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Abstract

We propose a model of ‘frugal aggregation’ in which the evaluation of social welfare
must be based on information about agents’ top choices plus general qualitative back-
ground conditions on preferences. The former is elicited individually, while the latter is
not. We apply this model to problems of public budget allocation, relying on the specific
assumption of separable and convex preferences.

We propose and analyze a particularly aggregation rule called ‘Frugal Majority Rule.’
It is defined in terms of a suitably localized net majority relation. This relation is shown
to be consistent, i.e. acyclic and decisive; its maxima minimize the sum of the natural
resource distances to the individual tops. As a consequence of this result, we argue that
the Condorcet and Borda perspectives – which conflict in the standard, ordinal setting –
converge here. The second main result provides a crisp algorithmic characterization that
renders the Frugal Majority Rule analytically tractable and efficiently computable.
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1 Introduction

Many economic and political decisions involve collective decisions to allocate resources under
a budget constraint. Examples are the allocation of public goods, the redistribution across
classes of beneficiaries, the allocation of tax burden, the choice of intertemporal expenditure
streams, or the macro-allocation between expenditure, tax receipts and net debt. Standard
approaches to preference aggregation and voting assume ordinal or even cardinal preference
information as their input. Their application to public resource allocation problems poses
substantial difficulties for a variety of reasons.

First, the number of alternatives is typically large (with discrete inputs), or even infinite
(with continuous inputs). This numerical ‘complexity’ is aggravated when the number of al-
ternative uses of the public resource is large. In the first instance, this means that it may be
practically difficult – if not entirely unrealistic – to elicit an agent’s entire preference ordering
as an input to the aggregation, even setting aside additional issues of active strategic ‘manip-
ulation.’ Not only is the determination of a complete ordering over a rich set of alternatives a
cognitively demanding task (even allowing for short-cuts such as the restriction to reasonably
flexible functional forms), in the context of collective decision-making and voting, there is a
serious motivational issue due to the limited influence of any single agent on the final decision.

Secondly, the operation of common aggregation rules such as the Borda count, the Copeland
or Kemeny rules is unclear, intransparent or even unsound; on an infinite domain, these rules
are in fact not necessarily well-defined.1

Third, except for the one-dimensional case with two public goods and single-peaked prefer-
ences (Black [1948], Arrow [1951/63]), one obtains generic impossibility results under almost
every reasonable domain restriction (Kalai et al. [1979], Le Breton and Weymark [2011]) just
as in spatial voting models (Plott [1967]). In particular, in higher dimensions there is no
hope to generally find a Condorcet winner even if all agents have well-behaved preferences.
Finally, the indeterminacy of majority voting is generic and can be severe; for example, gener-
ically every alternative can be the outcome of a dynamic (non-strategic) majority vote for an
appropriate agenda (McKelvey [1979]).

In this paper, we tackle these difficulties by drastically shrinking the informational base of
the aggregation procedure; specifically, (i) we elicit from each agent her top-ranked alternative
only, and (ii) we rely on appropriate background information that is assumed to be satisfied
by all agent’s true complete preference rankings. We shall refer to this as the ‘frugal model
of aggregation.’2

We will propose a particular frugal aggregation rule called ‘Frugal Majority Rule’ (FMR),
defend its normative rationale and analyze its basic properties. Throughout, we take a non-
strategic point of view. To further justify its potential application in practice, the present
contribution needs to be complemented by an analysis of its strategic properties which we
leave to future work; below, we briefly comment on some indications of why the FMR may

1But see, e.g., Feld and Grofman [1988] for an extension of Borda count to an n-dimensional issue space.
2Our use of the term ‘frugal’ alludes to the notion of ‘fast and frugal heuristics’ made popular in cognitive

psychology by G. Gigerenzer and his co-authors, see, e.g., Gigerenzer and Goldstein [1996]. We intend to
connote both the cognitive economy at the individual level, and the simplicity and efficacy of the aggregation
procedure itself.

2



perform quite well from a strategic angle. Anticipating the brief discussion below, for now
we note that the ‘tops-only’ requirement (i) above can be heuristically viewed as a incentive
compatibility requirement of sorts which says that non-top preference information cannot be
reliably used when agents choose their input strategically.3

To understand the role of the background information (ii) in the frugal aggregation model
generally, consider the limiting, special case of no information, i.e., all that is known about an
agent is her top. In this case, that is: relative to this informational state, there is a clearcut
answer what the anonymously welfare-optimal social choice is: namely that chosen by the
most agents (‘plurality rule’); see Goodin and List [2006] for a formal treatment. It is widely
agreed that this choice may be quite poor when evaluated on the basis of the complete ordinal
ranking of alternatives, a much richer informational base, see e.g., Laslier [2012]. But this
simply means that a lot of valuable information may be lost when the social evaluation/social
evaluator needs to rely exclusively on agents’ top choices.4

Yet, in resource allocation problems, one can do better, as it is sensible in many cases
to rely on richer background information such as preference convexity. Consider the special
case of two goods which leads to a one-dimensional aggregation problem on the ‘budget line,’
so that convexity is simply single-peakedness over feasible allocations. With single-peaked
preferences, the choice of the median voter, i.e. the median of the tops, has strong credentials
as welfare-optimal on Arrowian grounds (Arrow [1951/63]). But choosing the median of the
tops defines a frugal aggregation rule, so, from this perspective, the restriction to a frugal
informational basis arguably involves no loss at all!

Note that the argument for plurality rule is an argument from ignorance, while the ar-
gument for the median top in one dimension is one from partial knowledge. Our goal in
this paper is to extend these two lines of argument to the case of multiple goods in order to
determine the ‘frugally best’ alternative(s). To achieve this, we will assume that the social
evaluator’s background information consists of convexity plus separability of preferences. This
assumption turns out to work particularly well since it strikes just the right balance between
ignorance and knowledge.5

The social evaluator’s total information thus consists of this background information, the
individual tops, and nothing else. Ethically, the social evaluator is committed to give all
agent’s interests equal consideration. In most of the paper, feasible sets are discrete, with a
fixed number of resource units to be allocated, possibly subject to upper and lower bounds;
the extension to the continuous case is described towards the end. Under these assumptions,
the FMR can be motivated from three different perspectives –broadly Condercetian, Borda-
like and ‘imputed-utilitarian.’ We begin by developing the Condorcetian perspective which is
based on an appropriate pairwise ‘frugal betterness’ relation. So, given the social evaluator’s

3Indeed, incentive compatibility (‘strategy-proofness’) implies the tops-onliness property on a large class of
preference domains, see Chatterji and Sen [2011].

4The loss of information under plurality rule is especially severe in situations in which all agents have
different tops, rendering all tops plurality winners with a count of one. Such profiles would be common in
budget allocation problems in which the number of alternatives is typically large relative to the number of
agents.

5The precise condition of ‘separable convexity’ corresponds roughly to, but is weaker than, the existence of
an additively separable and concave utility representation, see Section 3.

3



total information and equal-treatment commitment, when is some feasible allocation x to
be deemed ‘frugally better’ than some other allocation y? For some tops, the evaluator can
deduce a preference of x over y, for others a preference of y over x, while for still others the
comparison remains ambiguous. If one of the first two groups is in absolute majority, this
arguably settles the question, but if not, one needs to deal with the ambiguous cases. This can
be done by appeal to a ‘principle of insufficient reason’ which treats the absence of comparison
as equivalent to indifference. By consequence, ‘frugally betterness’ is then determined by the
relative (or ‘net’) majority of those agents whose preference among x and y can be deduced
unambiguously.

While this is on the right track the argument needs refinement since net majorities among
arbitrary pairs of alternatives may be cyclical and preclude the existence of any best element.
Hence, we argue that a more circumspect application of this principle should govern compar-
isons of ‘local’ pairs only, so that frugal betterness is properly identified with the localized
net majority relation. The first main result of the paper (Theorem 1) shows that this relation
is indeed always acyclic and yields a well-behaved plateau of frugal optima; moreover, these
optima are exactly those allocations that minimize the sum of (l1-)distances to the tops.6

On the basis of this characterization, we also show that frugal majority winners can
be motivated from a Borda-inspired outlook; the conflict between the Condorcet and Borda
philosophies that shapes much of ordinal preference aggregation theory is thus rendered moot.
Relatedly, one can give the frugal majority set a utilitarian-type justification by imputing
to each agent a cardinal, interpersonally comparable utility function that is concave and
separable. These characterizations also imply that the FMR is immune to the famous ‘no-
show paradox’ variants of which plague Condorcet consistent choice rules under complete
ordinal preference (see especially Moulin [1988]).

We provide a complementary second characterization result (Theorem 2) of FMR as equiv-
alent to a uniform quota rule which significantly clarifies the effective operation of the FMR
and delivers a fast and crisp, spreadsheet-implementable algorithm to compute it. This char-
acterization starts with the observation that, in the two-goods case, the allocation associ-
ated with the (one-dimensional) median of the tops is given by the vector of coordinate-wise
medians of agents demands. How can this generalized to multiple goods? The vector of
coordinate-wise medians will not work in general, since it will not generally add up to the
budget constraint. But this can be fixed by aggregating coordinate-wise demands based on a
uniform quota q∗ possibly different from 1

2 so that exactly q∗ agents’ demands can be satisfied,
and q∗ is chosen endogenously based on the profile to satisfy the budget constraint as exactly
as possible. Theorem 2 is analytically quite powerful. Among other things, it helps clarifying
the size of the set of FMR winners and the conditions under which this set is (essentially)
unique.

The Frugal Majority Rule is motivated and defended here as characterizing anonymous
welfare optima under frugal information conditions. Can these optima be achieved, at least to
a satisfactory degree, and if so, how? And, more specifically, can the FMR itself be employed
as a viable voting mechanism?

6The FMR can thus be viewed as an instance of the ‘median rule’ known from general aggregation theory
(see, e.g., Barthélémy and Monjardet [1981], Nehring and Pivato [2018]).
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To address this question adequately, one will need to analyze the incentive properties of the
mechanism and their influence on plausible voting equilibria. Obviously, one cannot expect
the FMR to be fully strategy-proof, since it is known that, on the domain of resource allocation
problems with convex and separable preferences only dictatorial choice functions are strategy-
proof.7 At the same time, there are promising indications that the FMR may have favorable
incentive properties; let us mention two. First, since it chooses the median of the tops FMR is
known to be strategy-proof in the baseline case of allocating two goods.8 Second, the general
analysis of strategy-proof social choice has taught quite robustly (Chatterji and Sen [2011])
that incentive compatibility requires exclusive reliance on preference-tops; further, in those
domains for which strategy-proof mechanisms do exist, they have majoritarian character.
These two feature are shared by the FMR; the problem is ‘just’ that the FMR operates on
an impossibility domain so that full strategy-proofness is an impossible standard to meet.
Nevertheless, one can show that FMR has interesting and valuable partial strategy-proofness
properties, see Nehring and Puppe [2019b].9

Relation to the Literature

To the best of our knowledge, this is the first frugal model of its kind, in the context of
resource allocation or elsewhere. Of course, the broader issue of informational parsimony
is widely recognized as significant; this is testified, for instance, by the great popularity of
approval voting in recent voting theory and, to some extent, also in practice, see the Handbook
of Approval Voting (Laslier and Sanver [2010]). In approval voting, agents classify alternatives
dichotomously in ‘good’ or ‘bad,’ but this furnishes all the preference information that is used;
background information on the shared structure of preferences as in the present frugal model
plays no role.

