 89.4 86.5 91.7 89.0

V R - 5.81 5.39 7.15 6.48 - 19.2 18.2 22.2 21.1

M = 22, T = 172 “monthly” observations of xt̂̃
RV 6.4 38.7 38.0 47.4 43.4 6.5 74.6 70.3 79.9 77.8

RV 6.3 26.2 26.4 32.7 30.5 7.1 62.3 59.2 70.1 67.5

V R - 5.91 5.49 6.97 6.33 - 16.6 15.7 18.6 17.9

M = 22, T = 516 “monthly” observations of xt̂̃
RV 6.0 89.9 88.9 93.8 92.2 6.1 99.8 99.7 100 99.7

RV 6.8 61.4 63.9 67.7 69.6 5.2 99.2 97.9 99.5 98.8

V R - 7.54 7.28 8.76 8.67 - 21.5 20.6 24.4 23.5

Notes: The table reports size and power in percent over the R = 1000 replications at the 5%

nominal level. T denotes the number of low-frequency observations and M the number of days

within each period t. σ2
ν is the variance of the innovation of the AR(1) process for xt. The

low-frequency regression version of the test is based on equation (82) with either
̂̃
RV or RV as

dependent variable.
̂̃
RV is based on the estimated conditional variance from the correctly specified

GJR-GARCH model. I and S indicate the immediate and slow decaying weighting schemes and

V R denotes the variance ratio. In all tests, we choose K = 1.

Switching to monthly observations, i.e. choosing M = 22, reduces the power of both

tests when keeping the number of low frequency observations constant (T = 172). In-

tuitively, this is reasonable since the predictive regressions are now based on the same

number of low-frequency observations as before but the quality of the estimated con-

ditional variances deteriorates (because the number of high-frequency observations de-

creases) which means that the precision of
̂̃
RV t as an estimator of R̃V t decreases. On the
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other hand, when decreasing M from 66 to 22 while keeping the number of high-frequency

observations fixed, the power of the test increases. In this scenario, the number of obser-

vations in the predictive regression increases (T = 516) which makes it easier to detect

the omitted component.

Table 13 shows the empirical size and power for the same GJR models as before, but

with an
̂̃
RV that is based on the estimated conditional variances from a misspecified

GARCH(1,1). First, note that both tests appear to be slightly oversized in this situation.

Second, as a result of the misspecification of the short-term component the power of the

test based on
̂̃
RV is lower than in Table 12, but still higher than the power of the test

based on RV .

Table 13: Size and power of low-frequency regression test based on misspecified GARCH.

H0 : GARCH GJR-H GJR-M

τ0,t = 1 τ0,t = exp(π′0xt) τ0,t = 1 τ0,t = exp(π′0xt)

σ2
ν = 0.025 σ2

ν = 0.030 σ2
ν = 0.025 σ2

ν = 0.030

weighting scheme - I S I S - I S I S

M = 66, T = 172 “quarterly” observations of xt̂̃
RV 6.3 62.8 59.2 69.6 64.9 6.9 95.2 91.6 96.6 93.0

RV 4.1 43.7 38.1 49.5 44.3 6.8 88.8 87.8 92.6 88.3

V R - 5.87 5.54 7.11 6.50 - 18.4 18.4 22.4 20.9

M = 22, T = 172 “monthly” observations of xt̂̃
RV 6.7 32.3 29.7 37.0 34.0 6.5 69.2 63.9 76.2 71.0

RV 8.0 28.1 26.2 33.1 28.7 6.4 65.9 61.2 72.5 67.5

V R - 5.86 5.61 7.00 6.40 - 16.6 15.0 19.2 18.2

M = 22, T = 516 “monthly” observations of xt̂̃
RV 6.0 80.8 77.9 86.2 84.8 5.3 99.6 98.5 99.8 99.3

RV 7.2 64.8 63.3 72.9 70.0 6.5 98.8 98.0 99.3 98.2

V R - 7.52 7.18 9.12 8.49 - 21.5 20.9 24.5 23.7

Notes:
̂̃
RV is based on the estimate of the conditional variance from the misspecified GARCH

model. Otherwise see Table 12.
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D Correlations of Explanatory Variables

Tables 14 and 15 show the contemporaneous correlations between V XOt, RVt, EPUt and

ADSt. Among the daily variables V XOt and RVt have the highest correlation (0.52).

The other correlations also have the expected signs: V XOt is positively correlated with

economic policy uncertainty, EPUt, but negatively correlated with the business conditions

index, ADSt. The correlations of the rolling window versions of the four variables with

N = 22 are higher in absolute value but reveal the same relationships.

Table 14: Correlations between daily explanatory variables.

V XOt RVt EPUt ADSt

V XOt 1.00

RVt 0.52 1.00

EPUt 0.31 0.19 1.00

ADSt -0.48 -0.26 -0.28 1.00

Notes: The table presents the corre-

lations between the daily explanatory

variables. All correlation figures are for

the 1987M12-2016M06 period.

Table 15: Correlations between explanatory variables, x
(N)
t , for N = 22.

V XO
(22)
t RV

(22)
t EPU

(22)
t ADS

(22)
t

V XO
(22)
t 1.00 0.92 0.59 -0.68

RV
(22)
t 1.00 0.52 -0.57

EPU
(22)
t 1.00 -0.42

ADS
(22)
t 1.00

Notes: The table presents the correlations between

the rolling window explanatory variables. All corre-

lation figures are for the 1987M12-2016M06 period.
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