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Abstract

Credit and business cycles play an important role in economic research, especially for
central banks and supervisors. We reexamine a very useful dynamic model proposed
by Kiyotaki and Moore (1997) of an economy with an endogenous credit limit. They
claim that a small temporary shock generates large and persistent deviations from the
steady state due to a positive feedback loop and the endogenous credit constraint. We
mathematically show that contrary to common belief the model does not show amplifi-
cation and persistence is visible only for a few parameter settings. Kiyotaki and Moore
have linearized the model despite higher order terms being more important, rendering
the Taylor expansion invalid. Further, we show that spillover effects in an economy with
two distinct sectors are small. The strong amplification present in the original results,
which supposedly is due to the large inter-temporal or dynamic multiplier effect, is spuri-
ous. The dynamic multiplier effect is of similar size than the static effect and in all cases
numerically small.
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1. Introduction

Many economists consider credit cycles fundamental drivers to business cycles, eg
Fisher (1933) explained the Great Depression with a debt-deflation hypothesis. The
latest crisis has moved the topic of credit cycles back into the financial stability focus. A
growing debt burden and falling asset prices are not just passive symptoms of an economy
in recession, but contribute via feedback loops to a widening of the crisis. Notable work
on the persistence of business cycles has been done by Bernanke and Gertler (1989),
who formalized these thoughts into a general equilibrium model. In their seminal paper
on amplification they show that the condition of borrower’s balance sheets is a source
of output dynamics. It is believed that the feedback between net worth and investment
may lead to a positive amplification during boom and a negative one during bust periods.
Several authors have developed dynamic models for closed economies, which try to link
credit frictions or constraints to amplification of shocks and persistence, eg Kiyotaki and
Moore (1997), Carlstrom and Fuerst (1997), Azariadis and Smith (1998) and Bernanke
et al. (1999).

As a key contribution, we correct the solution presented in Kiyotaki and Moore (1997)
and show that in the Kiyotaki-Moore model there is, unlike so far believed, no ampli-
fication and persistence is limited to certain parameters in the full model only. The
linearization in powers of deviations of the landholding from the steady state is incorrect,
even if a small shock is applied. The linearized solution suggests large deviations of the
landholding, hence higher order terms of the landholding are more (not just) important
and hence not negligible as required by the linearization. The linearized solution (Kiy-
otaki and Moore, 1997) shows a singular behavior in a zero interest rate environment (ie
for R = 1). The deviations from the steady state are infinitely large and independent of
∆ for R = 1. Further, solving the model correctly, we can prove that spillovers in the
two-sector-model exist, but are only small in size. Collateral constraints do not act as a
powerful amplification and propagation mechanism of a temporary exogenous shock, ie
the dynamic multiplier effect turns out to be small. This finding is also consistent with
the results found by studying other models (see eg Cordoba and Ripoll (2004)).

Credit market imperfections have been a major driver for example towards the Great
Financial Crisis and also for the East Asian miracle and the subsequent decline. Edison
et al. (1998) used the Kiyotaki and Moore (1997) model with highly leveraged firms to
analyze the Asian crisis. During the Asian crisis the fall in asset values was followed by
liquidity effects causing the land price to fall further, leading to amplification through
feedback. Gelos and Werner (1999) examines the Mexican crisis and provide evidence
of the financial accelerator mechanism. Rising real estate prices have lowered funding
costs and have increased investment activities and higher demand for land. They claim
that the reliance of banks on collateral increased the importance of real estate. The
financial acceleration is self-enforcing until interrupted by an economy-wide shock. Many
models link lending waves to boom-bust cycles and rely on credit channels or the financial
accelerator mechanism.

Kiyotaki and Moore (1997) introduced an insightful model of a dynamic economy in
which credit limits and asset prices are strongly interlinked: The model and its results are
employed and quoted in many recent publications (see for example Guerrieri and Uhlig
(2016)). Kiyotaki and Moore (1997) claim that the interactions between credit limits and
asset prices turn out to be a powerful transmission mechanism leading to large deviations
from the steady state even in the case of small temporary shocks to the economy. The
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model is built without any means to enforce debt repayment, hence debt must always
be secured. The collateralization results in the dual role of a durable asset, which in the
model is land, as a factor of production and as collateral. There exists an endogenous
credit limit, because land is a constraint resource.

Iacoviello (2005) embedded the mechanism developed by Kiyotaki and Moore (1997)
inside a standard New Keynesian general equilibrium model, whereby the collateral capi-
tal in this article is real estate. He shows, that collateral constraints increase the response
of aggregate demand to house prices.

Another paper related to studies of amplification is Adrian and Boyarchenko (2012).
They extend the Kiyotaki-Moore model by introducing state dependent leverage con-
straints, where the state of the system is a function of current volatility.

The theoretical and empirical work done among others by Kiyotaki and Moore (1997),
Carlstrom and Fuerst (1997) and Bernanke et al. (1999) to study the Great Depression,
the Asian crisis or the Mexican crisis can be straight forwardly applied to the US sub-
prime crisis or the housing boom in Ireland or Spain, which finally caused the euro-area
sovereign debt crisis. The run up to the crisis was stamped by increasing real estate prices,
investors’ herd behavior, banks search for yield and by the unwillingness of regulators,
central banks and governments1 to break the development at an early point. As a result
we experienced the largest world-wide recession since the Great Depression, leading to a
large number of record bailout programs.

Prior to the US sub-prime crisis real estate prices generally increased. In Ireland, for
example, the increase of house prices was 242% from 1992-2005 and in Spain 114% from
1996-2004 (Girouard et al., 2006). The resulting housing bubble allowed many home
owners to refinance their homes at lower interest rates and to finance consumer spending
by taking out second mortgages secured by the price appreciation. Central banks lowered
their interest rates to encourage borrowing, eg the Federal Reserve lowered the federal
funds target rate from 6.5% to 1.0% from January 2001 to June 2003.

The credit expansion was also clearly visible in the balance sheets of financial insti-
tutions. European financial institutions accelerated their search for yield and notably
expanded their balance sheets in the years before the Lehman default (Nishimura, 2012).

Many academics have extended the Kiyotaki-Moore model, which is consistent with
other models incorporating financial acceleration and with the observation of economic
cycles. Caballe et al. (2006) uses bifurcation analysis to show that very developed and
very undeveloped economies are structurally stable to shocks, while emerging market
economies are unstable in the sense that there endogenous variables may exhibit chaotic
behavior. Aghion et al. (2000) showed that a currency crisis could emerge when firms are
credit constrained and debt is issued in domestic as well as in foreign currency.

The general story of how the Kiyotaki and Moore (1997) model works for a heavily
leveraged firm2 can be summarized as follows: A temporary negative productivity shock
at date t results in a contemporaneous decline of net worth of the firm, which results
in a reduced demand of assets of that firm and ultimately in a decline in asset prices.
This within period effect is called the static multiplier. In addition, there exists an inter-
temporal multiplier effect: the fall in asset demand of the heavily leveraged firm at date t
results in an erosion of funds (ability to borrow) at date t+1 which reduces the net worth

1 See for example Chancellor G. Brown’s speech to the Labour Party Conference in September 1999,
where he claimed that booms and busts are abolished.

2 In the steady state equilibrium of the Kiyotaki-Moore model a firm borrows the maximum amount.
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even more, resulting in a further drop of asset demand hence drop in user costs and asset
prices. This inter-temporal effect goes on for any future period t + 2, . . .. Kiyotaki and
Moore (1997) argue that this dynamic multiplier effect is more powerful than the static
effect. The model has some features of a predator-prey model or a positive feedback
loop model, with the landholding as the prey and debt as the predator. Kiyotaki and
Moore (1997) argue that in a credit constrained economy even a small temporary shock
to the production can create large deviations from the steady state due to the dynamic
multiplier.

In an extended model with two farming sectors, which are weakly coupled, Kiyotaki
and Moore (1997) find that a small shock to only one sector has a large impact on
both sectors. They further extend their model ingeniously by introducing heterogeneity
amongst farmers and reproducible capital in order to achieve a decoupling of landholding
and borrowing. This extended model contains a rich dynamics, eg booms and busts. The
authors claim that a small temporary shock generates large and persistent output and
asset price fluctuations. Based on their analysis the following policy statement seems to
emerge: Credit restrictions may lead to an amplification of small shocks and to persis-
tence.

These results seem economically intuitive because the strong interlinkage between
asset prices and credit limits leads to a positive feedback loop and may lead to persistence
and possibly amplification. However, a detailed analysis of the model reveals that the
results are spurious, resulting from the linearization of the equations of motion (EOM).
Our analysis can be summarized as follows: The brilliant model introduced by Kiyotaki
and Moore (1997) behaves mathematically well, in the sense that small shocks have only
a small impact on the landholding and the static multiplier effect is of similar importance
as the inter-temporal/dynamic multiplier in the basic model. Our results follow from
an exact solution of the EOM. Further, an economy with two weakly connected farming
sectors, where a small shock is only applied to one sector shows only a weak response to
the shocked sector and, as expected, a weaker response to the second sector. The full
model shows persistence for some parameter settings, but also no amplification. As a
conclusion, we can say that credit constraints do not necessarily act as a shock enhancer.