There are a few strands of literature specifically devoted to the welfare and/or voting
aspects of public budgeting. A first strand addresses Arrovian preference aggregation on eco-
nomic domains, see Kalai et al. [1979] for a central contribution and Le Breton and Weymark
[2011] for an extensive survey. The conclusion from this literature is that all standard aggre-
gation procedures violate at least some fundamental desiderata even under reasonable domain
restrictions. Among the preference domains that have been shown to yield impossibility re-
sults are the domains of all separable preferences and the domain of all convex preferences,
respectively, and a straightforward application of the general arguments shows that the same
conclusion is also obtained if the conditions of separability and convexity are imposed jointly.

With an eye towards possibility results – specifically with respect to characterizing the
uncovered and Banks sets – Dutta et al. [2005] study public budgeting from a majoritarian
perspective. They assume linear preferences and uncover an interesting richness of facets

7Zhou [1991] proves this for the domain of all convex preferences; for separably convex preferences, this
follows from Nehring and Puppe [2007, 2010].

8In this regard, it contrasts rather starkly to, for example, the mean rule that chooses the average of the
individual tops and that is an obvious alternative as a frugal choice rule; the mean rule and its properties are
discussed in more detail in Nehring and Puppe [2019a].

9Beyond partial strategy-proofness, one would want to determine plausible equilibrium voting outcomes
under FMR as a game form. A preliminary study of this question has been undertaken in the dissertation
Lindner [2011] based on Nehring and Puppe [2008].
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already with three goods and three agents. By contrast, in the frugal model, an arbitrary
number of goods and agents is handled quite easily and transparently for a much larger class
of preferences. In line with their broad motivation, we have some hope that the frugal model
might be useful also from a more positive rather than normative angle as an ‘institution-free’
modeling tool in the study of political economy questions.

There is also a sizeable and multi-faceted literature, largely outside economics, on ‘par-
ticipatory budgeting’ which concerns voting among a range of (local) public projects. On the
one hand, the political science literature focuses on questions of institutional design, see Shah
[2007] and the references therein. On the other hand, the computer science literature tends
to emphasize combinatorial and algorithmic aspects arising from indivisibilities, see, e.g.,
Shapiro and Talmon [2017] and Faliszewski and Talmon [2019]. Normatively, these contribu-
tions focus on issues of participation and fairness, frequently assuming cardinal information,
see, e.g., Aziz et al. [2017]. By contrast, we consider the allocation of expenditure shares and
pose the Arrovian-style question of what constitutes a welfare optimum assuming a frugal
informational base.

The remainder of the paper is organized as follows. The next section introduces the general
frugal aggregation model. We define the notion of frugal majority rule with the principle
of insufficient reason at its heart, and we discuss two well-known and well-studied special
cases. The first is the case of an unrestricted domain for which frugal majority rule amounts
to plurality rule; indeed, without any background restriction on individual preferences the
principle of insufficient reason forces to treat all non-top alternatives symmetrically. The
second is the one-dimensional case of two public goods in which frugal majority rule with
single-peaked (i.e. convex) preferences amounts to standard median voting on the line. In
particular, in this case the social optimum is given by the median alternative (or by a set of
median alternatives in the case of an even number of agents). While in this case the winning
alternative(s) are the same as in the standard median voter model, the frugal aggregation
model uses much less information (and in fact does in general not induce the same ranking of
non-top alternatives).

Section 3 discusses the application of the frugal aggregation model to the multi-dimensional
collective resource allocation problem with separably convex preferences. Separable convexity
is a multi-dimensional version of single-peakedness and reduces to single-peakedness in the
one-dimensional case. Our first main result, Theorem 1, shows that under this background
assumption on preferences the set of frugal majority winners is always non-empty, box-convex
and coincides with the allocations that minimize the sum of the box-distances (mathematically,
l1-distances) to the individual tops. We also demonstrate that the particular combination
of separability and convexity of preferences represents a distinguished compromise between
specificity and flexibility in our present context. Indeed, a result akin to Theorem 1 would
fail both for the larger class of convex but not necessarily separable preferences, and for the
smaller class of Euclidean preferences (see Section 3.1). In Section 3.2, we show that the frugal
majority winners coincide with a natural version of ‘frugal Borda winners’ (Proposition 1); we
also demonstrate that the frugal majority winners admit an interpretation as the utilitarian
maximizers with respect to a natural class of imputed cardinal utility functions (Proposition
2).
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Section 4 provides a simple first-order characterization of the set of frugal majority winners
in terms of an endogenous quota (Theorem 2). Besides the efficient computability of the
set of frugal majority winners, this has a number of other corollaries. In Section 4.1, we
observe that frugal majority rule respects coordinate-wise unanimity; moreover, it satisfies
an appropriate condition of ‘frugal Pareto efficiency’ (Proposition 3). In Section 4.2, we use
Theorem 2 to show that every pair of frugal majority winners differ in each coordinate by
at most one unit (‘essential uniqueness’) whenever the profile of tops is connected in each
coordinate (Proposition 4). Finally, in Section 4.3 we show that frugal majority rule avoids
the no-show paradox in the strong sense that, for each agent, the frugal majority set under
own participation dominates the corresponding set without own participation.

In Section 5 we observe that much of the analysis carries over without difficulty to the
case of alternatives in continuous space, i.e. to budget hyperplanes in RL. Moreover, we
indicate how to accommodate non-finite, e.g. continuous, distributions of agents; with an
atomless distribution of agents, the frugal majority winner is in fact always unique. Section
6 concludes.

2 Frugal aggregation

In this section, we introduce and propose a general framework, the frugal aggregation model,
which we will apply later to address the specific problem of collective resource allocation.
The frugal aggregation model assumes that individual preferences are only partially elicited.
Specifically, we consider a maximally sparse message space of one single alternative for each
individual (the respective top alternative). Moreover, the collective choice mechanism is
assessed under the background assumption that the non-elicited preferences of individuals
come from a common and known domain of admissible complete preference orderings on a
set of alternatives. Henceforth, a frugal aggregation problem is given by a pair (X,D), where
X is a universal set of alternatives and D is the associated domain of admissible preference
orderings on X. We assume that all admissible preference orderings <∈ D have a unique top
element, denoted by τ(<) ∈ X.

In our exposition, we envisage a social evaluator who has knowledge about individuals’ top
alternatives and the general admissibility restriction on preferences but who is either ignorant
about the true individual preferences among non-top alternatives, or refrains from using that
information. Observe that the preference information that can be inferred from a specific top
alternative crucially depends on the general admissibility restriction; indeed, by submitting
the top alternative θ ∈ X an individual ‘reveals’ that her complete preference ordering must
come from the set Dθ, where, for all θ ∈ X,

Dθ := {<∈ D : τ(<) = θ}.

For all θ ∈ X, and all distinct x, y ∈ X, let

x >Dθ y :⇔ for all <∈ Dθ, x � y.

Thus, the partial order >Dθ describes exactly the strict preference information that the social
evaluator can infer from an agent’s top alternative θ given the background assumption that
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all preferences come from the common domain D.10 Observe that we allow for the possibility
that there is in fact no preference ordering in D with top θ, in which case x >Dθ y holds
trivially for all pairs x, y ∈ X; on the other hand, if Dθ 6= ∅ then >Dθ is a strict partial order,
in particular asymmetric.

2.1 Frugal majority rule and the principle of insufficient reason

Suppose now that each individual i submits an alternative θi ∈ X representing his or her
most preferred alternative from X and denote by θ = (θ1, ..., θn) the profile of tops, where
we allow for variable population size n ∈ N. For every x ∈ X denote by #θ(x) the mass of
x under θ, i.e. the number of individuals i such that θi = x. Moreover, denote by suppθ :=
{x ∈ X : #θ(x) > 0} the support of θ. Finally, for all subsets Y ⊆ X, denote by #θ(Y ) :=
#{i : θi ∈ Y } =

∑
x∈Y #θ(x) the popular support of Y .

Consider any pair x, y ∈ X of alternatives, and denote by BDθ the social betterness relation
given the profile θ in the frugal aggregation problem (X,D). In the special case in which
the support of θ is concentrated on the pair x, y, i.e. if suppθ = {x, y}, then by standard
arguments (using the conditions of anonymity, neutrality and positive responsiveness, cf. May
[1952]) one obtains

xBDθ y if and only if a (weak) majority votes for x.

But suppθ = {x, y} is clearly a very special case, and the key question becomes how to count
other votes in the comparison between x and y. The fundamental idea underlying the frugal
aggregation model is to treat missing information symmetrically, i.e. to treat the absence of
unambiguous comparison as indifference. Thus, in our approach the principle of insufficient
reason is embodied in the net majority criterion to which we turn now.

For all pairs of distinct alternatives x, y ∈ X, let

〉x, y〉D := {θ ∈ X : x >Dθ y}.

Thus, 〉x, y〉D the set of alternatives such that all agents with top in 〉x, y〉D are known to
strictly prefer x to y, and we refer to this set as the set supporting x over y. If the popular
support of 〉x, y〉D is at least as large as the popular support of 〉y, x〉D, we say that x is the
(weak) net majority winner against y under θ, and denote this by xNMDθ y. Formally, for all
x, y ∈ X,

xNMDθ y :⇔ #θ

(
〉x, y〉D

)
≥ #θ

(
〉y, x〉D

)
.

The binary relation NMDθ will also be referred to as the net majority tournament (given

θ). For agents with top outside the union of the sets 〉x, y〉D and 〉y, x〉D, the background
assumption of preference admissibility is compatible with indifference between x and y, or
with either strict ranking among x and y. For future reference, denote this set, for all distinct
x, y ∈ X, by

x ./Dy := X \
(
〉x, y〉D ∪ 〉y, x〉D

)
.

10While the social evaluator could also infer indifference judgements in principle, it will become clear presently
that it is useful to concentrate on strict preference information.
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The frugal aggregation approach refrains from eliciting individual preferences beyond the
information about the tops and admissibility. By consequence, the appeal to the principle of
insufficient reason implies to treat the agents with top alternative in x ./Dy symmetrically,
i.e. as indifferent between x and y. Our provisional answer to the question of social betterness
among pairs of alternatives within the frugal aggregation model is thus to identify the relation
BDθ with the net majority tournament:

Normative claim (provisional) For all distinct x, y ∈ X,

xBDθ y ⇔ xNMDθ y.

Accordingly, we (provisionally) define the set C(X;θ) of ‘social welfare optima’ given the
profile θ as the maximal elements in X with respect to BDθ , i.e.