Amplification or over-exaggeration in economic systems should only appear if the state
of the economy is in a bubble and a small disturbance is breaking this bubble. Asset prices
and government debt have been in such a state near the end of the first decade of the 21st
century. The crisis has not been amplified simply by a positive feedback, but because the
state of the economy was unsustainable. Further means of amplification can be found
in behavioral economics. The simple fear of a crisis can lead to non-rational behavior
and for example bank runs, which may act as a strong amplification effect. Gertler and
Kiyotaki (2015) have found that small negative shocks by themselves do not produce an
amplified effects on production, but open up the possibility of ban-runs, which may lead
to devastating outcomes.

In a real economy, asset prices may not be priced ”correctly” due to speculation,
market friction, limited information or liquidity. The Kiyotaki-Moore model does not
include the possibility of a miss pricing of assets or the building of bubbles. Despite the
model’s theoretical beauty it cannot describe any real post-crisis dynamics. However, as
we will see later, the model can show certain stylized facts with respect to a credit crisis.
Krugman (2009) wrote a well-thought analysis about the state of economics and among
other things argued about the danger of impressive-looking mathematics. Mathematical
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models do never mirror reality perfectly. Nevertheless, mathematics is the most powerful
tool researchers of all kinds have at their disposal. However, we have to solve models
correctly, apply mathematical tools appropriately and have to understand when a model
breaks down, ie when the situation we want to describe is outside the scope of the model.3

Reading post-financial crisis literature one gets the impression, that supervisors and
central banks are starting to understand the sources of what the path towards a crisis
looks like (eg on the amplification of credit cycles see FSF-BCBS Working Group (2009)).
In fact, the same knowledge has already been present in the public domain prior to the
crisis. Crockett (2000) has already discussed that the path towards a crisis contains some
shared stylized elements: Asset prices are surging linked with rapid credit expansion and
leverage accumulation in the balance sheets. Similar arguments are brought forward by
Borio (2006). This brings us straight back to the impressive analysis of Krugman (2009)
and finally to Kiyotaki and Moore (1997) and makes us wonder: Why was nobody worried
seeing house prices rise by 10% year after year or balance sheets expand unsustainably?

The paper is organized as follows: In Section 2 we analyze Kiyotaki-Moore’s basic
model. Sections 3 and 4 extend the analysis to the two-sector model and the full model
(containing cycles and investment). Section 5 concludes. In order to keep the article self-
contained, we have briefly reproduced the steady state solutions and the linear results of
Kiyotaki and Moore (1997) in the Appendix.

2. The Basic Model

2.1. The Characteristics of the Basic Model

The basic model introduced by Kiyotaki and Moore (1997) contains a durable asset
(land), which can be used as collateral, and a non-durable commodity (fruits), which
is used as numeraire and grows on land. There are two types of infinitely lived agents:
Farmers and gatherers, which are both risk neutral. The population sizes of the farmers
and gatherers are normalized to 1 and m, respectively. There exists a competitive spot
market where land can be exchanged for fruits and a one-period credit market in which
one unit of fruit is exchanged for a claim to Rt units of fruit in the next period.

The farmer has a constant return to scale production function: yt+1 = F (kt) =
(a+c)kt, where kt is the land use and yt is the output. akt represents the tradable output
and ckt the non-tradable output (bruised fruits, which can be used for consumption only).
The rationale behind the introduction of c is to avoid that farmers constantly postpone
consumption in favor for investment.

The model does not include any aggregate uncertainty, ie agents have perfect fore-
sight over the future land price. bt, the amount a farmer can borrow, is restricted by the
following condition Rbt ≤ qt+1kt, where qt+1 is the land price in the future period.4 Fur-
thermore, in this model the farmer can only expand the scale of production by investing
in more land.

3 One can use Newton’s equations of gravity to describe the behavior of an apple in the gravitational
field of the earth, but the movement of a star near a black hole requires Einstein’s General Theory of
Relativity.

4 qt+1kt is the liquidation value (outside value) of the land for the creditor (gatherer). In equilibrium,
farmers borrow from gatherers. The interest rate equals the inverse of the gatherers’ constant discount
factor, ie Rt = 1/β̃ ≡ R. The farmer can borrow up to the next periods’ value of its current
landholding.
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The farmers’ flow of fund constraint is

cash out︷ ︸︸ ︷
qt(kt − kt−1) +Rbt−1 + xt − ckt−1︸ ︷︷ ︸

consumption above automatic

=

cash in︷ ︸︸ ︷
akt−1 + bt , (1)

with farmer’s consumption xt, the accumulated debt including interest Rbt−1 and the
investment in more land qt(kt − kt−1).

For all gatherers we assume an identical decreasing returns to scale production func-
tion ỹt+1 = G(k̃t) with G′ > 0 and G′′ < 0. Variables with a tilde refer to gatherers.

The gatherers’ flow of fund constraint is

cash out︷ ︸︸ ︷
qt(k̃t − k̃t−1) +Rb̃t−1 + x̃t =

cash in︷ ︸︸ ︷
G(k̃t−1) + b̃t , (2)

where b̃t < 0, because gatherers are creditors.
The model contains several technical assumptions: A1: the farmer is relatively impa-

tient, ie the farmers’ discount factor is smaller than the gatherers’ discount factor: β < β̃.
The rationale behind this assumption is that in equilibrium it is better for the farmer to
invest rather than repay debt. A2: β > a/(a + c), which motivates the farmer not to
consume more than c. A3: Exploding bubbles are ruled out in the model through the
assumption lims→∞Et(R

−sqt+s) = 0. A4: In order to assure that gatherers operate close
to the steady state equilibrium, we assume: G′(0) > aR > G′(K/m), where K denotes
the total constant land supply.

The equilibrium is characterized by the tuple {qt, kt, k̃t, bt, b̃t, xt, x̃t}, where farmers and
gatherers maximize their expected utility Et(

∑
βsxt+s) and Et(

∑
β̃′sx̃t+s), respectively.

Kiyotaki and Moore (1997) show that for farmers it is strictly better to invest than to save
and to save is better than to consume. Therefore, in the equilibrium of the basic model
farmers borrow the maximum possible amount and consume only the bruised fruits, ie

Rbt = qt+1kt and xt = ckt−1 . (3)

For more detail on the basics of the model, we refer the reader to the well written
paper Kiyotaki and Moore (1997).

A trivial note on Taylor-expansion and linearization

The Taylor-series is an approximation method with the aim to produce a locally good
approximation of our function (see for example Judd (1998)). Assuming that we deal
with C∞ functions, ie functions which are infinitely differentiable, then we can write the
function as a Taylor series around a:

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+. . . =

∞∑
n=0

f (n)(a)

n!
(x−a)n ≈ f(a)+

f ′(a)

1!
(x−a),

where the last part represents the linearization of a function. We will later rewrite the
models’ equations of motion in terms of deviations from the steady state and hence our a
will be zero. Therefore, we are analyzing Maclaurin series. A function is called analytic
in an open set D, if the coefficients of the series are ∈ R and the series is convergent to
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f(x) for all x in a neighborhood of a ∈ D. The Taylor expansion is often used to linearize
or approximate problems which are otherwise unsolvable. Very often, in economics small
shocks ∆ are applied and then the function f is linearized:

f(∆) = f(0) +
f ′(0)

1!
∆ +R(∆) = f(0) +

f ′(0)

1!
∆ +

f ′′(x∗)

2!
∆2,

whereR(∆) is the remainder of the first order Taylor expansion. For practical purpose, we
have assumed that the function is well behaved, so that the remainder can be written in its
mean-value form with some x∗ ∈ [0, ∆]. For sufficiently small ∆ clearly the linearization
is a good approximation. If we apply a small shock and do not expand in ∆ but in powers
of other model parameters, such as deviations of the landholding, debt holding or price,
we have to ensure that these deviations are small enough that the remainder term is
negligible. Otherwise the linearization becomes poor or even invalid. We will show next
that this is what happens for the classical solution of the KM model.

2.2. The Equations of Motion of the Basic Model

The structure of Equations (1) and (3) with respect to kt and bt allows to compute
aggregate EOM:

Kt =
1

ut
[(a+ qt)Kt−1 −RBt−1] and Bt =

1

R
qt+1Kt , (4)

where ut ≡ qt − qt+1/R can be interpreted as the required down payment for one unit of
land.

Gatherers are not credit-constrained and their demand for land is determined through
the condition that the present value of the marginal product is equal to the opportunity
cost for one unit of land (maximizing the gatherers’ expected utility using the gatherers’
fund of flow constrained in Equation (2)), ie

1

R
G′(k̃t) = qt −

1

R
qt+1 = ut . (5)

It is obvious from the last equation that the term ut plays a dual role in the model as
down payment and opportunity cost.

The technology a+c is considered time invariant. We will vary a only in form of a small
temporary shock to study the model’s dynamics. The price of land qt is always linked
directly to the user cost. In a real economy, speculators may bet on future productivity
and higher output and therefore drive the land price away from fundamentals. This may
result in bubbles, which are not included in this model.

We agree with the steady state solution presented in Kiyotaki and Moore (1997) and
have reproduced it in Appendix A. Here we focus on the dynamics of the model. We
assume that the model is in equilibrium at t− 1 and a temporary shock ∆ is applied to
the productivity at t. From Equations (4) the non-linear EOM follow:

u(Kt)Kt = (

due to shock︷ ︸︸ ︷
a+ ∆a +

capital gain due to price jump︷ ︸︸ ︷
qt − q∗ )K∗ at t , (6)

u(Kt+s)Kt+s = aKt+s−1 at t+ s with s ≥ 1 . (7)

The net worth at t increases due to the direct productivity effect from the shock and the
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capital gain effect of the price jump. The equation for t + 1 onwards states that after
the shock the farmers can hold land up to a point where the required down payment is
covered by its net worth which is a (see aggregate EOM (4)).

In order to analyze the model, we define relative deviations from the steady state as
X̂t = (Xt − X∗)/X∗, where Xt is Bt, Kt or qt. Variables with a star denote the value
at the steady state. Kiyotaki and Moore (1997) suggest to solve the Equations (6) and
(7) for a small temporary shock ∆ by linearizing around the steady state (see Appendix
A). We will show that a linearization is invalid. We start with Equation (6) and use the
Taylor expansion:

u(Kt) ≈ u(K∗) + (Kt −K∗)u′(K∗) +
1

2
(Kt −K∗)2u′′(K∗) , (8)

which results in (using u(K∗) = u∗)

K̂t + K̂t
K∗u′(K∗)

u∗
+ K̂2

t

K∗u′(K∗)

u∗
+

1

2
K̂2
t

K∗2u′′(K∗)

u∗
≈ ∆ +

R

R− 1
q̂t(

1 +
1

η

)
K̂t +

1

η

(
1 +

1

2
K∗

u′′(K∗)

u′(K∗)

)
K̂2
t ≈ ∆ +

R

R− 1
q̂t . (9)

In order to arrive at Equation (9), we have applied the steady state Equations (A.2)
and (A.3) in Appendix A. Further, we have defined the following shorthand notation:
1/η ≡ (K∗/u∗)u′(K∗).

Similarly, we find for Equation (7):(
1 +

1

η

)
K̂t+s +

1

η

(
1 +

1

2
K∗

u′′(K∗)

u′(K∗)

)
K̂2
t+s ≈ K̂t+s−1 . (10)

From Equation (A.1) and the assumption that we have no exploding price bubbles,
we know qt =

∑
R−su(Kt+s). Therefore, using Equation (8) we can write the equation

for the land price up to second order:

q̂t ≈
R− 1

R

1

η

[
∞∑
s=0

R−sK̂t+s +
1

2
K∗

u′′(K∗)

u′(K∗)

∞∑
s=0

R−sK̂2
t+s

]
. (11)

In order to analyze the model, we assume as in Kiyotaki and Moore (1997) the func-
tional form u(K) = K − ν.5 The intercept is chosen ν = 9/10K∗ = 9u∗, which corre-
sponds to η = 0.1. This choice of u(K) has two crucial advantages: firstly, the Taylor
expansion terms from u′′ onward disappear and the quadratic Taylor expansion in Equa-
tions (9) to (11) becomes exact, secondly, we can study the impact of higher order terms
and directly test the linear results provided in Kiyotaki and Moore (1997). Even with

5 It is evident that u(K) > 0 close to the steady state K∗ and via the market clearing condition in
Equation (A.1) we can conclude that G′(k̃) > 0 as assumed for the gatherer’s production function.
Further, from u′(K) = ∂u/∂K = 1 > 0 and via the market clearing condition in Equation (A.1):

u′(K) =
∂

∂K

1

R
G′(k̃) =

1

R

∂k̃

∂K

∂

∂k̃
G′(k̃) =

1

R

∂(K −K)

m∂K

∂

∂k̃
G′(k̃) = −G

′′(k̃)

Rm
= 1

we have G′′(k̃) < 0, again as assumed for the gatherer’s production function.
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this simple expression for u(K) we are able to study the impact of higher order terms.
Despite the simple form of u(K), the analytic evaluation of the model including non-

linear terms is cumbersome. Solving Equation (10) for K̂t+s and systematically substi-
tuting K̂t+s in Equation (11) results in:6

q̂t =
R− 1

Rη

[
K̂t

∞∑
s=0

(
η

R(1 + η)

)s
− 1

η
K̂2
t

∞∑
s=1

(
η

(1 + η)

)s+2

R−s
s−1∑
l=0

(
η

(1 + η)

)l]

=
R− 1

η

(1 + η)

R(1 + η)− η
K̂t −

η

(1 + η)

R− 1

R

[
1

R(1 + η)− η
− η

R(1 + η)2 − η2

]
K̂2
t

=
R− 1

η

(1 + η)

Ω
K̂t −

η(R− 1)

ΩΨ
K̂2
t . (12)

For convenience we have defined Ω = R(1 + η) − η and Ψ = R(1 + η)2 − η2. The linear
terms in the above derivation are identical to Appendix A.

2.3. The instantaneous response to a small temporary shock

In order to study the impulse response we insert q̂t from Equation (12) into Equation
(9), setting u′′ = 0, which results in:

K̂2
t + η

(Ω− 1)Ψ

ΩΨ +Rη2
K̂t − η

ΩΨ

ΩΨ +Rη2
∆ = 0 . (13)

The economic relevant solution of the last equation:

K̂t = −η (Ω− 1)Ψ

2(ΩΨ +Rη2)
+

√
η2

(Ω− 1)2Ψ2

4(ΩΨ +Rη2)2
+ η

ΩΨ

ΩΨ +Rη2
∆ (14)

is the instantaneous response of the landholding.
Inserting Equation (14) into Equation (12) yields the instantaneous response of the

land price. For a numerical illustration, we set as in Kiyotaki and Moore (1997) η equal
to 10%, ie η = 0.10. We vary the shock ∆ between 1% and 5% and R between 1.00 and
1.05. The response of the landholding and land price based on the linearized solution, as
derived in Kiyotaki and Moore (1997) and reproduced in Appendix A, are presented in
Table 1. The responses based on an exact solution are shown in Table 2.

The numbers for the response of the landholding to a small temporary shock based
on the linear approximation in Table 1 clearly illustrate that even a small shock leads
to large changes in the landholding. For R = 1 (zero interest rate) the linear solution
exhibits a singularity, which is due to the factor 1/(R − 1) (see Equation (A.9)). These
results clearly indicate that a finite order Taylor expansion in the landholding is incorrect,
because higher order terms in K̂t are more (not just) important. The exact solution in
Table 2 shows, contrary to the linearized results, that the impact of a small shock results
in small deviations from the steady state, ie no amplification, neither for K̂t nor q̂t.

Clearly, the correct solution does not give evidence for an amplification of small shocks.

6 In order to arrive at the result we have set u′′(K∗) = 0 and used the geometric series:
∑∞
s=0 x

s =

1/(1− x) and the partial sums of geometric series:
∑k−1
s=0 x

s = (1− xk)/(1− x).
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Table 1: Response of the landholding and land price to a temporary shock ∆, linearized approximation

This table reports the relative deviations of the landholding from the steady state at time t for a variety

of different shock sizes and interest rates as well as the relative deviations of the land price (which are

independent of R) based on the linearization of the EOM. η was chosen 0.1. We find large deviations of

Kt from the steady state, ie in most cases K̂t is of order 1 and hence K̂t >> ∆.

∆ 0.01 0.03 0.05

K̂t at R = 1.00 ∞ ∞ ∞
K̂t at R = 1.01 0.9191 2.7573 4.5955

K̂t at R = 1.03 0.3130 0.9391 1.5652

K̂t at R = 1.05 0.1918 0.5755 0.9591

∆ 0.01 0.03 0.05

q̂t 0.1000 0.3000 0.5000

Table 2: Response of the landholding and land price to a temporary shock ∆, exact solution

This table reports the relative deviations of the landholding and land price from the steady state at time

t for a variety of different shock sizes and interest rates based on the exact solution using u(K) = K−9u∗

(η = 0.1). Unlike in Table 1, small temporary shocks result in small deviations from the steady state.

The deviation of the price from the equilibrium depends now on ∆ and R, unlike in the linearized case.

∆ 0.01 0.03 0.05

K̂t at R = 1.00 0.0315 0.0545 0.0704

K̂t at R = 1.01 0.0310 0.0540 0.0699

K̂t at R = 1.03 0.0300 0.0530 0.0689

K̂t at R = 1.05 0.0290 0.0520 0.0679

∆ 0.01 0.03 0.05

q̂t at R = 1.00 0.0000 0.0000 0.0000

q̂t at R = 1.01 0.0034 0.0059 0.0076

q̂t at R = 1.03 0.0096 0.0169 0.0220

q̂t at R = 1.05 0.0151 0.0271 0.0354

2.4. The evolution of the impulse response

Next, we want to study how the system moves back to the steady state. In addition
to Equations (9) and (12), which gave us the instantaneous response, we have to employ
also Equation (10) for t+ s with s ≥ 1. The evolution of the response of the landholding
to a small temporary shock ∆ = 0.01 for R = 1.01 and η = 0.1 is presented in Figure 1
for the linearized and the exact result.