C(X;θ) :=
{
x ∈ X : xBDθ y for all y ∈ X

}
(2.1)

(observe the completeness of the binary relations NMDθ and BDθ ). This proposal of course
raises the question whether C(X;θ) is always non-empty. Before we analyze this problem in
detail, let us consider two simple and instructive special cases that will help to understand the
underlying motivation and the difference between the frugal aggregation model and ordinal
preference aggregation on restricted domains.

2.2 Two special cases

2.2.1 Frugal aggregation on the unrestricted domain: the plurality rule

Suppose that admissibility does not convey any additional information, i.e. consider the special
case D = U where U is the unrestricted domain of all weak preference orderings with a unique
top. Evidently, in this case we have for all x, y ∈ X, 〉x, y〉U = {x}, and hence

xNMUθ y ⇔ #θ(x) ≥ #θ(y),

i.e. the maximal elements of the net majority tournament are simply the plurality winners:
the alternatives that are named by most agents as their respective top choice. The indifference
principle is justified since, from an impartial welfare perspective, there is simply no basis to
favor an alternative x over any other alternative y given a vote for θ 6∈ {x, y}. Clearly, the net
majority tournament NMUθ and hence also the social betterness relation BUθ are transitive in
this case; consequently, the set C(X;θ) of social welfare optima is non-empty for every profile
(and coincides with the plurality winners, as noted).

2.2.2 Frugal aggregation on the line: median voting

As another special case, consider the case of a one-dimensional space of alternatives X linearly
ordered from left to right by > à la Downs [1957]. Here, it is natural to require that individual
preferences be single-peaked. Denote by Dsp the set of all weak orderings on X that are single-
peaked with a unique top alternative.11 Consider two distinct alternatives x, y ∈ X, say such

11Formally, a preference ordering < with top alternative θ is single-peaked if, for all distinct x, y ∈ X, x � y
whenever y < x ≤ θ or θ ≥ x > y.
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that x < y. Any top θ not in the interior of the interval [x, y] induces a strict preference
either for x (if θ ≤ x), or for y (if θ ≥ y); on the other hand, a top strictly between x and y
is compatible with any preference between x and y, i.e. x ./Dspy = {w ∈ X : x < w < y}. In
particular, we obtain

xNM
Dsp

θ y ⇔ #θ({w ∈ X : w ≤ x}) ≥ #θ({w ∈ X : w ≥ y}).

As is easily verified the net majority tournament is transitive in this case. Moreover, the
social welfare optima C(X;θ) according to (2.1) are given by the median alternative(s).12

The case of the unrestricted domain in 2.2.1 clearly demonstrates the difference between
the frugal aggregation model and standard ordinal preference aggregation. Indeed, the princi-
ple of insufficient reason necessarily yields plurality rule provided that one refrains to use any
non-top preference information.13 The criticism frequently raised by social choice theorists
against plurality rule (see, e.g., Laslier [2012]) can thus be traced back to its complete neglect
of any non-top preference information.

By contrast, the outcome of the aggregation in the case of single-peaked preferences 2.2.2
is identical under the proposed frugal model and, say, simple majority voting with ordinal,
single-peaked preferences. However, despite this superficial similarity in the case of single-
peaked preferences on a one-dimensional space, the frugal aggregation model is fundamentally
different from ordinal preference aggregation. As a first indication, observe that if all agents’
tops are strictly between the alternatives x and y, then the frugal aggregation model necessar-
ily declares them as indifferent (again, by the appeal to the principle of insufficient reason),
whereas any ranking between x and y is possible under simple majority rule with single-peaked
preferences using ordinal (but not top-induced) preference information. Moreover, other ag-
gregation rules can give fundamentally different results. For instance, it is well known that
the Borda rule need not select the Condorcet winner even if all preferences are single-peaked;
by contrast, we will argue that in the frugal model the appropriate formulation of Borda
rule yields exactly the net majority winners as outcome. Intuitively, the reason is that sym-
metric treatment of non-available preference information corresponds to applying Borda rule
to metric individual preferences that admit an ordinal utility representation in terms of the
negative distance to the top alternative; and for this class of ordinal preferences, Borda’s and
Condorcet’s aggregation methods indeed give the same result.

The main task of the present study is to generalize Example 2.2.2 to higher dimensions
and to show that in the frugal aggregation model, Borda’s and Condorcet’s methods coincide
generally on multi-dimensional resource allocation problems.

3 Resource allocation with separably convex preferences

In the remainder of this paper we study the frugal aggregation model in the specific context
of the following simple but fundamental resource allocation problem. A group of agents (a

12More precisely, the unique median top if the number of agents is odd, and all alternatives between the two
middle tops if the number agents is even.

13For a related derivation of plurality rule, see Goodin and List [2006].
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‘society’) has to collectively decide on how to allocate a fixed budget Q ≥ 0 to a number L
of public goods. Throughout we assume fixed prices, thus the problem is fully determined
by specifying the expenditure shares. Furthermore, we assume that expenditure shares are
measured in discrete amounts of money and that all individuals have monotone preferences.
Expenditure x` on public good ` may be bounded from below and above, so that feasibility
requires x` ∈ [q`−, q

`
+] for some integers q`−, q

`
+ where we allow that q`− = −∞ and/or q`+ =∞.

Together, these assumptions allow us to model the allocation problem as the choice of an
element of the following (L− 1)-dimensional polytope

X :=

{
x ∈ ZL :

L∑
`=1

x` = Q and x` ∈ [q`−, q
`
+] for all ` = 1, ..., L

}
, (3.1)

where Z is the set of integers and x = (x1, ..., xL). The space X is referred to as the set of
feasible allocations, or alternatively, as a resource agenda.

Collective choice mechanisms on sets of alternatives of the form (3.1) have been addressed
in the literature under various, economically meaningful preference restrictions, see e.g., Kalai
et al. [1979], and Le Breton and Weymark [2011] for an extensive survey. Notwithstanding the
many impossibility results that have been established in this literature within the framework
of standard Arrovian preference aggregation, we will now demonstrate that a natural variant
of separability plus convexity generates a strong possibility result in the frugal aggregation
model. The domain of all ‘separably convex’ preferences on a resource agenda of the form
(3.1) contains in particular all preferences that can be represented by an additively separable
and concave utility function.

Definition (Separable Convexity) For any allocation x ∈ X denote by x(kj) the allocation

that results from x by transferring one unit of money from good j to good k, i.e. xk(kj) = xk+1,

xj(kj) = xj−1 and x`(kj) = x` for all ` 6= k, j. Say that a preference order < on X is separably

convex if x � x(kj) implies y � y(kj) for all k, j, x, y such that yk ≥ xk and yj ≤ xj.

Separable convexity contains two special cases: (i) ‘linear’ convexity (i.e. single-peakedness)
and (ii) separability. Case (i) is given by the additional condition that x` = y` for all ` 6= k, j
(see the left panel in Fig. 1), while case (ii) is given by the additional condition that yk = xk

and yj = xj . Separable convexity integrates these two requirements but is somewhat stronger
than the logical conjunction of linear convexity and separability. To see this, note that sepa-
rability is vacuous for L = 3 due to the budget constraint on the domain of feasible allocations
X over which < is defined. The right panel in Fig. 1 shows the general case for L = 3, k = 3
and j = 2, combining convexity and separability.
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(0, 0, Q)

(Q, 0, 0)

x

x(kj)

wk ≥ xk

wj ≥ xj

(0, 0, Q)

(0, Q, 0)

x

y

y(kj)

x(kj)

wk ≥ xk

wj ≥ xj

Fig. 1: Separable convexity

For all x, y ∈ ZL, let

[x, y] :=
{
w ∈ ZL : for all ` = 1, ..., L, x` ≤ w` ≤ y` or y` ≤ w` ≤ x`

}
.

We will refer to [x, y] as the box spanned by x and y and to the elements of [x, y] as the (not
necessarily feasible) allocations between x and y. We say that a subset Y ⊆ X is box-convex
if Y = [x, y] ∩X for some pair x, y ∈ ZL. As is easily verified, a subset Y ⊆ X is box-convex
if and only if ([w, z] ∩ X) ⊆ Y for all w, z ∈ Y , i.e. if and only if Y contains with any two
feasible allocations all feasible allocations between them.

Consider any separably convex preference < with top θ and two distinct feasible allocations
x and y such that x ∈ [θ, y], i.e. such that x is between the top θ and y. Then, there exists
a sequence of unit transfers from y to x that are strictly preferred at each step (by separable
convexity) so that x � y by transitivity. In other words, for all distinct x, y ∈ X, and all
separably convex preferences with top θ,

x ∈ [θ, y] ⇒ x � y.

Conversely, suppose that x 6∈ [θ, y], then there clearly exist separably convex preference orders
with top θ such that y < x (see the proof of Lemma 3.1 in the Appendix for a concrete
construction). Thus, for the domain D∗ of all separably convex preferences on X and every
θ ∈ X, we obtain

x >D
∗

θ y ⇔ x ∈ [θ, y].

For every domain D, let τ(D) := {τ(<) : < ∈ D}. We will say that D is a rich subdomain
of D′ if D ⊆ D′ and, for all θ ∈ τ(D), >Dθ = >D

′
θ . Summarizing, we have the following result.

Fact 3.1 Let D be a rich subdomain of separably convex preferences on X. Then, for all
distinct x, y ∈ X,

〉x, y〉D = {θ ∈ τ(D) : x ∈ [θ, y]} .
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Two important examples of rich subdomains of separably convex preferences are (i) the
domain Dadd of all preference orders on X that can be represented by an additively separable
utility function of the form

u(x) = u(x1, ..., xL) =

L∑
`=1

u`(x`), (3.2)

where the u` : R → R are strictly increasing and concave for all ` = 1, ..., L, and (ii) the
domain Dlin of all linear preferences on X that can be represented by a linear utility function
of the form

u(x) = u(x1, ..., xL) =

L∑
`=1

a` · x`,

with pairwise different and strictly positive coefficients {a1, ..., aL}.14 Observe that linear
preferences have a natural interpretation in terms of expected utility theory if the agenda X
is viewed as a set of probabilistic lotteries over a set of L deterministic outcomes; in that case,
the a` correspond to the von-Neumann-Morgenstern utilities and the requirement that they
be pairwise distinct simply means that the preference over deterministic outcomes displays
no indifferences.

Lemma 3.1 The domains Dadd and Dlin are rich subdomains of separably convex preference
orders on X. Moreover, the domain Dqlin of all quasi-linear preferences representable as in
(3.2) with u1(x1) = x1 also forms a rich subdomain of separably convex preferences.

(Proof in Appendix.)

Note that every allocation θ ∈ X can be the top of a preference order in Dadd and even of
a preference order in Dqlin. By contrast, linear preferences in the domain Dlin can have their
respective top only at an extreme point of X.

Examples 1 and 2 above also involve special cases of rich separably convex domains. The
universal domain (on L alternatives) is obtained by considering (X,D∗) with the agenda
X = {x ∈ ZL+ :

∑L
`=1 x

` = 1} = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}. The line considered
in Example 2 is obtained by setting L = 2; in fact, the condition of separable convexity
corresponds exactly to single-peakedness here, with the separability part vacuously satisfied.