From Figure 1 we can clearly see that the basic model does not show persistence, ie
the system returns quickly to the steady state. Further, consistent with Table 2, a small
temporary shock does not produce large deviations from the steady state (see red curve
in Figure 1) in the presence of credit constraints if higher order terms are included. We
also find that the deviations of the land price derived via the exact computation are much
smaller than the ones computed via linearization. The land price reverts quickly back to
its steady state value.
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Figure 1: Evolution of shock responses of the landholding, linear approximation versus exact computation

The figure illustrates the huge difference between the exact result derived here and the linearized result

given in Kiyotaki and Moore (1997). The figure is generated using ∆ = 0.01, R = 1.01 and η = 0.1.
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2.5. Static versus dynamic multiplier effect

In this section we aim to understand how much of the instantaneous shock response
is due to the static and how much is due to the dynamic multiplier effect. Similar to
Kiyotaki and Moore (1997), we perform the following thought experiment: We peg qt+s
artificially at q∗ in order to simulate the static multiplier effect only.7 The difference
of the full solution and the static effect will then give us the dynamic multiplier effect.
Equation (11) gets simplified because only the first term in the sum is considered:

q̂t

∣∣∣
qt+1=q∗

=
R− 1

R

1

η

[
K̂t

∣∣∣
qt+1=q∗

+
1

2
K∗

u′′(K∗)

u′(K∗)
K̂2
t

∣∣∣
qt+1=q∗

]
. (15)

In order to keep expressions analytically manageable we hold on to the special form
of u(K) = K − 9u∗. Inserting Equation (15) in Equation (9) we find:(

1 +
1

η

)
K̂t

∣∣∣
qt+1=q∗

+
1

η
K̂2
t

∣∣∣
qt+1=q∗

= ∆ +
1

η
K̂t

∣∣∣
qt+1=q∗

. (16)

Ignoring the quadratic term in Equation (16) as done in Kiyotaki and Moore (1997)
leads for the static multiplier effect to:

K̂t

∣∣∣linear
qt+1=q∗

= ∆ and q̂t

∣∣∣linear
qt+1=q∗

=
R− 1

R

1

η
∆ . (17)

Including the quadratic term, we find two solutions for the landholding. The economic
solution, which must be zero in the limit of ∆→ 0, is:

K̂t

∣∣∣exact
qt+1=q∗

= −η
2

+

√
η2

4
+ η∆ and q̂t

∣∣∣exact
qt+1=q∗

= −R− 1

R

(
1

2
−

√
1

4
+

∆

η

)
. (18)

7 As defined in Kiyotaki and Moore (1997), any impact to and from the future is ignored in the static
multiplier effect (within period effect).
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The difference of the static multiplier effect for the exact computation and the linear
approximation is rather small (see left hand panel of Figure 2). Kiyotaki and Moore
(1997) have claimed that the dynamic or inter-temporal multiplier effect is much stronger
than the static effect. Indeed, the middle panel of Figure 2, which was derived from the
linearized solution, suggests that the dynamic multiplier effect is much larger than the
static response. From our recent analysis, we know that the linearization is invalid even
for small shocks. The difference of the static multiplier effect and the dynamic multiplier
effect is rather small if the model is solved correctly. The dynamic multiplier effect is of
similar size as the static effect and not dominant at all, as can be seen in the right-hand
panel in Figure 2. We find a similar picture for the land price.

Figure 2: Static versus dynamic multiplier effect as function of ∆ for the landholding

The figure illustrates shock responses for R = 1.01 and η = 0.1. The horizontal axis shows the size of

the shock, starting at a 1% shock. The left-hand panel compares the static multiplier effect derived via

linearization and exact computation. It shows that the results using the linear approximation and the

exact computation are similar. The middle panel shows the results presented in Kiyotaki and Moore

(1997), where the dynamic multiplier is much larger than the static multiplier. The right-hand panel

shows the exact computation in which both multiplier effects are of similar size.
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3. The Basic Model extended with two coupled sectors

3.1. The Characteristics of the Extended Model

The basic model studied so far does not allow to analyze spillovers between sectors.
Therefore, we follow Kiyotaki and Moore (1997) and add a second farming sector, where
farmers in sector i =1 or 2 produce aikit−1 sector specific fruits and cikit−1 regular fruits
(for consumption). Gatherers produce regular fruits and have the same production func-
tion as in the basic model. The sectors are indirectly linked via the land price qt. The
direct interlinkage of the sectors is given through the following assumed equivalence of
consumption bundles: x1−εt = x1−ε1t + x1−ε2t , where ε > 0 is the inverse of the elasticity of
substitution (constant elasticity of substitution) in consumption between the two types of
fruits. xit is the consumption of fruits from sector i and xt is the consumption of regular
fruits. Regular fruits are considered as a numeraire. The competitive price pit for sector
i fruits in terms of regular fruits is equivalent to the marginal rate of substitution:

pit = (aiKit−1)
−ε [(a1K1t−1)

1−ε + (a2K2t−1)
1−ε]ε/(1−ε) , (19)
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where Kit−1 is the aggregate landholding of farmers in sector i. Further details on the
characteristics of the extended model can be found in Kiyotaki and Moore (1997).

3.2. The Equations of Motion of the Extended Model

The aggregated EOM for sector i look very similar to the basic model. However,
the price of tradable fruits for sector i cannot be normalized to one anymore, ie the
production ai needs to be multiplied by the competitive price pit:

Kit =
1

ut
[(aipit + qt)Kit−1 −RBit−1] and Bit =

1

R
qt+1Kit . (20)

The land market equilibrium is given by:

ut = qt −
1

R
qt+1 = u(K1t +K2t) , (21)

stating that the land price depends on the entire landholding K1t +K2t.
Again we focus on the dynamics of the model and apply a small temporary shock ∆ to

the productivity of sector i = 1. We assume that the entire system is in equilibrium at t−1
(the solution of the system in equilibrium is reproduced in Appendix B). Further, as in
Kiyotaki and Moore (1997) we analyze a symmetric model, ie we have equal productivity
as well as land- and debt -holdings in equilibrium: a1 = a2 = a, K∗1 = K∗2 = K∗/2 and
B∗1 = B∗2 = B∗/2. The EOM can be written as (using u∗ = a2ε/(1−ε), see Appendix B):

utK1t =
[
u∗(1− ε

2
∆)(1 + ∆) + qt − q∗

]
K∗1

=
[
u∗ + (1− ε

2
)u∗∆ + qt − q∗

]
K∗1 , (22)

utK2t =
[
u∗ +

ε

2
u∗∆ + qt − q∗

]
K∗2 , (23)

where we have taken only the linear term in ∆.8 In addition, we have substituted the
Taylor expansion of the competitive prices of sector specific fruits pit (Equation (19)):

pit = ((a+ a∆δi1)K
∗
i )−ε

[
((a+ a∆)K∗1)1−ε + (aK∗2)1−ε

]ε/(1−ε)
= (1 + ∆δi1)

−ε((1 + ∆)1−ε + 1)ε/(1−ε) (24)

= 2ε/(1−ε)
(

1 + (−1)i
ε

2
∆
)
, (25)

where δ11 = 1 and δ21 = 0.
We slightly rewrite the system of non-linear Equations (22) and (23) in terms of

relative deviations from the steady state (for i = 1, 2):

ut(K̂it + 1)

u∗
− 1 =

(
δi1 + (−1)i

ε

2

)
∆ +

R

R− 1
q̂t . (26)

Kiyotaki and Moore (1997) have linearized the system (see also Appendix B). We
however Taylor-expand the non-linear Equations (26) around the steady state K∗ =

8 In this case the linearization is acceptable, because we know that ∆ is small by assumption.
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K∗1 +K∗2 up to second order:

K̂it +
St
2η

+
St
2η
K̂it +

u′′(K∗)K∗

8ηu′(K∗)
S2
t ≈

(
δi1 + (−1)i

ε

2

)
∆ +

Rq̂t
R− 1

, (27)

where we have used Equation (8) and have kept in mind that u is a function of the entire
landholding. For convenience we have defined St = K̂1t+ K̂2t and for a later purpose also
Dt = K̂1t− K̂2t. The assumed symmetry of the model leads to: 1/(2η) = (K∗i /u

∗)u′(K∗).
The EOM for both sectors at t+ s with s ≥ 1 look like:

ut+sKit+s = apit+sKit+s−1 = u∗
pit+s

2ε/(1−ε)
Kit+s−1 , (28)

which can be Taylor-expanded (similar to Equations (27)):

K̂it+s +
St+s
2η

+
St+s
2η

K̂it+s +
u′′(K∗)K∗

8ηu′(K∗)
S2
t+s ≈

pit+s
2ε/(1−ε)

K̂it+s−1 +
pit+s

2ε/(1−ε)
− 1 . (29)

Further, we expand Equation (19) up to second order in K̂it+s, while using the assumed
symmetry of the model:

pit+s
2ε/(1−ε)

≈ 1 + (−1)i
εDt+s−1

8

(
4− 2K̂it+s−1 − St+s−1

)
. (30)

Inserting Equation (30) into Equation (29) results in the EOM for t+ s with s ≥ 1:

K̂it+s +
St+s
2η

+
St+s
2η

K̂it+s +
u′′(K∗)K∗

8ηu′(K∗)
S2
t+s ≈ K̂it+s−1 + (−1)i

ε

2
Dt+s−1 −

ε

8
D2
t+s−1 . (31)

3.3. The instantaneous response to a small temporary shock to sector i = 1

We follow the same procedure as in Section 2.3 to compute the instantaneous shock
response. Again we assume u(K1 + K2) = K1 + K2 − ν, where ν is fixed to get η =
0.1. This assumption makes our results exact again and not just a second order Taylor
approximation. We need to adjust Equation (12) to two sectors before we can solve
Equations (27) for K̂1t and K̂2t. For our symmetrical system, ie K∗1 = K∗2 = K∗i , it holds:

K̂t =
K1t +K2t −K∗1 −K∗2

K∗1 +K∗2
=
K1t +K2t −K∗1 −K∗2

2K∗i
=

1

2
(K̂1t + K̂2t) , (32)

which states that K̂1t + K̂2t is not the deviation of the entire landholding K̂t from the
equilibrium K∗, but twice the deviation.9 Inserting the expression for q̂t from Equation
(12), with the additional factor 1/2, into Equations (27) and subtracting and adding the
two equations yield:

Dt +
DtSt
2η

= ∆− ε∆ , (33)

St +
St
η

+
S2
t

2η
= ∆ +

R(1 + η)

ηΩ
St −

η(R− 1)

ΩΨ

S2
t

2
. (34)

9 The system is in equilibrium, if the entire landholding K1 +K2 is equal to K∗1 +K∗2 .
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Solving the last two equations for St and Dt and finally for K̂1t and K̂2t is straight forward,
but leads to cumbersome analytical expressions. We stick to a numerical analysis and
as previously take η = 0.1, vary R between 1.00 and 1.05 and the temporary shock ∆
between 0.01 and 0.05. Like Kiyotaki and Moore (1997) we take ε > 0 but small, eg
ε = 0.5. The deviation of the landholding from the equilibrium for different R and shocks
∆ are presented in Table 3 for the linear approximation and in Table 4 for the exact
solution.

Table 3: Response of the landholding to a temporary shock ∆, linear solution

This table reports the relative deviations of the landholding for both sectors from the steady state at time

t for a variety of different shock sizes and interest rates, based on the linearization. As an exemplification,

η and ε were chosen 0.1 and 0.5, respectively.

K̂1t K̂2t

∆ 0.01 0.03 0.05 0.01 0.03 0.05

R = 1.00 ∞ ∞ ∞ ∞ ∞ ∞
R = 1.01 0.4620 1.3861 2.3102 0.4570 1.3711 2.2852

R = 1.03 0.1590 0.4770 0.7951 0.1540 0.4620 0.7701

R = 1.05 0.0984 0.2952 0.4920 0.0934 0.2802 0.4670

We see for a small temporary shock that the instantaneous deviation from the equi-
librium is large and in most cases the proposed linearization is invalid. Further, both
sectors are similarly affected by a shock to sector 1. Moreover, the solution presented
in Kiyotaki and Moore (1997) exhibits again a pole at R = 1, ie in a zero interest rate
environment the deviations from the equilibrium are infinitely large independent of the
shock size. The large deviations shown in Table 3 are spurious.

Table 4: Response of the landholding to a temporary shock ∆, exact solution

This table reports the relative deviations of the landholding for both sectors from the steady state at

time t for a variety of different shock sizes and interest rates, based on the non-linear approach. η and ε

were chosen 0.1 and 0.5, respectively.

K̂1t K̂2t

∆ 0.01 0.03 0.05 0.01 0.03 0.05

R = 1.00 0.0243 0.0440 0.0581 0.0202 0.0331 0.0414

R = 1.01 0.0239 0.0436 0.0578 0.0198 0.0328 0.0411

R = 1.03 0.0229 0.0426 0.0568 0.0187 0.0317 0.0400

R = 1.05 0.0220 0.0417 0.0559 0.0178 0.0307 0.0390

The exact solution in Table 4 shows the desired behavior, namely that the deviations
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are of the same order of magnitude as the shock. Table 4 also shows that the shock to
the first sector has a smaller impact on the second sector.

3.4. The evolution of the impulse response

Using the functional form of u(K) = K − ν and the EOM (27) and (31) we can
compute the evolution of the system after a small temporary shock at t. With respect to
the EOM at date t we can use our findings from Section 3.3, especially Equations (33)
and (34). For date t + s with s ≥ 1 we have to solve Equations (31). Subtracting and
adding these two equations results in:

Dt+s +
St+sDt+s

2η
= Dt+s−1 − εDt+s−1 , (35)

St+s +
St+s
η

+
S2
t+s

2η
= St+s−1 −

εD2
t+s−1

4
. (36)

Again solving for K̂1t+s and K̂2t+s is straight forward, but leads to cumbersome analytical
expressions. We stick to a numerical analysis.

Figure 3: Evolution of shock responses of the landholding, linear approximation versus exact computation

The figure illustrates the huge difference between the exact results and the linearized results given in

Kiyotaki and Moore (1997). The figure is generated using ∆ = 0.01, R = 1.01, η = 0.1 and ε = 0.5.
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The linearized solution shows in Figure 3 large deviations from zero and practically no
differences in shock responses of the two sectors. On the other hand, the deviation from
the steady state, based on the exact solution (right-hand panel in Figure 3), is in the order
of the shock size and there is a visible difference in the responses of the two sectors. The
second sector (unshocked sector) turns slightly negative. The negative deviations (also
for the linearized solution) become stronger with decreasing ε.10 We find no persistence.

3.5. Static versus dynamic multiplier effect

As part of the analysis of the extended model, we also want to investigate the relative
size of the static and the dynamic multiplier. Similar to Section 2.5, we peg qt+s artificially

10 ε is the inverse of the elasticity of substitution and is greater 0.
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at q∗ in order to simulate the static multiplier effect. Adjusting for the additional factor
1/2 (due to the two sectors) and setting u′′(K∗) = 0 (see Equation (32)) we get:

q̂t

∣∣∣
qt+1=q∗

=
R− 1

R

1

2η
(K̂1t + K̂2t)

∣∣∣
qt+1=q∗

. (37)

Substituting this expression for the land price in Equation (27) leads to the following
simplified version of Equations (33) and (34):

Dt|qt+1=q∗
+
Dt|qt+1=q∗

St|qt+1=q∗

2η
= ∆− ε∆ , (38)

St|qt+1=q∗
+
St|qt+1=q∗

η
+
S2
t |qt+1=q∗

2η
= ∆ +

1

η
St|qt+1=q∗

. (39)

Solving theses equations is straight forward. The static multiplier effect for K̂it does,
unlike for q̂t, not depend on R. As an exemplification, we present in Table 5 the static
as well as dynamic multiplier effect on the landholding for different sizes of ∆.

Table 5: Static versus dynamic multiplier effect for the landholding in the extended model, exact solution

This table reports the full instantaneous response, the part due to the static multiplier and the part due

to the dynamic multiplier, based on the exact approach. The values for the full response were taken

from Table 4. η and ε were chosen 0.1 and 0.5, respectively.

K̂1t K̂2t

∆ 0.01 0.03 0.05 0.01 0.03 0.05

full response 0.0239 0.0436 0.0578 0.0198 0.0328 0.0411

static multiplier 0.0072 0.0199 0.0311 0.0024 0.0066 0.0104

dynamic multiplier 0.0167 0.0237 0.0267 0.0174 0.0262 0.0307

The static and dynamic multiplier effect are of similar size. This is contrary to the
conclusion we would have achieved if the system had been solved via linearization as in
Kiyotaki and Moore (1997). This is a similar result as found for the basic model.

4. The Full model

4.1. The Characteristics of the Full Model

The previous analysis did not provide an opportunity to study cycles. Therefore,
Kiyotaki and Moore (1997) extended their basic model in a smart way and made it more
realistic. Reproducible capital (trees) is introduced, which deprecates and is specific to
the farmer, hence cannot be posted as collateral. Planting fruits can now be seen as an
investment, because trees grow out of fruits and later yield fruits. Only a fraction of
farmers have an opportunity to invest (plant fruits on uncultivated land), others repay
their debt. Therefore, not all framers borrow to the credit limits. This results in an
uncoupling of aggregate borrowing and landholding and leads to cycles.
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There exists a proportion λ of the land, hold by a farmer, on which trees grow (cul-
tivated land). This landholding at t− 1 produce λakt−1 tradable fruits and λckt−1 non-
tradable fruits at period t. The remaining proportion (1 − λ) of land has no trees or
the trees died. This part is called uncultivated land. Uncultivated land can be bought
by gatherers or be recultivated by farmers (by planting fruits which later will grow into
trees). In order to increase production the farmer must increase cultivated landhold-
ing. If we assume, that the farmer owns kt−1 land of which λkt−1 is cultivated, then
in order to increase cultivated landholding to kt the farmer must acquire kt − kt−1 land
and plant φ(kt − λkt−1) fruits. This investment opportunity arises with probability π.
The landholding of a farmer who cannot invest is constrained by kt < λkt−1, ie he sells
land to gatherers or other farmers. It is assumed that the tradable output is enough to
replant A5: a > (1 − λ)φ and that the probability for investment is not too small A6:
π > 1− 1/R.