In the following, we fix a rich domain D of separably convex preferences and will often
simplify notation by writing “〉x, y〉” instead of “〉x, y〉D,” “ Bθ ” instead of “ BDθ ” and “ NMθ ”
instead of “ NMDθ ” etc., whenever no confusion can arise.

It follows from Example 2 above that the set of maximal elements of the net majority
tournament in the frugal resource allocation problem (X,D) is non-empty for any profile θ if
L = 2. The following example shows that this does not generalize to the case L > 2.

Example 3 (Non-existence of a non-localized frugal majority winner) Suppose that
X is given as in (3.1) above with L = 3, Q = 3 and [q`−, q

`
+] ⊇ [0, 3] for all ` = 1, 2, 3. Consider

14The coefficients need to be distinct in order to ensure that every order in Dlin has a unique top on X.
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the following profile θ with seven agents (see Figure 2): θ1 = (1, 1, 1), θ2 = θ3 = (3, 0, 0),
θ4 = θ5 = (0, 3, 0), and θ6 = θ7 = (0, 0, 3), and fix any rich domain of separably convex
preferences. Using Fact 3.1, it is easily verified that (1, 1, 1) >θi (0, 1, 2) for i = 1, 2, 3 and
(0, 1, 2) >θi (1, 1, 1) for i = 6, 7, while any ranking between (1, 1, 1) and (0, 1, 2) is compatible
with admissibility for agents i = 4, 5. Thus,

(1, 1, 1) N̂Mθ (0, 1, 2), (3.3)

where N̂Mθ is the asymmetric (‘strict’) part of NMθ . Moreover, by Fact 3.1, we have
(0, 1, 2) >θi (0, 0, 3) for i = 1, 4, 5 while any ranking between (0, 1, 2) and (0, 0, 3) is compatible
with admissibility for agents i = 2.3; hence, notwithstanding the fact (0, 0, 3) >θi (0, 1, 2) for
i = 6, 7, we obtain

(0, 1, 2) N̂Mθ (0, 0, 3). (3.4)

Finally, again using Fact 3.1, we obtain

(0, 0, 3) N̂Mθ (1, 1, 1) (3.5)

since agents i = 6, 7 have their top at (0, 0, 3) while only agent i = 1 has her top at (1, 1, 1)
and the ranking between these two allocations is not determined by admissibility for the
other agents i = 2, 3, 4, 5. Combining (3.3), (3.4) and (3.5) we thus obtain that both (1, 1, 1)

and (0, 0, 3) are contained in a N̂Mθ -cycle. By a completely symmetric argument, also the

allocations (3, 0, 0) and (0, 3, 0) are part of a N̂Mθ -cycle. This easily implies that the set of
(unrestricted) net majority winners is in fact empty for the profile θ.

θ6 = θ7 = (0, 0, 3)

θ2 = θ3 = (3, 0, 0) θ4 = θ5 = (0, 3, 0)

θ1

(0, 1, 2)

Fig. 2: Non-existence of a non-localized net majority winner

The last example demonstrates that an overly simplistic application of the indifference
principle may lead to a cyclic net majority tournament, and hence does not deliver a coherent
account of ‘frugal social betterness.’ To provide the diagnosis of the underlying difficulty,
consider the following binary comparisons between x and y of agents with top θ.

(a) x = (2, 1, 0), y = (1, 2, 0), θ = (1, 1, 1).
(b) x = (3, 0, 0), y = (1, 1, 1), θ = (0, 0, 3).
(c) x = (2, 1, 0), y = (1, 2, 0), θ = (0, 1, 2).
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In each case, the top θ neither supports x nor y since any preference between x and y is
compatible with a top θ under separable convexity. However, the indifference principle is not
equally plausible in all cases. Consider case (a) first; here we have full symmetry of x and y
vis-á-vis the top θ, say under permutation of coordinates, and the appeal to the indifference
principle appears to be safe. On the other hand, in case (b) the indifference between x and y
given θ is more problematic; in the pairwise comparison an impartial evaluator might come
up with favoring y because it is closer to θ (in the natural ‘resource metric’ defined below).
We will not settle this and avoid an appeal to the indifference principle in this case. Finally,
in (c) we still do not have full symmetry as in (a), but less of an asymmetry as compared to
(b); in particular, x and y are equidistant from θ. We will appeal to the indifference principle
in this case.

One important difference between cases (a) and (c) on the one hand and case (b) on
the other is that in two former cases x and y are adjacent, i.e. they differ in the allocation
of one unit of expenditure only. This suggests to refine the indifference principle and to
restrict judgements of social betterness to a subset of well-decidable binary comparisons via
a comparison graph Γ, i.e. to consider Bθ = NMθ ∩ Γ for an appropriate graph Γ on X.
In our present context, the natural choice of the comparison graph is given by the set of all
neighbors, i.e. all pairs of allocations that result from each other by transferring one unit from
one coordinate to another.

Formally, say that two allocations x, y ∈ X are neighbors if they differ only by the alloca-
tion of one monetary unit, i.e. if

∑L
`=1 |x` − y`| = 2. Denote by Γres the graph that results

from connecting all neighbors in X by an edge. (Observe that all our figures in fact depict
this graph.) As is easily seen, two distinct allocations x and y are neighbors if and only if
[x, y] = {x, y}.

For all x, y ∈ X, denote by

d(x, y) :=
1

2

L∑
`=1

|x` − y`|.

the natural ‘resource’ metric on X. The normalization ensures that neighbors have distance
one, i.e. that a transfer of one unit of expenditure from one public good to another yields an
allocation with unit distance from the original allocation. Also observe that, for all x, y ∈ X,

[x, y] = {w ∈ X : d(x, y) = d(x,w) + d(w, y)}, (3.6)

i.e. the allocations between two other allocations are precisely those that are geodesically
between them with respect to the natural ‘resource’ metric d; in other words, the allocations
between x and y are precisely those that lie on some shortest path connecting x and y in the
graph Γres.

The following figure depicts the sets 〉x, y〉, 〉y, x〉 and x ./ y for two neighbors x and y.
It shows that, for fixed x ∈ X, the ‘agnostic’ region x ./ y is inclusion minimal if and only if
y is a neighbor of x. Moreover, it illustrates the following equidistance property that enables
the appeal to the indifference principle for adjacent alternatives in our present context. For
all x, y, θ ∈ X,

[d(x, y) = 1 and θ ∈ x ./ y] ⇒ d(θ, x) = d(θ, y), (3.7)
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which follows easily from Fact 3.1 using (3.6).

(0, 0, Q)

(Q, 0, 0) (0, Q, 0)

y
•

x •〉x, y〉

〉y, x〉x ./ y

x ./ y

Fig. 3: The sets 〉x, y〉, 〉y, x〉 and x ./ y for adjacent x and y

By ‘localizing’ the net majority tournament, i.e. by restricting it to the graph Γres, we ob-
tain the central solution concept advocated here, the set of frugal majority winners, henceforth
simply the frugal majority set, formally defined by

FM(θ) := {x ∈ X : for all w ∈ X with wΓresx, xNMθ w}.

Thus, our claim is that the indifference principle is justified if applied to adjacent alter-
natives due to (3.7), and that therefore a coherent account of frugal betterness is obtained by
applying the net majority criterion locally to neighbors:

Normative claim (refined) For a rich subdomain of separably convex preferences, frugal
betterness is given by the restriction of the net majority relation restricted to neighbors, i.e.,

Bθ = NMθ ∩ Γres .

In Example 3, the allocation (1, 1, 1) is the unique frugal majority winner. In the following,
we will show that the frugal majority set is always non-empty; indeed, the net majority
tournament restricted to Γres is acyclic and decisive, as follows.

Consider a weak tournament (i.e. a complete binary relation) R′ on X and its restriction
R to a connected comparison graph Γ, i.e. R = R′ ∩ Γ. Denote by P the asymmetric part
of R, and by R∗ and P ∗ the transitive closures of R and P , respectively. The relation R is
acyclic if P displays no cycles, i.e. if P ∗ is irreflexive. Say that x ∈ X is a local optimum (with
respect to Γ) if xRy for all y ∈ X such that xΓy, and say that R is decisive (on X), if for
some x ∈ X, xR∗y for all y ∈ X. Finally, say that a subset Y ⊆ X is connected if any pair of
elements of Y is connected by a Γ-path that stays in Y . The following fact is easily verified.

Fact 3.2 If R is acyclic, there exists a local optimum. Moreover, R is decisive if and only if
the set of local optima is non-empty and connected.

16



As our first main result, we will now show that, for all profiles θ, the restricted tournament
NMθ ∩ Γres is both acyclic and decisive; in particular, the frugal majority set is non-empty
and connected. Moreover, the frugal majority set will be shown to consist exactly of the
allocations that minimize the aggregate graph distance with respect to the graph Γres, as
follows. For all profiles θ = (θ1, ..., θn) and all x ∈ X, denote by

∆θ(x) :=

n∑
i=1

d(x, θi)

the aggregate distance of the feasible allocation x given the profile θ. The aggregate distance
is a natural way to quantify the ‘overall remoteness’ of an allocation to the set of individual
top alternatives. The collective choice rule that selects, for any profile, the allocations that
minimize the aggregate distance represents the well-known median rule (Barthélémy and
Monjardet [1981], Barthélémy and Janowitz [1991], McMorris et al. [2000], Nehring and Pivato
[2018]) applied to the present context of resource allocation. Accordingly, we will refer to an
allocation as a median allocation if it solves

arg min
x∈X

∆θ(x) = arg min
x∈X

n∑
i=1

d(x, θi),

and we denote the set of median allocations for a given profile θ by Med(θ). Evidently,
Med(θ) need not be a singleton but it is always non-empty since the median allocations are
obtained as the solution of a minimization problem on a finite set. Note that, if L = 2, the
set of median allocations coincides with the standard median(s). In particular, if there is an
odd number of individuals, the set Med(θ) consists of the unique median top.

Theorem 1 Consider a frugal aggregation problem (X,D) where X is a resource agenda and
D a rich subdomain of separably convex preferences. For all profiles θ, the restricted net
majority tournament NMθ ∩ Γres is acyclic and decisive, in particular FM(θ) is non-empty.
Moreover, FM(θ) is box-convex and coincides with Med(θ).

(Proof in Appendix.)

Illustration: The frugal majority set with three voters

The following figure illustrates the frugal majority set in the case of three voters.15 First note
that, evidently, for two voters with tops θ and θ′, respectively, the frugal majority set is given
by the interval [θ, θ′]. Indeed, every allocation x ∈ [θ, θ′] lies on a shortest path between θ
and θ′, and therefore has aggregate distance equal to d(θ, θ′) by (3.6), while every allocation
outside [θ, θ′] has strictly larger distance.

Now consider the case of three agents with distinct tops θ, θ′ and θ′′, respectively. In
Figure 4, we fix the two tops θ′ and θ′′ in generic position, and describe how the frugal
majority set changes when θ moves clockwise ‘around’ the interval [θ′, θ′′] (with the frugal
majority winners marked in red in each case; the depicted shapes of FM(θ) can be verified
by computing aggregate distances and using Theorem 1).