The farmers’ flow of fund constraint in the full model contains in addition to Equation
(1) the ’investment in tree’ term φ(kt − λkt−1):

cash out︷ ︸︸ ︷
qt(kt − kt−1) + φ(kt − λkt−1) +Rbt−1 + xt − ckt−1︸ ︷︷ ︸

consumption above automatic

=

cash in︷ ︸︸ ︷
akt−1 + bt . (40)

Within the steady state the farmer who can invest will, as in the basic model, follow
a maximum investment, maximum borrowing and minimum consumption strategy, ie
Rbt = qt+1kt and xt = ckt−1. Following Equation (40) the landholding of a farmer who
can invest is:

kt =
1

φ+ qt − 1
R
qt+1

[(a+ qt + λφ)kt−1 −Rbt−1] , (41)

where the farmer who cannot invest will not divest, ie

kt = λkt−1 (42)

and consume also only the bruised fruits. Hence, the farmer who cannot invest will use
the proceeds from land sale (the part which is uncultivated) qt(1−λ)kt−1 and his tradable
output akt−1 to pay off part of his debt.

In other words, the full model has extended the basic model in two ways: Firstly,
heterogeneity was introduced via the investment opportunity π and secondly, trees were
introduced as an additional investment opportunity. For more details on the character-
istics of the full model we refer the reader to Kiyotaki and Moore (1997).

4.2. The Equations of Motion of the Full Model

The structure of Equations (41) and (42) in kt and bt allows to aggregate over all
farmers and write for the landholding:11

Kt =

farmerswho cannot invest︷ ︸︸ ︷
(1− π)λKt−1 +

farmerswho can invest︷ ︸︸ ︷
π

1

φ+ qt − 1
R
qt+1

[(a+ qt + λφ)Kt−1 −RBt−1] . (43)

11 See Kiyotaki and Moore (1997) for details.
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Since the farmer consumes only the bruised fruits, xt = ckt−1, we can derive from
Equation (40) the aggregate flow of funds constraint:

Bt = RBt−1 + qt(Kt −Kt−1) + φ(Kt − λKt−1)− aKt−1 . (44)

The steady state solution of the full model is presented in Appendix C and is in full
agreement with Kiyotaki and Moore (1997). We concentrate on the dynamics of the
full model. Unlike in the basic model, we have no strong coupling between debt and
landholding, therefore we have a system of EOM with the three variables: Equations
(43), (44) and the equation for the land price:

qt =
∞∑
s=0

R−su(Kt+s) . (45)

In order to solve the system of equations and run simulations we set again: u(K) =
K − ν with ν = 9u∗. We assume that the system is in the steady state at t − 1 and a
small temporary shock is applied to the system at t. It is convenient to rewrite the EOM
(43) to (45) in terms of deviations from the steady state. At date t we find:

q̂t =
K∗

q∗

∞∑
l=0

R−lK̂t+l (46)

K̂t =
π

φ+K∗K̂t + u∗

(
q∗q̂t + φ+ q∗ + ∆a− B∗

K∗

)
− 1 + λ− πλ (47)

B̂t = q∗(q̂t + 1)
K∗

B∗
K̂t + φ

K∗

B∗
K̂t −∆a

K∗

B∗
. (48)

At date t+ s with s ≥ 1 the EOM take the form:

q̂t+s = Rq̂t+s−1 −R
K∗

q∗
K̂t+s−1 (49)

K̂t+s =
(λ− λπ − 1)K∗

φ+ u∗ +K∗K̂t+s

K̂t+s + (1− π)λK̂t+s−1 (50)

+
π

φ+ u∗ +K∗K̂t+s

[
(a+ q̂t+sq

∗ + q∗ + λφ)K̂t+s−1 −R
B∗

K∗
B̂t+s−1 + q∗q̂t+s

]
B̂t+s = RB̂t+s−1+

K∗

B∗
[q∗(q̂t+s+1) + φ] K̂t+s−

K∗

B∗
[q∗(q̂t+s+1) + φλ+ a] K̂t+s−1, (51)

where we have used Equation (5) to express q̂t+s.

4.3. The instantaneous response to a small temporary shock

Equations (46) to (51) are non-linear. Kiyotaki and Moore (1997) linearized the
system, which is now due to the complexity of the model a rather non-trivial task. We
will initially use their findings (see Equations (C.7) to (C.6) in Appendix C), to get
a quantitative understanding of the instantaneous shock response. We choose π, the
probability of an investment opportunity, 0.1, 0.5 and 1. We vary the interest rate R
between 1.00 and 1.05. Further, as an exemplification, the small temporary shock to the
economy is chosen 0.01. The parameter λ, the fraction of trees that do not die, is identical
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to 0.975. The coefficient φ of the ’investment in tree’ term is set to 20. As in the previous
sections, the intercept in u(K) = K − 9u∗ is chosen such that η = 0.1. Further, we have
normalized a = 1. The results of the instantaneous changes to the landholding, borrowing
and land price are presented in Table 6. Analyzing Equations (C.6) to (C.7) we see: for
φ = 0 (no trees) and π = 1 (all farmers can invest) the linearized results are, as expected,
identical to the linearized results of the basic model, hence, as discussed, incorrect. On
the other hand, for φ reasonably larger than 0 and π well below 1, a linearization is
feasible, because inspecting the results in Table 6 (except for the first row) clearly reveals
that a small shock produces only small instantaneous deviations from the steady state.
Clearly, a linearization of the EOM of the full model produces valid results for some
parameters. However, the linearized solution shows again a singularity for R = 1, ie for a
zero interest rate environment (first row in Table 6), independent of the shock size. This
obviously shows the un-economic behavior of the linear solution.

Table 6: Instantaneous response to a temporary shock ∆ in the full model, linearized solution

The table reports the relative deviations of the land price, landholding and borrowing from the steady

state at time t for a variety of different investment opportunities and interest rates, based on the linearized

solution. η, λ, φ and a were set to 0.1, 0.975, 20 and 1, respectively. ∆ was chosen to be 1%.

Changes of land price Changes of landholding Changes of borrowing

π 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

R = 1.00 0.0040 0.0048 0.0049 ∞ ∞ ∞ ∞ ∞ ∞
R = 1.01 0.0040 0.0048 0.0049 0.0011 0.0055 0.0101 0.0014 0.0076 0.0140

R = 1.03 0.0040 0.0048 0.0049 0.0005 0.0020 0.0037 0.0005 0.0040 0.0076

R = 1.05 0.0039 0.0048 0.0049 0.0003 0.0013 0.0024 0.0002 0.0032 0.0063

4.4. The evolution of the impulse response

Further, we investigate how the impulse response from a small temporary shock
evolves over time. Coding the EOM for example in MatLab or R and running simu-
lations lead to the same results as presented in Kiyotaki and Moore (1997) or Kiyotaki
and Moore (1995). The EOM contain an infinite sum and hence the system itself is
infinite dimensional. We expressed the EOM in relative deviations from the steady state.
These deviations are small and converge quickly back to zero. We computed 100 peri-
ods and recursively solved the EOM.12 We continue to use the same parameters as in
Kiyotaki and Moore (1997) and in previous simulations (see for example Table 6). We
present the results of the simulation in Figure 4. The left-hand panel shows the results
achieved via linearization of the EOM. The right-hand panel shows the exact solution.
From Table 6 it was already evident that a linearization of the EOM for the full model
and the chosen parameters is a valid approximation. Hence, the left- and right-hand panel
of Figure 4 are almost identical. In fact, the Figure 3 on page 238 in Kiyotaki and Moore

12 We tested simulation with more than 100 periods, however the results changed only marginally,
because the deviations from the steady state are converging quickly to zero.
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(1997) presents the solution of the non-linear model and hence should be compared to
the right-hand panel in Figure 4.13

Figure 4: Evolution of shock responses in the full model

The figure illustrates the time evolution of relative deviations of the land price, landholding and borrowing

from the steady state. The left-hand panel presents the solution achieved via linearization of the EOM,

while the right-hand panel shows the solution achieved by including also higher order terms in the EOM.

The results are very similar for the chosen parameters: π = 0.1, R = 1.01, ∆ = 0.01, λ = 0.975, φ = 20

and η = 0.1. Further, we normalized a = 1.
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The small temporary shock to production of 1% results in a below 0.6% deviation of
borrowing from the steady state and a below 0.4% deviation of the landholding and land
price. While the land price reach their maximum immediately, borrowing and landholding
peak around period 7. Overall, the deviations are of the same order as the shock and we
cannot report an amplification. The system, however, oscillates persistently around the
steady state.