15The website http://www.frugalmajority.de provides an online application to compute and visualize the
frugal majority for any number of agents for L = 3 and Q ≤ 15.
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θ θ′′
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(0, 0, Q)
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θ

θ′′
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(0, 0, Q)

(Q, 0, 0) (0, Q, 0)

θ

θ′′

θ′

v

(0, 0, Q)

(Q, 0, 0) (0, Q, 0)

θ

θ′′

θ′

v

Fig. 4: The frugal majority set with three agents

We note that while the frugal majority set with three voters is always a triangle (possibly
consisting of a single allocation, cf. Fig. 4), it can take on a variety of other shapes if there
are more than three agents.
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3.1 On the scope of Theorem 1: When is it valid (and why)?

The assumption of separable convexity provides a distinguished compromise between the use
of exogenous structure (given through the graph Γres) and flexibility in terms of the size of
the domain of preferences left admissible. Indeed, a result akin to Theorem 1 fails to hold
both on the larger domain of convex, but not necessarily separably convex, preferences, and
on the (much) smaller domain of Euclidean preferences frequently used in models of spatial
voting (Austen-Smith and Banks [1999]).

First, consider the domain of all convex (but not necessarily separably convex) preferences
on X, i.e. the set of all preferences that can be represented by a quasi-concave utility function,
and let us denote it by Dconv. As is easily seen, for each pair of neighbors x, y ∈ X the
supporting set 〉x, y〉Dconv is given by the set of all tops θ such that x is on the (Euclidean)
straight line connecting θ and y (see Figure 5 which depicts the sets 〉x, y〉Dconv and 〉y, x〉Dconv

in red).

x

y

z

θ1

θ2

θ3

〉x, y〉Dconv

〉y, x〉Dconv

Fig. 5: Cyclic frugal majorities with convex preferences

Evidently, frugal majority rule under the domain assumption Dconv does not coincide with the
median rule, i.e. Theorem 1 fails to hold for this domain. In fact, the restricted net majority
tournament is in general not even acyclic. To see this, consider the binary comparisons among
the adjacent alternatives x, y, z under the three-agent profile θ = (θ1, θ2, θ3) depicted in Fig. 5.
Agent 1 with top θ1 supports x against y but not against z, and no other alternative in {x, y, z}
against any other alternative in {x, y, z}; similarly, the only discernible binary support of agent
2 among the alternatives in {x, y, z} is for y against z, and the only discernible binary support
of agent 3 among these alternatives is for z against x. Thus, frugal majority rule yields the

cycle x N̂M
Dconv

θ y, y N̂M
Dconv

θ z, z N̂M
Dconv

θ x. Observe that the frugal majority set is nevertheless
non-empty in Fig. 5 as it contains the three tops θ1, θ2 and θ3; it is however neither convex
nor even connected.

The previous example shows that Theorem 1 may fail on ‘too large’ domains. But the re-
sult may also fail for ‘small’ domains. Specifically, consider the domain DEuclid of all Euclidean
preferences, i.e. the class of preferences that can be represented by the negative Euclidean
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distance to some allocation θ ∈ X; this domain has been widely used in the literature on spa-
tial voting (see, e.g., Austen-Smith and Banks [1999]). Note that within the domain DEuclid

an individual top reveals the entire preference ordering; indeed, for each θ ∈ X, the order >Dθ
coincides with the asymmetric part of the unique preference ordering in DEuclid with top θ.
For all pairs x, y ∈ X of neighbors, the set x ./DEuclid y is given by the straight line normal to
the (Euclidean) segment connecting x and y, and the sets 〉x, y〉DEuclid and 〉y, x〉DEuclid are on
the two respective sides of this line (see Figure 6). Local net majority rule under the domain
of Euclidean preferences is in general not acyclic. This can be verified using the same example
as in Fig. 5 above. Remarkably, however, under the domain DEuclid, we obtain the reverse

cycle y N̂M
DEuclid

θ x, z N̂M
DEuclid

θ y, x N̂M
DEuclid

θ z. Indeed, now both θ2 and θ3 support y over x,
both θ1 and θ3 support z over y, and both θ1 and θ2 support x over z (see Fig. 6).

x

y

z

θ1

θ2

θ3

〉x, y〉DEuclid

〉y, x〉DEuclid

Fig. 6: Cyclic frugal majorities with Euclidean preferences

3.2 On the interpretation of the frugal majority set: Condorcet meets
Borda

By relying on an appropriate notion of (local) majorities, our approach to frugal social op-
timality may appear to have a strong ‘Condorcetian’ flavor. However, as we argue in this
subsection, the claim of the frugal majority set as the appropriate concept of social welfare
optimum in the context of resource allocation does not rest on a specific Condorcetian phi-
losophy. First, we note in Subsection 3.2.1 that the frugal majority set arises naturally also
from the perspective of formulating an appropriate ‘frugal’ version of Borda rule. Moreover,
in Subsection 3.2.2, we show that the frugal majority set represents the utilitarian optimum
with respect to a particularly natural class of imputed utility functions, the ‘goal satisfaction’
functions.

3.2.1 Frugal majority rule as frugal Borda rule

How can one apply the Borda rule under the informational constraints of the frugal aggregation
model? One immediate problem is that each agent is characterized by an incomplete ordering,
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namely by the partial order >D
∗

θ , and that the Borda rule is defined for complete orderings
only. But the representation of the frugal majority set in terms of the sum of the (negative)
distances in the natural resource metric suggests a simple solution in the present context.
Given a top θ ∈ X, define the score sθ(x) ≤ 0 of an alternative x ∈ X as follows. A chain
(with respect to >θ) is any subset of X that is totally ordered by the partial order >θ. For
each x ∈ X, let s̃θ(x) be the maximal cardinality of a chain Y 3 x that has x at its bottom
(i.e. y >θ x for all y ∈ Y \ {x}), and let sθ(x) := −s̃θ(x) + 1, so that θ itself uniquely receives
the highest score sθ(θ) = 0.

For every profile θ = (θ1, ..., θn) and every alternative x, let

FB(θ) := arg max
x∈X

n∑
i=1

sθi(x)

denote the set of frugal Borda winners.16 The following result follows easily from Fact 3.1
and (3.6) above.

Proposition 1 Consider the frugal aggregation problem (X,D) where D is a rich domain of
separably convex preferences. For all θ ∈ X and all x ∈ X, we have sθ(x) = −d(x, θ) for the
scores derived from the partial order >Dθ . Thus, in particular, for all profiles θ,

FB(θ) = Med(θ) = FM(θ).

3.2.2 The frugal majority set as ‘imputed’ utilitarian solution

We now show that the frugal majority set also coincides with the utilitarian maxima with
respect to a natural class of ‘imputed’ convex and separable cardinal utility functions. Specif-
ically, for each agent with top θ consider the goal satisfaction function vθ : ZL → R defined
by

vθ(x) :=
L∑
`=1

min{x`, θ`}, (3.8)

for all x ∈ ZL. Evidently, for every θ ∈ X, vθ(·) is an additively separable function which
is (weakly) increasing and concave in each component. The term min{x`, θ`} measures the
extent to which the ‘goal’ θ` is satisfied in coordinate ` by the allocation x. Note that with
monotone preferences oversatisfaction of the goal in the sense that x` > θ` does not hurt
per se; but for a feasible allocation x ∈ X, oversatisfaction in one coordinate is necessarily
accompanied by undersatisfaction of the goal in some other coordinate due to the budget
constraint incorporated in the resource agenda X. Thus, the term

L∑
`=1

|x` − θ`|+,

16For a different approach to extending the Borda rule for partial orders, see Cullinan et al. [2014].
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where |x` − θ`|+ := max{x` − θ`, 0}, can be interpreted as the potential ‘waste’ of resources
at the allocation x from the point of view of an agent with top allocation θ. Noting that, for
all θ, x ∈ X,

L∑
`=1

|x` − θ`|+ =

L∑
`=1

|θ` − x`|+ = d(x, θ)/2,

we obtain for all x ∈ X and all θi ∈ X,

vθi(x) =

L∑
`=1

x` −
L∑
`=1

|x` − θ`i |+ = Q−
L∑
`=1

|x` − θ`i |+ (3.9)

= Q− d(x, θi)/2. (3.10)

Equation (3.9) states that, up to a constant, goal satisfaction simply measures aggregate
(potential) waste, and (3.10) implies that minimizing aggregate distance of x ∈ X for a
profile θ of tops in X amounts to maximizing the aggregate goal satisfaction vθ(·) defined by

vθ(x) :=
n∑
i=1

vθi(x).

Thus, for all profiles θ in X, the frugal majority set coincides with the utilitarian maximizers
of the individual goal satisfaction functions, i.e. we have the following result.

Proposition 2 Consider the frugal aggregation problem (X,D) where D is a rich domain of
separably convex preferences. Then for all profiles θ,

FM(θ) = Med(θ) = arg max
x∈X

vθ(x).

Within the class of additively separable and concave utility functions, the goal satis-
faction functions vθi arise naturally from the perspective of the frugal aggregation model,
by the following heuristic argument. Consider a (cardinal) differentiable utility function
u(x1, ..., xL) =

∑
` u

`(x` with monotone and concave component functions u`. In the optimum
θ ∈ X among all feasible allocations in X, the marginal rates of substitution must all be equal
to unity because allocations are defined in terms of expenditure (neglecting any integer prob-
lems for simplicity); that is, for the marginal utilities, we obtain ∂u`(θ`)/∂x` = ∂uk(θk)/∂xk

for all `, k. By the concavity of the component functions, marginal utility is higher below
than above the optimum, i.e. for all `, k, all r < θ` and θk < s we have

∂u`(r)

∂x`
≥ ∂uk(s)

∂xk
.

Since the only available information in the frugal model is the top θ, an application of the
principle of insufficient reason suggests treating all marginals below the top equal to each
other, and likewise all marginals above the top. Setting the marginal utilities below the top
equal to α and those above the top equal to β < α, these are affinely equivalent on the
feasible set X to the goal-satisfaction utilities defined in (3.8), which correspond in fact to
the special case of α = 1 and β = 0. Note that this argument forces the imputed utilities to
be non-differentiable but allows them to be strictly monotone.
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4 A simple characterization in terms of an endogenous quota:
The frugal majority winners as balanced medians

In this section, we provide a simple and powerful characterization of the frugal majority set
that allows one to compute it very efficiently and to immediately derive a number of its basic
properties.

In the following fix a profile θ = (θ1, ..., θn) with n voters and denote, for every ` = 1, ..., L
and every k = 1, ..., n, by θ`[k] ∈ X the k-th smallest vote in coordinate `, that is, the

vector (θ`[1], θ
`
[2], ..., θ

`
[n]) results from the values θ`1, θ

`
2, ..., θ

`
n simply by re-arranging the latter

in ascending order so that θ`[1] ≤ θ`[2] ≤ ... ≤ θ`[n] (possibly with some equalities). Denote by

Q[k] :=
∑L

`=1 θ
`
[k], and let k∗(θ) be the largest k = 1, ..., n such that Q[k] ≤ Q. Finally, say

that the profile θ = (θ1, ..., θn) is unanimous if θ1 = θ2 = ... = θn. Note that for a unanimous
profile one has k∗(θ) = n since, evidently, θ`[1] = θ`[2] = ... = θ`[n] = θ`i for all i = 1, ..., n and all

` = 1, ..., L. Also observe that k∗(θ) < n for all non-unanimous profiles.

Theorem 2 Consider the frugal aggregation problem (X,D) where D is a rich domain of
separably convex preferences on the resource agenda X. For every non-unanimous profile
θ = (θ1, ..., θn) and every x ∈ X the following are equivalent.

a) x ∈ FM(θ),

b) x maximizes aggregate goal satisfaction vθ(·),

c) for all ` = 1, ..., L,
θ`[k∗(θ)] ≤ x

` ≤ θ`[k∗(θ)+1]. (4.1)

(Proof in Appendix.)

Condition (4.1) means that q∗(θ) := k∗(θ)/n is the ‘endogenous’ (i.e. profile-dependent)
quota of voters who can be satisfied in all coordinates (of course, these have to be different
sets of voters in different coordinates).

Example 4 As a simple example illustrating the endogenous quota interpretation of the
characterization in Theorem 2c), consider the case L = 3, Q = 10, and a profile θ with four
voters such that θ1 = (5, 0, 5), θ2 = (0, 2, 8), θ3 = (2, 6, 2) and θ4 = (4, 3, 3), say. For the
corresponding matrices (θ`i ) and (θ`[k]|Q[k]) with ` = 1, ..., L and i, k = 1, ..., n we thus obtain

(θ`i ) =


5 0 5
0 2 8
2 6 2
4 3 3

 and (θ`[k]|Q[k]) =


0 0 2 | 2
2 2 3 | 7
4 3 5 | 12
5 6 8 | 19

 .

Since Q[2] = 7 < 10 (= Q) < 12 = Q[3], we obtain k∗(θ) = 2, and thus an endogenous quota
of q∗(θ) = 0.5; in accordance with (4.1), the frugal majority set is given by

FM(θ) = {(2, 3, 5), (3, 2, 5), (3, 3, 4), (4, 2, 4), (4, 3, 3)}.
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Now suppose that voter 4 changes her vote to θ̃4 = (3, 2, 5) while the other voters keep their
position. If we denote the resulting profile by θ̃, we obtain

(θ̃`i ) =


5 0 5
0 2 8
2 6 2
3 2 5

 and (θ̃`[k]| Q̃[k]) =


0 0 2 | 2
2 2 5 | 9
3 2 5 | 10
5 6 8 | 19

 .

Now, since Q̃[3] = 3 + 2 + 5 = 10 (= Q), we obtain k∗(θ̃) = 3, hence an endogenous quota of

q∗(θ̃) = 0.75. Moreover, since Q̃[k∗(θ̃)] = Q there is a unique net majority winner, and indeed

FM(θ̃) = {(3, 2, 5)}.

The previous example suggests to view the frugal majority set as the allocations corre-
sponding to a balanced median that maximizes, uniformly across all coordinates, the fraction
of agents who can be given their preferred amount of each public good or more. cut?

Using Theorem 2c) the complexity of computing the set of majority winners can be deter-
mined as follows. First, one needs to sort n numbers L times. The best sorting algorithms are
known to be of order n · log n, hence this yields L ·n · log n computational steps.17 In addition,
one needs to sum L numbers at most n times and compare their sum to the fixed quantity
Q. Thus, the determination of the box

∏
`[θ

`
[k∗(θ)], θ

`
[k∗(θ)+1]] involves in total a computational

complexity of at most
L · n · log n + L · n + n

single steps. The frugal majority set corresponding to the profile θ results from intersecting
this box with the resource agenda X.

The simple characterization provided by Theorem 2 allows one to derive a number of
further important properties of the frugal majority set to which we turn now.

4.1 Coordinate-wise unanimity and the frugal Pareto criterion

By Theorem 2c), for any profile θ, the frugal majority set is given by X∩
∏L
`=1[θ

`
k∗(θ), θ

`
k∗(θ)+1].

This immediately implies that frugal majority rule respects coordinate-wise unanimity in the
sense that, for all θ = (θ1, ..., θn),

FM(θ) ⊆
L∏
`=1

[min
i
θ`i ,max

i
θ`i ]. (4.2)

Moreover, every frugal majority winner is Pareto efficient with respect to the induced
partial orders. Formally, say that an allocation x ∈ X is frugally Pareto efficient given a
profile of tops θ = (θ1, ..., θn) if there does not exist any other feasible allocation y such that
y >θi x for all i = 1, ..n.

Proposition 3 Consider the frugal aggregation problem (X,D) where D is a rich domain of
separably convex preferences. Then every frugal majority winner is frugally Pareto efficient.

17See, for instance, Knuth [1998]. On finite domains, there exist deterministic sorting algorithms with
complexity of order n · log2 n, see Han [2004].
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(Proof in Appendix.)

Note that frugal Pareto efficiency does clearly not imply ex-post efficiency with respect to
the true underlying complete orders. A simple example is the case of two agents with tops θ1 =
(0, 1, 2) and θ2 = (1, 2, 0), in which case the frugal majority set is given by [(0, 1, 2), (1, 2, 0)] =
{(0, 1, 2), (1, 1, 1), (0, 2, 1), (1, 2, 0)}. But separable convexity is evidently compatible with the
strict preferences (1, 1, 1) �i (0, 2, 1) for i = 1, 2 where <i denotes the underlying complete
preference order of agent i; thus, the frugal majority winner (0, 2, 1) may not be ex-post
Pareto efficient in general. But, of course, requiring ex-post Pareto efficiency with respect to
every possible underlying complete preference order is inappropriate under the informational
assumptions of the frugal aggregation model.18 Note, however, that in the two special cases
considered in Section 2.2 above (plurality rule and median voting in the line, respectively)
frugal majority rule does achieve ex-post efficiency.

4.2 Essential uniqueness

As many other solution concepts in social choice theory, also the frugal majority set does
frequently not deliver a unique outcome. Nevertheless, as already noted, the size of frugal
majority set is bounded by the size of the box

∏L
`=1[θ

`
k∗(θ), θ

`
k∗(θ)+1]. In particular, the ‘denser’

the support of a profile, the smaller its frugal majority set. Specifically, we have the following
result. Say that a subset Y ⊆ X is essentially unique if

max
x,y∈Y, `=1,...,L

|x` − y`| ≤ 1.

Thus, a subset of X is essentially unique if every two of its elements differ in each coordinate
by at most one unit. Also, say that the support of a profile θ = (θ1, ..., θn) is coordinate-wise
connected if, for each ` = 1, ..., L, the set {θ`i}i=1,...,n forms an interval in Z, i.e. {θ`1, ..., θ`n} =
[mini θ

`
i ,maxi θ

`
i ]. The following is an immediate corollary of the characterization in Theorem

2c).

Proposition 4 The frugal majority set FM(θ) is essentially unique whenever θ is coordinate-
wise connected.

Figure 7 depicts the set FM(θ) for a profile of five agents. Observe that while the support
of θ is not connected in the usual sense (because different agents’ tops cannot be connected
by a Γres-path within the support of θ), the depicted profile is nevertheless coordinate-wise
connected in the sense defined above.

18Moreover, it is well-known that ex-post efficiency is generally not achievable in a large class of related
models, see, for instance, Benôıt and Kornhauser [2010].
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θ1

θ2

θ3

θ4

θ5
FM(θ)

Fig. 7: Essential uniqueness under coordinate-wise connectedness

If one considers the population preferences as a statistical sample resulting from indepen-
dent draws from an underlying continuous distribution with connected support, the expected
gap [θ`k∗(θ), θ

`
k∗(θ)+1] would shrink roughly in inverse proportion to the number of agents n.

Hence the diameter of the frugal majority set FM(θ) would likewise shrink in inverse propor-
tion to n. So, heuristically, in such situations one would expect the frugal majority set to
shrink quite rapidly with the number of agents.

4.3 Frugal majority rule avoids the no-show paradox

The scoring rule representation of the frugal majority winners as the set of allocations that
minimize the aggregate distance function implies that the corresponding choice rule avoids
the famous ‘no-show’ paradox (Brams and Fishburn, 1983; Moulin 1988). For instance, by
voting for the most preferred allocation among the frugal majority winners that would result
without her vote, an individual can guarantee this allocation to be the unique new frugal
majority winner.

More generally, we have the following result which shows that it can never be harmful
for an agent to participate in collective decision according to frugal majority rule. For every
profile θ = (θ1, ..., θn) and every agent h 6∈ {1, ..., n}, denote by θtθh the profile (θ1, ..., θn, θh).
Moreover, denote by FM(θ)h the set of all allocations x ∈ FM(θ) such that FM(θ)∩ [x, θh] =
{x}. Thus, FM(θ)h is the subset of undominated allocations in FM(θ) from the perspective of
an agent with top θh (and separably convex preferences). The following result shows that by
participating in the collective decision according to frugal majority rule and submitting the
top θh and agent is always better off in the sense that (i) the resulting frugal majority winners
contain all undominated allocations among the former majority winners, and (ii) every new
majority winner (if any) dominates one of these.

Proposition 5 Consider any profile θ = (θ1, ..., θn) and any agent h 6∈ {1, ..., n} with top θh
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and preference <h. Then,

FM(θ)h ⊆ FM(θ t θh) ⊆
⋃

x∈FM(θ)h

[x, θh]. (4.3)

(Proof in Appendix.)

Figure 8 illustrates Proposition 5. On the left-hand side, the frugal majority set FM(θ)
(without agent h’s participation) is marked in red. The right-hand side depicts the frugal
majority set with participation of agent h whose top is at the upper vertex of the red triangle
representing FM(θ t θh); the subset FM(θ)h of the undominated elements of FM(θ) is en-
circled by the black oval. Indeed, from h’s perspective, the two allocations discarded by h’s
participation, θ1 and θ2, are strictly worse than their right and left neighbor, respectively; and
each of the three frugal majority winners gained by h’s participation are strictly preferred by
h to at least one element of FM(θ)h.

θ1 θ2

FM(θ)

θ1 θ2

θh FM(θ)h

FM(θ t θh)

Fig. 8: Additional participation of agent h

5 Extension to the continuous case

Our analysis carries over to the case of a continuous resource agenda X ⊂ RL, as follows. A
preference order < on X is separably convex if the following condition is satisfied: whenever
a marginal transfer from good j to good k at allocation x ∈ X makes an agent worse off
(keeping the allocation fixed otherwise), then so does the same transfer at any allocation that
has at most the amount xj of good j and at least the amount xk of good k. Given a profile
of tops θ = (θ1, ..., θn) on X, define the symmetric binary relation Γθ on X by xΓθy if (i)
x and y differ in exactly two coordinates, i.e. x 6= y and for some distinct j, k ∈ {1, ..., L},
x` = y` for all ` 6= j, k, and (ii) for no i = 1, ..., n, min{xj , yj} < θji < max{xj , yj} or
min{xk, yk} < θki < max{xk, yk}. Thus, if xΓθy then x and y are ‘neighbors’ in the sense
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that they differ only in two coordinates and no top lies strictly between them in these two
coordinates; geometrically, condition (ii) means that no top lies in the ‘stripe’ between xj and
yj parallel to the j-axis, and no top lies in the ‘stripe’ between xj and yj parallel to the j-axis,
see Fig. 9. Observe that for every profile with finite support, and for all j, k, this condition is
satisfied whenever x and y are sufficiently close to each other.