The full model is of rather complex nature and hence a linearization is not always an
appropriate way to solve the model. As discussed, when π gets close to 1 and φ gets close
to 0 (basic model) a linearization renders incorrect results. In Figure 5, we present the
solution for a parameter set closer to the basic model: π = 0.6 and φ = 10, while all other
parameters are kept the same. In the left hand panel, we solved the model using a linear
approximation. The right-hand panel presents the exact solution. The first observation
is that the boom-bust dynamic has disappeared. Now, a large proportion of farmers
have in each period an investment opportunity, which again leads to a strong coupling
between landholding and borrowing. Further, reducing φ has lowered the impact of the
’investment in tree’ term in Equation (40). Therefore, the dynamic is similar to the basic
model. The second observation relates to the visible and significant difference of the
deviations from the steady state between between the left-hand panel and the right-hand
panel in Figure 5.

13 Kiyotaki and Moore (1997) plotted xt/x
∗, while we plotted (xt − x∗)/x∗ with xt: qt, Kt or Bt.
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Figure 5: Evolution of shock response in the full model

The figure illustrates the time evolution of the model’s shock response. π and Φ were chosen 0.6 and 10,

respectively. For further information we refer to Figure 4.
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Reducing the size of the ’investment in tree’ term in Equation (40) by lowering φ
reduces the persistence, ie the shock gets quickly reabsorbed (compare Figure 4 with
Figure 5). We can conclude that even though the full model contains a rich dynamic it
does not show amplification, and persistence is present only for some choices of parameter
values. In order to see the behavior of Kiyotaki-Moore’s full model at a glance, we
present four extreme cases in terms of the parameters π (farmers’ heterogeneity) and φ
(investment opportunity in a non-collateralizable asset) in Figure 6.

From Figure 6, we see that for a high probability of investment, ie π close to 1, we
have no boom and bust dynamics. For small values of π landholding and borrowing is
decoupled. Farmers do not borrow to their credit limits and any post-shock scenario
contains a cyclic behavior. For large values of φ, we see more persistence, however, the
deviations from the steady state are rather small. A large φ increases the relevance of
the ’investment in tree’ term in the EOM and hence reduces the farmer’s leverage, which
quite intuitively leads to less severe booms and busts. At the same value of φ we find
generally larger deviations from the steady state for large values of π, because again for
larger values of π the farmer borrows more.
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Figure 6: Time evolution of shock responses for four extreme cases of π and φ, exact solution

The figure illustrates the evolution of relative deviations from the equilibrium due to a 1% shock. We

varied π and φ, but kept the other parameters fixed: λ = 0.975, η = 0.1, R = 1.01 and a = 1.
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4.5. Static versus dynamic multiplier effect

Finally, we analyze the dynamic multiplier effect. Again, we artificially peg qt+1 at
q∗, hence set q̂t+1 = 0. Following the same arguments as in Section 2.5 Equations (47)
and (48) simplify to:

K̂t

∣∣∣
qt+1=q∗

=
π

φ+ K∗K̂t

∣∣∣
qt+1=q∗

+ u∗

(
K∗ K̂t

∣∣∣
qt+1=q∗

+ φ+ q∗ + ∆a− B∗

K∗

)
− 1 + λ− πλ

(52)

B̂t

∣∣∣
qt+1=q∗

=

(
K∗ K̂t

∣∣∣
qt+1=q∗

+ q∗
)
K∗

B∗
K̂t

∣∣∣
qt+1=q∗

+ φ
K∗

B∗
K̂t

∣∣∣
qt+1=q∗

−∆a
K∗

B∗
. (53)
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Table 7: The full instantaneous response of K̂t and its two components: the static and dynamic multiplier,
exact solution

The table reports for different φ and π the full instantaneous response to a temporary shock ∆ = 0.01,

using the exact solution, and its two components: the static and dynamic multiplier. R, η and λ were

chosen 1.01, 0.1 and 0.975, respectively. The boldfaced values correspond to the basic model.

Full instantaneous response Static response Dynamic response

π 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

φ = 0 0.0256 0.0305 0.0310 0.0016 0.0052 0.0092 0.0240 0.0253 0.0218

φ = 10 0.0065 0.0152 0.0204 0.0002 0.0006 0.0009 0.0063 0.0146 0.0195

φ = 20 0.0021 0.0058 0.0090 0.0001 0.0003 0.0005 0.0020 0.0055 0.0085

As discussed, the numerical values of the instantaneous response to a small temporary,
shock in the full model using the exact (non-linearized) solution are small, also for φ = 0
and π = 1 (basic model). The static response is negligible, except for small values of φ.
The dynamic multiplier effect dominates relative to the static effect, especially for larger
φ values. Hence, the value of φ determines the persistence. Despite being dominant, the
dynamic multiplier effect is small in absolute terms.

5. Conclusion

We employed the insightful model developed by Kiyotaki and Moore (1997) and could
prove that a small temporary shock to the production in a credit constrained economy
does not lead to large deviations from the steady state. In fact, the large deviations
reported by Kiyotaki and Moore (1997) are due to an invalid linearization of the EOM.
Taking only linear terms of the Taylor expansion in K̂t in the EOM, spuriously leads to
a solution which generates large deviations of the landholding from the steady state (K̂t

in the order of 1) even for small shocks. This is a clear inconsistency, as a linearization
in K̂t requires small values of K̂t so that higher order terms are negligible. For R = 1 the
linearized solution provides even a singularity, which is un-economical and not present
in the exact solution. Further, the dynamic multiplier effect is only dominant compared
to the within period effect in the full model, but in absolute values still rather small.
In the basic model, we find that the inter-temporal multiplier and the static multiplier
effect are of similar size. The same results apply to the extended model with two sectors.
In the extended model, we find spillovers between the two sectors, however, the large
spillovers reported by Kiyotaki and Moore (1997) are spurious again due to the incorrect
linearization. A small shock to one sector generates small deviations to the land price
and landholding in both sectors if the exact EOM is solved, whereby the deviations in
the undisturbed sector are smaller.

The more realistic full model developed by Kiyotaki and Moore (1997) has been
extended by two features: heterogeneity of farmers, described by π ∈ [0, 1] (probability
of an investment opportunity) and the introduction of reproducible capital, described by
φ ≥ 0 (size of the ’investment in tree’ term). For some values of π and φ, as well as R
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reasonably well away from 1, the proposed linearization by Kiyotaki and Moore (1997)
leads to valid results, assuming a small temporary shock. For π close to 1 and φ close to
zero, the linearization produces incorrect results. The linearized solution of the full model
provided in Kiyotaki and Moore (1997) shows again a singular behavior for R = 1 (zero
interest rate environment). Solving the EOM exactly leads to consistent results without
pole positions. We could prove that the full model does not lead to amplification, ie a
small shock leads to small deviations from the steady state. As reported by Kiyotaki and
Moore (1997), the full model contains a rich dynamics, eg boom and bust cycles for small
π and large φ. Large values of φ lead to larger persistence but the maximal deviation from
the equilibrium, ie the severity of the boom or bust, is smaller. The dynamic multiplier
effect is dominant compared to the static multiplier effect, except for small φ. However,
the overall size of the dynamic multiplier is small.

Credit constraints do not lead to an amplification of shocks or large spillovers. In
fact, for small π, the situation where farmers stay below their credit constraints, the
amplitude of the boom or bust is smaller. This is a very intuitive result of the Kiyotaki-
Moore model. Regulators and central banks should always be worried if balance sheets of
financial institutions are expanding unsustainably. Additional investment opportunities
(modeled via φ) reduce the strength of the booms and busts even more, however introduce
persistence.
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Appendix A. Basic Model: Steady State Solution and Linear Dynamics

We present a brief derivation of the perfect foresight equilibrium. We assume a fixed
land supply: Kt +mk̃t = K = constant. Hence, it follows from Equation (5)

ut = qt −
1

R
qt+1 = u(Kt) =

1

R
G′
(

1

m
(K −Kt)

)
(A.1)

and therefore for the steady state

u∗ =
R− 1

R
q∗ and u∗ =

1

R
G′
(

1

m
(K −K∗)

)
. (A.2)

The farmers’ aggregate EOM (4) reduce in equilibrium to

u∗ = a and B∗ =
1

R
q∗K∗ =

a

R− 1
K∗ . (A.3)

The interpretation of these steady state equations is straight forward: the farmers
tradable output aK∗ is identical to the interest repayment (R − 1)B∗ and the down
payment per unit of land u∗ is identical to the tradable output per unit of land a. The
land price in equilibrium are linked to fundamentals: q∗ = R/(R− 1)a.

The aggregate farmers’ marginal product is F ′(kt) = a+c and the gatherers’ G′(k̃t) =
Rut. In an economy without credit constraints, the land usage would be K0, the intercept
point of F ′ and G′ (see Figure A.7). Hence, the competitive land price for an economy
without credit constraints in equilibrium is given by:

F ′(kt) = G′(k̃t) = a+ c = Ru0 = R(q0 −
1

R
q0) = q0(R− 1)→ q0 =

a+ c

R− 1
. (A.4)

In a credit constrained economy we know from Equations (A.2) and (A.3) that

G′(k̃t) = Ru∗ = R(q∗ − 1

R
q∗) = q∗(R− 1) = Ra→ q∗ =

Ra

R− 1
. (A.5)

Due to assumptions A1 and A2 we know a+ c > a/β > a/β̃ = Ra, ie q∗ < q0. Hence,
in equilibrium the land usage K∗ in the credit constrained economy is less than the land
usage K0 in an economy without credit constraints (see Figure A.7).