(0, 0, Q)

(Q, 0, 0) (0, Q, 0)

x

y

Fig. 9: The binary relation Γθ

Define the local net majority relation as ÑMθ := NMθ ∩ Γθ and the frugal majority set
by

FM(θ) := {x ∈ X : for all w ∈ X, x ÑMθ w}

(for simplicity, we do not distinguish between the frugal majority set in the continuous and
discrete cases).

Theorem 1′ For every rich subdomain of separably convex preferences and all profiles θ, the
local net majority relation ÑMθ is acyclic and decisive, in particular FM(θ) is non-empty.
Moreover, FM(θ) is box-convex and coincides with Med(θ) (the latter set being defined exactly
as in the discrete case).

(Proof in Appendix.)

We note that characterization of the frugal majority set provided in Theorem 2 also
continues to hold without change. Indeed, the endogenous quota characterization in Theorem
2c) can be used to define the frugal majority set also for atomless distributions of agent’s tops;
and indeed, it always yields a unique solution in that case, as follows. For each ` = 1, ..., L,
and all t ∈ [0, 1], denote by ξ`(t) the cumulative distribution of the tops in coordinate `,
i.e. ξ`(t) = r if and only if the fraction t of agents’ tops has at most the amount r in
coordinate `; evidently, ξ`(·) is an increasing function for all `. Let Q(t) :=

∑L
`=1 ξ

`(t) which
is clearly also increasing. If the underlying distribution θ of tops is atomless, Q(·) is in fact
strictly increasing and continuous on [0, 1] with Q(0) < Q < Q(1). By the intermediate value
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theorem, there exists exactly one t∗ ∈ (0, 1) such that Q(t∗) = Q; then

FM(θ) = {(ξ1(t∗), ..., ξL(t∗))},

i.e. the allocation (ξ1(t∗), ..., ξL(t∗)) is the unique frugal majority winner.

6 Conclusion

We propose and advocate a solution to the problem of collective resource allocation, the frugal
majority set. In this paper, we have provided a definition via local comparisons involving
unit transfers of expenditure. In the case of separably convex preferences we have presented
two fundamental characterizations, one via the minimization of the aggregate l1-distances
to the agent’s tops, the other in terms of ‘balanced median’ allocations that maximize the
endogenous quota of coordinate-wise satisfaction. We have derived a number of basic and
attractive properties of the frugal majority set, in particular we have demonstrated that
it naturally arises not only from the Condorcetian perspective of pairwise (local) majority
comparisons but also from a scoring rule point of view á la Borda and from a utilitarian
standpoint. Finally, we have indicated how to apply our solution concept in the continuous
case.

A number of important issue remain open; we mention two. First, it is desirable to
have a more solid foundation of frugal majority rule through an axiomatic characterization
that would enable a comparison of the frugal majority rule with possible contenders such as,
for instance, the mean rule that takes as solution simply the coordinate-wise average of the
agents’ most preferred allocations. We provide such an axiomatic normative foundation of
frugal majority rule in a companion paper (see Nehring and Puppe [2019a]).

Secondly, in the present paper we have not studied the incentive problem that may arise
from the fact that not only the agents’ complete preference order but also their respective
tops may be private information. This is addressed in a another paper where we show that,
while in general not fully strategy-proof, frugal majority rule is robust against manipulation
in a number of ways if all agents have separably convex preferences (see Nehring and Puppe
[2019b]).
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Appendix: Proofs

Proof of Fact 3.1 in text.

Proof of Lemma 3.1. First, we show that any preference < ∈ Dadd is separably convex;
since Dlin ⊂ Dqlin ⊂ Dadd the same conclusion holds for these domains as well. Thus, let

< be represented as in (3.2) by an additively separable utility function u(x) =
∑

` u
`(x`)

with strictly increasing and concave component functions u` : R → R. In fact, the separable
convexity follows from the concavity alone, no monotonicity condition on the functions u`

is needed. Indeed, suppose that x � x(kj) and yj ≤ xj as well as yk ≥ xk; since the
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allocations x and x(kj) differ only in coordinates j and k, we have u(x) > u(x(kj)) if and only

if uj(xj)− uj(xj − 1) > uk(xk + 1)− uk(xk). By the concavity of uk(·) and uj(·) we obtain[
uj(yj)− uj(yj − 1)

]
≥
[
uj(xj)− uj(xj − 1)

]
>
[
(uk(xk + 1)− uk(xk)

]
≥
[
uk(yk + 1)− uk(yk)

]
,

and hence u(y) > u(y(kj)) as desired.
Next, we show that Dadd is indeed a rich domain of separably convex preferences. Thus,

consider x, y, θ ∈ X such that x 6∈ [θ, y]. We will show that there exists <∈ Dadd with top
θ such that y � x. This in fact not only shows that Dadd is a rich domain of separably
convex preferences but, in addition, that every allocation can be the top of a preference order
in Dadd. This is trivial if θ = y; thus, assume henceforth that θ 6= y. In the following, we
explicitly construct appropriate strictly increasing and strictly concave functions u` : X` → R
for ` = 1, ..., L, where X` is the projection of X to coordinate `. First observe that it is
clearly possible, for any given θ` ∈ X` and any ε > 0, to slightly ‘perturb’ the identity
function f(x`) = x` to a strictly concave and strictly increasing function f̃ such that the
difference f̃(θ`) − θ` is strictly larger that f̃(w`) − w` for all w` ∈ X` \ {θ`}, and such that
the absolute values |f̃(w`)−w`| < ε for all w` ∈ X`. Note that if all utility functions u` arise
from such perturbations, we obtain in particular

L∑
`=1

(u`(θ`)− θ`) >
L∑
`=1

(u`(w`)− w`) (A.1)

for all w ∈ X \ {θ} (note that every w ∈ X \ {θ} differs from θ in at least one coordinate,
hence the inequality in (A.1) is indeed strict). Since

∑L
`=1 θ

` =
∑L

`=1w
` = Q, this implies∑L

`=1 u
`(θ`) >

∑L
`=1 u

`(w`) for all w ∈ X \ {θ}, i.e. θ is the unique top of the preference
ordering represented by the utility function u =

∑
` u

`.
Now let x 6∈ [θ, y] and assume with loss of generality that x, y, θ are pairwise distinct.

Since x 6∈ [θ, y] there exists a coordinate j = 1, ..., L such that xj 6∈ [θj , yj ]. Thus, either
(xj < θj & xj < yj) or (xj > θj & xj > yj). Consider the first case. It is possible to choose,
for any position of θj and yj , a strictly increasing and strictly concave function uj : X l → R
such that

uj(θj)− θj ≥ uj(yj)− yj ≥ δ > 0 ≥ uj(xj)− xj , (A.2)

where the first inequality in (A.2) is strict whenever θj 6= yj , and such that the difference
uj(θj)−θj is in fact strictly larger than uj(wj)−wj for all wj ∈ Xj \{θj}. Figure A.1 depicts
the two cases θj < yj (left) and yj < θj (right).

Now choose all other functions u` strictly increasing and strictly concave such that u`(θ`)−
θ` is strictly larger than u`(w`) − w` for all w` ∈ X` \ {θ`}, and such that |u`(w`) − w`| <
δ/[2(L − 1)] for all w` ∈ X`, as described above. Let < be the preference order represented
by u =

∑L
`=1 u

`. As argued above, θ is the top alternative of <. Moreover, we have

uj(yj)− yj +
∑
6̀=j

(u`(y`)− y`) > δ/2 > uj(xj)− xj +
∑
`6=j

(u`(x`)− x`),

i.e. u(y) > u(x), and hence y � x as desired. The argument in the case xj > θj & xj > yj is
completely symmetric.
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An inspection of the preceding argument shows that, if L ≥ 2, it is indeed possible to
choose u1(·) to be the identity, i.e. to choose the desired utility function u(·) to be quasi-
linear.

Finally, consider the domain Dlin of all linear preferences on X. Observe first that only
corner allocations can be the top of a linear preference order on X. To show that the domain
Dlin also forms a rich subdomain of separably convex preferences, we need to show that for
every corner allocation θ ∈ X and any pair x, y ∈ X such that x 6∈ [θ, y] one can find an
element <∈ Dlin with top θ and u(y) > u(x). This is obvious if L = 2, i.e. in the case of
a line; thus, assume L ≥ 3. Without loss of generality assume that θ = (Q, 0, ..., 0). We
distinguish three cases.
Case 1. If y1 > x1, choose a1 = 1 and all other a` pairwise distinct such that 0 < a` < ε for
all ` 6= 1. If ε is sufficiently small, we obtain

L∑
`=1

a` · y` >

L∑
`=1

a` · x` (A.3)

i.e. u(y) > u(x) for the linear utility function represented by the a`; moreover, since a1 > a`

for all ` 6= 1, θ = (Q, 0, ..., 0) is indeed the top of the corresponding linear preference.
Case 2. If y1 = x1, then there exists k > 1 such that yk > xk. Choose a1 = 1, ak = 1− ε, and
all other a` pairwise distinct such that 0 < a` < ε for all ` 6∈ {1, k}. If ε is sufficiently small
the coefficients {a1, ..., aL} represent a linear preference with top θ = (Q, 0, ..., 0) and y � x
as desired.
Case 3. Finally, consider the case y1 < x1. Let L− := {` : y` < x`} and L+ := {` : y` > x`}.
By the feasibility of x and y, we have∑

`∈L−
(x` − y`) =

∑
`∈L+

(y` − x`) (A.4)

with each summand in this equation being strictly positive by construction. By the assumption
of the present case, we have 1 ∈ L−, and since x 6∈ [θ, y] there exists k 6= 1 such that k ∈ L−.
This implies by (A.4)

(x1 − y1) <
∑
`∈L+

(y` − x`). (A.5)

Now choose a1 = 1, and all other a` pairwise distinct such that 1 − ε < a` < 1 for ` ∈ L+

and 0 < a` < ε for ` ∈ L \ ({1} ∪L+). For ε sufficiently small, we obtain by (A.5) that y � x
for the linear preference represented by the coefficients {a1, ..., aL} as in (A.3). Furthermore,
since a1 is the uniquely largest coefficient, θ = (Q, 0, ..., 0) is indeed the top of this preference.

2
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Figure A.1: Construction of uj if xj < θj and xj < yj

Proof of Fact 3.2 follows easily from the adopted definitions.

The next result shows that the restricted net majority tournament coincides with the
ranking induced by the median rule, i.e. with the ranking of neighbors according to their
aggregate distance.