25



Figure A.7: Graphical interpretation of the steady state equilibrium

The figure illustrates the steady state for a credit constrained economy as well as for an economy without

credit constraints. The green area represents the output loss due to credit constraints. Within this model,

the land usage in the credit constrained economy K∗ is less than the land usage K0 in an economy without

credit constraints. Reproduced from Kiyotaki and Moore (1997).
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Kiyotaki and Moore (1997) aimed to study the effect of a small temporary shock ∆
to production. They concluded therefore that a linearization of the EOM (6) and (7) is
a valid method. Linearizing Equations (9) to (11) leads to the results in Kiyotaki and
Moore (1997):(

1 +
1

η

)
K̂t = ∆ +

R

R− 1
q̂t at t , (A.6)(

1 +
1

η

)
K̂t+s = K̂t+s−1 at t+ s with s ≥ 1 , (A.7)

q̂t =
R− 1

R

1

η

∞∑
s=0

R−sK̂t+s =
R− 1

η

(1 + η)

R(1 + η)− η
K̂t , (A.8)

where Equation (A.8) has been derived by recursively substituting Equation (A.7) into
the infinite sum of Equation (A.8).

From Equations (A.6) and (A.8) we can compute the instantaneous changes in land-
holding and land price due to a small shock ∆. Solving for q̂t and K̂t is straight forward:

q̂t =
1

η
∆ and K̂t =

1

1 + η

(
η +

R

R− 1

)
∆ . (A.9)

Assuming economically reasonable values14 of η, the jump in the land price q̂t is of
the same order of magnitude as the shock ∆. However, the landholding can deviate
dramatically from the steady state even for small shocks. The reason behind the latter

14 Using the relation mk̃ = K −K and the assumption G′′ < 0, we can conclude from:
1
η = d lnu(K)

d lnK

∣∣∣
K=K∗

= d ln(G′(k̃)/R)
d lnK

∣∣∣
K=K∗

= d ln k̃
d lnK

lnG′(k̃)

d ln k̃

∣∣∣
k̃=(K−K∗)/m

= −K∗
K−K∗

lnG′(k̃)

d ln k̃

∣∣∣
k̃=(K−K∗)/m

,

that η > 0. For a reasonable total amount of land K, steady state land demand K∗ and functional
form of the gatherers’ production function around the steady state, we can infer that η is in the order
of 1.
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observation is the leverage factor R/(R− 1). In other words, a small shock can produce
large deviations of Kt from the steady state.

Appendix B. Extended Model: Steady State Solution and Linear Dynamics

In order to find a simple analytic solution for the steady state we assume, like Kiyotaki
and Moore (1997), symmetry between both sectors, ie equal productivity as well as land-
and debt -holdings: a1 = a2 = a, K∗1 = K∗2 = K∗/2 and B∗1 = B∗2 = B∗/2 in equilibrium.
With this simplification, it follows directly from Equation (20):

K∗ =
1

u∗
ap∗itK

∗ and B∗ =
1

R
q∗K∗ . (B.1)

Further, from Equation (19) we find for a symmetric model in equilibrium

p∗it = (aiK
∗
i )−ε

[
(a1K

∗
1)1−ε + (a2K

∗
2)1−ε

]ε/(1−ε)
= (aiK

∗
i )−ε

[
2(aiK

∗
i )1−ε

]ε/(1−ε)
= 2ε/(1−ε) . (B.2)

It follows therefore from Equations (21) and (B.1):

u∗ = 2ε/(1−ε)a =
R− 1

R
q∗ and B∗ =

1

R
q∗K∗ =

2ε/(1−ε)a

R− 1
K∗ , (B.3)

which is identical to the basic model, if we set 2ε/(1−ε)a = a.
Kiyotaki and Moore (1997) analyzed the dynamics of the two sector model by lin-

earizing the EOM. We can use Equations (27) and (31), and neglect all quadratic terms,
ie the EOM for sector i = (1, 2) are:

K̂it +
St
2η
≈

(
δi1 + (−1)i

ε

2

)
∆ +

Rq̂t
R− 1

at t , (B.4)

K̂it+s +
St+s
2η

≈ K̂it+s−1 + (−1)i
ε

2
Dt+s−1 at t+ s for s ≥ 1 . (B.5)

The Equation (A.8), which is the linear version of Equation (12), needs to be adjusted
to two sectors. As explained in Section 3.3, this results in an additional factor 1/2:

q̂t =
R− 1

2η

(1 + η)

R(1 + η)− η
St . (B.6)

In order to compute the instantaneous shock response we take the EOM (B.4) and replace
q̂t by using Equation (B.6). Subtracting and adding the EOM of both sectors leads to:

Dt = ∆− ε∆ and St =
1

1 + η

[
η +

R

R− 1

]
∆ , (B.7)

which can now be solved for K̂1t and K̂2t. The instantaneous response of the landholding
for both sectors to a small temporary shock are:

K̂1t =

[
1 +

1

2(η + 1)(R− 1)
− 1

2
ε

]
∆ and K̂2t =

[
1

2(η + 1)(R− 1)
+

1

2
ε

]
∆ . (B.8)
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The instantaneous response to a shock consists of three parts: The direct impact of
the shock to K̂1t, the indirect impact due to changes in the land price, and the term
proportional to ε representing the demand linkage.

This result is in agreement15 with Kiyotaki and Moore (1997). Again, a small shock
can produce large deviations from the equilibrium due to the leverage factor 1/(R − 1).
Further, both sectors respond similarly strongly to the shock, despite the fact that the
shock is applied to sector 1. The reason for these findings lies again in the invalid
linearization.

In order to get the time evolution of the shock response, we need to use the EOM
(B.5). Employing linear algebra yields the simple expression for the evolution of the
landholding for s ≥ 1:(

K̂1t+s

K̂2t+s

)
=

(
1− 1

2(1+η)
− ε

2
− 1

2(1+η)
+ ε

2

− 1
2(1+η)

+ ε
2

1− 1
2(1+η)

− ε
2

)(
K̂1t+s−1

K̂2t+s−1

)
, (B.9)

which is in agreement with Kiyotaki and Moore (1997).

Appendix C. The Full Model: Steady State Solution and Linear Dynamics

We reproduce the perfect foresight equilibrium, which is consistent with Kiyotaki and
Moore (1995) and Kiyotaki and Moore (1997). Equation (44) yields

B∗ =
1

1−R
(φ− φλ− a)K∗ , (C.1)

which together with Equation (43) leads to the following expression for q∗:

1 = (1− π)λ+ π
1

φ+ q∗ − 1
R
q∗

[
(a+ q∗ + λφ)− R

R− 1
(a− φ+ λφ)

]
,

R− 1

R
q∗ =

πa− (1− λ)(1−R + πR)φ

λπ + (1− λ)(1−R + πR)
. (C.2)

The land market clearing condition remains unchanged, hence

u∗ =
R− 1

R
q∗ and

1

R
G′
(

1

m
(K̄ −K∗)

)
= u∗ . (C.3)

It is worth observing that when we set π = 1 (remove heterogeneity) and φ = 0
(remove trees) we get Equations (A.3), ie the steady state of the basic model.

Kiyotaki and Moore (1997) have taken the land price q̂t+s as a jump-variable. The
linearized solutions represent trajectories on a plane attached to the non-linearized curved

15 Adding Equations (B.8) gives the same shock response as in Equation (A.9) for the basic model.
We apply the shock only to sector 1 and would therefore expect only half of the shock response for
our symmetrical system, consistent with the statement above Equation (35a) in Kiyotaki and Moore
(1997). However, we have to remember that K̂1t + K̂2t is twice the deviation from the equilibrium
(see Equation (32)). In so far the equations are correct, but the statement above Equation (35a) in
Kiyotaki and Moore (1997) contains a typo. Only the proportional change in the land price contains
a factor 1/2, not the proportional change in the farmers’ combined landholding.
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manifold at the steady state. The plane is expressed in terms of deviations from the steady
state (see Kiyotaki and Moore (1997)):

q̂t+s =
πΘ

u∗
1

η(1− λ+ λπ)

(
(φ+ q∗)K̂t+s −

B∗

K∗
B̂t+s

)
, (C.4)

where Θ ≡ u∗/(φ+ u∗).
Linearizing Equations (47) and (48) as well as using Equation (C.4) for s = 0 we find

two linear equations for two unknowns and can compute the instantaneous response to a
small temporary shock at date t:

K̂t =
πΘ

u∗
1

(R− 1)(1− λ+ λπ)

η(R− 1)(1− λ+ λπ) + πRΘ

η + (1− λ+ λπ)Θ
a∆ , (C.5)

B̂t =
K∗

B∗

(
(φ+ q∗)K̂t − a∆

)
. (C.6)

Again, we recognize the factor R/(R− 1), which rendered the linearization in the previ-
ously discussed basic model and the model with two sectors incorrect. Using the results
in Equations (C.5) and (C.6) and inserting them into Equation (C.4) for s = 0 we find
the instantaneous response of the land price:

q̂t =
πΘ

u∗
1

η(1− λ+ λπ)
a∆ . (C.7)
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