Lemma A.1 For any profile θ and any two neighbors x and y,

#θ(〉x, y〉)−#θ(〉y, x〉) = ∆θ(x)−∆θ(y).

In particular, xNMθ y if and only if ∆θ(x) ≤ ∆θ(y).

Proof. Combining Fact 3.1 and (3.6), we obtain that, for all w ∈ 〉x, y〉, d(w, x)−d(w, y) = −1,
for all w ∈ 〉y, x〉, d(w, x)− d(w, y) = 1, and for all other w ∈ X, d(w, x)− d(w, y) = 0. From
this the result immediate. 2

As an immediate corollary of Lemma A.1, we obtain the acyclicity of the restricted net
majority tournament and the inclusion Med(θ) ⊆ FM(θ). Note moreover, that a neighbor y
of a median allocation x is itself a median allocation if and only if xNMθ y and yNMθ x.

Fact A.1 Let f : X → R be a separable function with f(x) =
∑L

`=1 f
`(x`) such that all

functions f `(·) are concave. Then, any local optimum of f on X is also a global optimum of
f on X, i.e. if f(x) ≥ f(w) for all neighbors w ∈ X of x, then f(x) ≥ f(w) for all w ∈ X.
Moreover, the set of optima is box-convex, i.e. every point on a shortest path between two
optima is also an optimum.

Proof. As in the first part of the proof of Lemma 3.1, the stated conditions imply that f
represents a separably convex order on X (recall that no monotonicity condition on f or the
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f ` is required for this conclusion). This implies that f must be constant along any shortest
path connecting two local optima. Indeed, suppose by way of contradiction that f is not
constant along some shortest path connecting two local optima x and z. Then there exist two
neighbors along that path, say y and y(kj), such that f(y) < f(y(kj)). Since y and y(kj) are
on a shortest path connecting x and z, we have y(kj) ∈ [y, z] or y(kj) ∈ [y, x]. Without loss
of generality, assume the former; then, by the separable convexity, we obtain f(z) < f(y(kj))
contradicting the assumption that z is a local optimum. From this, all other assertions in
Fact A.1 follow at once. 2

Proof of Theorem 1. Since the negative of the aggregate distance function −∆θ(·) is the
sum of the separable and concave functions −d(·, θi) it is itself separable and concave. Hence,
by Fact A.1, each of its local optima is a global optimum. This implies FM(θ) ⊆ Med(θ);
using Lemma A.1, we thus obtain FM(θ) = Med(θ) for all profiles θ. From this the box-
convexity of FM(θ) follows using Fact A.1 again. This completes the proof of Theorem 1. 2

Proof of Proposition 1 in text.

Proof of Proposition 2 in text.

Proof of Theorem 2. The equivalence of (i) and (ii) follows from Proposition 2. Thus,
consider statement (iii). The idea of the following proof is to show that (4.1) is equivalent to
x being a local maximum of aggregate goal satisfaction; this implies the equivalence of (ii)
and (iii) by Fact A.1.

We first introduce some notation. For a fixed profile θ = (θ1, ..., θn) ∈ Xn, each ` = 1, ..., L
and r ∈ Z, denote by v`(r) :=

∑n
i=1 min{r, θ`i} so that for the aggregate goal satisfaction

function v(·) we have v(x) =
∑

` v
`(x`). Moreover, let

∇−v`(r) := v`(r)− v`(r − 1),

∇+v
`(r) := v`(r + 1)− v`(r).

By construction, we obtain

∇−v`(r) = #{i : θ`i ≥ r},
∇+v

`(r) = #{i : θ`i ≥ r + 1}. (A.6)

By definition of θ`[k], we have #{i : θ`i ≥ r} ≥ (n − k + 1) whenever r ≤ θ`[k], and hence by

(A.3),
r ≤ θ`[k] ⇒ ∇−v`(r) ≥ (n− k + 1). (A.7)

Similarly, we have #{i : θ`i ≥ r + 1} ≤ (n− k) whenever r ≥ θ`[k], hence, again by (A.3),

r ≥ θ`[k] ⇒ ∇+v
`(r) ≤ (n− k). (A.8)

Now consider any x ∈ X satisfying (4.1), i.e. for all ` = 1, ..., L, θ`[k∗(θ)] ≤ x
` ≤ θ`[k∗(θ)+1]. We

will show that x is a local maximizer of aggregate goal satisfaction v. By Fact A.1, x is then
also a global optimum, hence a frugal majority winner by Proposition 2. Thus, consider any
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neighbor y of x. Without loss of generality, assume that y = x(21), i.e.y1 = x1−1, y2 = x2+1,

and y` = x` for all ` = 3, ..., L. We have x1 ≤ θ`[k∗(θ)+1] and x2 ≥ θ`[k∗(θ)], therefore, using

(A.4) and (A.5),

v(x)− v(y) = ∇−v1(x1)−∇+v
2(x2)

≥ n− (k∗(θ) + 1) + 1− (n− k∗(θ))

= 0.

This proves that every x ∈ X satisfying (4.1) is indeed a maximizer of aggregate goal satis-
faction.

Conversely, consider x ∈ X that violates (4.1). There are two (not mutually exclusive)
cases.

Case 1. For some coordinate h, xh < θh[k∗(θ)]. In this case, there must exist some other

coordinate j such that xj > θj[k∗(θ)]. Consider the neighbor y of x such that yh = xh + 1,

yj = xj − 1, and y` = x` for all coordinates ` 6= h, `, i.e. y = x(hj). By the same arguments as
above, we obtain using (A.3),

r < θ`[k] ⇒ ∇+v
`(r) ≥ (n− k + 1) (A.9)

and
r > θ`[k] ⇒ ∇−v`(r) ≤ (n− k). (A.10)

Therefore,

v(y)− v(x) = ∇+v
h(xh)−∇−vj(xj)

≥ n− k∗(θ) + 1− (n− k∗(θ))

= 1,

hence x is not a maximizer of aggregate goal satisfaction.

Case 2. For some coordinate h, xh > θh[k∗(θ)+1]. In this case, there must exist some other

coordinate ` such that x` < θ`[k∗(θ)+1]. Consider the neighbor y of x such that yh = xh − 1,

y` = x` + 1, and y` = x` for all coordinates ` 6= h, `, i.e. y = x(jh). By (A.6) and (A.7), we
obtain

v(y)− v(x) = ∇+v
j(xj)−∇−vh(xh)

≥ n− (k∗(θ) + 1) + 1− (n− (k∗(θ) + 1))

= 1,

hence x is not a maximizer of aggregate goal satisfaction in this case either. This completes
the proof of Theorem 2. 2

Proof of Proposition 3. By contraposition, suppose that y >θi x for all i. By Fact 3.1, this
implies y ∈ [θi, x] for all i. In particular, all individuals necessarily strictly prefer any neighbor
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of x in direction of y to x itself by separable convexity. But since x thus looses at least one
local majority comparison (even by a unanimous vote), it cannot be a frugal majority winner.
This completes the proof of Proposition 3. 2

Proof of Proposition 4 follows at once from Theorem 2.

Proof of Proposition 5. The idea of the proof is to use the characterization in Theorem 2c)
in order to show that by participating an agent moves the interval [θ`[k∗(·)], θ

`
[k∗(·)+1]] ‘closer’

to her top in all coordinates ` simultaneously.
The statement of Proposition 5 is easily verified for a unanimous profile, thus assume in

the following that θ is non-unanimous. Then there exists k∗(θ) < n such that Q[k∗(θ)] ≤ Q
and Q[k∗(θ)+1] > Q as in Theorem 2c). Now consider the additional participation of agent h

with top θh. We use the following notation: the profile θ t θh will also be denoted θ̃; for each
`, θ̃`[1] ≤ ... ≤ θ̃

`
[n+1] are the n+ 1 ordered values among {θ`1, ..., θ`n, θ`h}, and

Q̃[k] :=
L∑
`=1

θ̃`[k]

Since, for each `, both the values θ`[k] and θ̃`[k] are weakly increasing in k, we obtain, for all
k ≤ n,

Q̃[k] ≤ Q[k].

Moreover, by the addition of agent h, we have θ`[k−1] ≤ θ̃
`
[k] for all ` and k ≤ n, and hence

Q̃[k+1] ≥ Q[k].

In particular, we obtain Q̃[k∗(θ)] ≤ Q[k∗(θ)] ≤ Q, and Q̃[k∗(θ)+2] ≥ Q[k∗(θ)+1] > Q. Thus, there

are only two cases, either (i) k∗(θ̃) = k∗(θ), or (ii) k∗(θ̃) = k∗(θ) + 1.
In either case, it follows immediately from the definitions that, for all `, the interval

[θ̃`
[k∗(θ̃)]

, θ̃`
[k∗(θ̃)+1]

] is ‘closer’ to θ`h than the interval [θ`[k∗(θ)], θ
`
[k∗(θ)+1]] in the sense that both

θ̃`
[k∗(θ̃)]

∈
[
θ`[k∗(θ)], θ

`
h

]
,

and
θ̃`
[k∗(θ̃)+1]

∈
[
θ`[k∗(θ)+1], θ

`
h

]
.

This implies the two inclusions stated in (4.3) and completes the proof of Proposition 5. 2

Proof of Theorem 1′. Fact 3.1 continues to hold in the continuous case since we still have
x >D

∗
θ y ⇔ x ∈ [θ, y] for any top θ where D∗ is the domain of all separably convex preference

orders on X. We also have, for all profiles θ = (θ1, ..., θn) and every pair x, y with xΓθy,

#θ(〉x, y〉)−#θ(〉y, x〉) = ∆θ(x)−∆θ(y). (A.11)
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as asserted by Lemma A.1 in the discrete case. In the continuous case, (A.11) can be derived
as follows. Assume without loss of generality that xj > yj , xk < yk, x` = y` for all ` 6=
j, k, and consider any top θi. By condition (ii) in the definition of Γθ, there are four cases
(corresponding to the four non-shaded regions in Fig. 9 above):

(a) θji ≥ xj and θki ≤ xk,
(b) θji ≥ xj and θki ≥ yk,
(c) θji ≤ yj and θki ≤ xk, or

(d) θji ≤ yj and θki ≥ yk.
In case (a), we have θi ∈ 〉x, y〉 and hence d(θi, y) = d(θi, x) + d(x, y); in case (d) we have
θi ∈ 〉y, x〉 and hence d(θi, x) = d(θi, y) + d(x, y). In cases (b) and (c), we have θi ∈ x ./ y,
and since |xj − yj | = |xk − yk| by the feasibility of x and y, we obtain d(θi, x) = d(θi, y) in
either of these two cases. Thus, for all supporters of x over y the distance of their top to y is
by d(x, y) larger than the distance of their top to x; for all supporters of y over x the distance
of their top to x is by d(x, y) larger than the distance of their top to y; and for all other the
distance of their top to x is the same as the distance of their top to y. This immediately
implies (A.11).

The rest of the proof follows from straightforward adaption of the arguments given in the
proof of Theorem 1. In particular, Fact A.1 generalizes in a straightforward manner in the
continuous case. 2
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