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Uniqueness of Markov Equilibrium in Sto
hasti
OLG Models with Non
lassi
al Produ
tion�Marten HillebrandyNovember 27, 2012
Abstra
tThis paper studies Markov Equilibria (ME) 
orresponding to re
ursive equilib-ria on the natural state spa
e in the sto
hasti
 OLG model extended to in
ludenon-additive utility, non
lassi
al produ
tion, and Markovian produ
tion sho
ks.Spe
i�
ally, we provide suÆ
ient 
onditions under whi
h the ME is unique. Itturns out that uniqueness obtains for a large 
lass of e
onomies and that restri
-tions either on the 
onsumption side or the produ
tion side alone are suÆ
ientto guarantee this result. We also dis
uss additional properties su
h as 
ontinuityor smoothness of the equilibrium mappings and whether additional re
ursive ornon-re
ursive equilibria exist.JEL 
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Introdu
tionStarting with the pioneering work of Wang (1993), resear
hers have studied the existen
eand properties of equilibria in overlapping generations (OLG) models with random pro-du
tion sho
ks. Of parti
ular interest in these studies is the 
lass of re
ursive equilibria(RE) where the equilibrium variables are determined by time-invariant mappings on thenatural state spa
e with the state variable 
onsisting of 
urrent 
apital and the produ
-tion sho
k. Following the terminology introdu
ed in K�ubler & Polemar
hakis (2004),su
h equilibria will be referred to as Markov equilibria (ME). Studying the propertiesof ME for a large 
lass of sto
hasti
 OLG models is the theme of the present paper.In a setting with 
lassi
al produ
tion fun
tions, i.i.d. sho
ks, and time-additive utility,Wang (1993) showed that a 
apital-in
ome monotoni
ity 
ondition on the produ
tionte
hnology is suÆ
ient for a unique ME to exist. In addition, he established severaladditional properties of the equilibrium mappings su
h as smoothness and monotoni
ity.The model in Wang (1993) was generalized in Wang (1994) to in
lude non-additiveutility and general Markovian sho
ks pro
esses and further in Morand & Re�ett (2007)who, in addition, allow for non-
lassi
al produ
tion fun
tions. The latter were originallyintrodu
ed in Greenwood & Hu�man (1995) and Coleman (1991) in a non-OLG setting.While Wang (1994) uses the methods and results of DuÆe et a. (1994) to study theexisten
e of so-
alled Generalized Markov Equilibria (GME) where the state spa
e mayin
lude additional variables su
h as sunspots, et
., Morand & Re�ett (2007) 
ontinueto fo
us on ME and present a very general approa
h to study their existen
e. Theirapproa
h employs methods from fun
tional analysis to obtain ME as �xed points ofa suitably de�ned operator. Using the Knaster-Tarski �xed point theorem permittedthem to derive suÆ
ient 
onditions for a ME to exist in their setup.Building on the existen
e results of Morand & Re�ett (2007), the present paper seeksto establish additional properties of ME while maintaining the same level of generalityas their study. As our main 
ontribution, we establish suÆ
ient 
onditions under whi
hthe ME is unique and the equilibrium mappings possess additional properties su
h asmonotoni
ity, 
ontinuity, or even smoothness. Similar properties were derived in Wang(1993) but it is not yet known under what 
onditions they hold for the mu
h larger 
lassof e
onomies studied in Morand & Re�ett (2007). Knowing these additional propertiesis important not only for theoreti
al reasons and welfare analysis, but also for appliednumeri
al work as, e.g., in Feng et al. (2012).Con
eptually, we employ the same operator-based approa
h used in Morand & Re�ett(2007). In general, uniqueness of a �xed point obtains only under very spe
ial 
ir
um-stan
es, e.g., if the underlying operator is a 
ontra
tion or satis�es a set of additionaland rather restri
tive 
onditions as in Coleman (1991). However, we demonstrate inthis paper that the operator developed in Morand & Re�ett (2007) possesses a veryspe
ial stru
ture that is unique to their OLG setup with two-period lived 
onsumers1



but not exploited in their paper. It is pre
isely this additional property that will allowus to obtain the uniqueness results of this paper. In fa
t, it will turn out that the MEis unique for most 
ases studied in Morand & Re�ett (2007). Moreover, we also showthat if the ME is unique, it is in fa
t the unique sequential equilibrium of the e
onomy.The paper is organized as follows. Se
tion 1 introdu
es the model. The formal stru
tureto study ME is developed in Se
tion 2. The main results are presented in Se
tion 3.Se
tion 4 
on
ludes, proofs for all results are pla
ed in the Mathemati
al Appendix.1 The ModelThis se
tion presents the basi
 setup of the model whi
h extends the one in Morand &Re�ett (2007) by relaxing several of their assumptions.Consumption se
torThe 
onsumption se
tor 
onsist of overlapping generations of 
onsumers who live for twoperiods. In their �rst period of life, 
onsumers supply one unit of labor inelasti
ally tore
eive the wage wt > 0 whi
h is used for saving st and 
onsumption when young 
yt =wt� st. Savings earn the random 
apital return rt+1 in the following period in whi
h nofurther in
ome is re
eived su
h that se
ond-period 
onsumption is given by the randomvariable 
ot+1 = strt+1. Given labor in
ome wt > 0 and the per
eived random 
apitalreturn of the following period rt+1, 
onsumers 
hoose savings st to maximize expe
tedlifetime utility based on some von-Neumann Morgenstern utility fun
tion fun
tion U :R2+ �! R de�ned over 
onsumption in both periods. The de
ision problem readsmaxs nE t�U(wt � s; srt+1)� j 0 � s � wto: (1)Here, E t denotes the expe
tations operator 
onditional on information at time t whi
his formally de�ned below. The following restri
tions are imposed on U .Assumption 1U is C2 and 
on
ave with derivatives satisfying Uii < 0 < Ui, i 2 f1; 2g and the Inada
onditions lim
y!0 U1(
y; 
o) =1 for all 
o > 0 and lim
o!0 U2(
y; 
o) =1 for all 
y > 0.Given wt > 0 and the random variable rt+1, Assumption 1 guarantees a unique interiorsolution 0 < st < wt to (1) whi
h determines next period's 
apital sto
k kt+1.Produ
tion se
torThe produ
tion se
tor produ
es the 
onsumption good using labor and 
apital as inputfa
tors. In addition, the produ
tion pro
ess in period t is subje
ted to a random sho
k"t with values in E � ["min; "max℄. In equilibrium, labor is 
onstant and the wage wt and
apital return rt are determined from the 
urrent sto
k of 
apital kt > 0 and the sho
k2



"t 2 E a

ording to the mappingsW : R++ � E �! R++ ; wt = W(kt; "t) (2a)R : R++ � E �! R++ ; rt = R(kt; "t): (2b)Pro�ts are zero at equilibrium. The previous spe
i�
ation in
ludes the 
ases with 
las-si
al produ
tion in Wang (1993) and non-
lassi
al produ
tion in Greenwood & Hu�man(1995), Coleman (1991), and Morand & Re�ett (2007) as spe
ial 
ases. Rather thanspe
ifying the underlying produ
tion te
hnology dire
tly, we will work with the map-pingsW andR as being part of the primitives of the e
onomy. The following restri
tionsare imposed whi
h are slightly weaker than those in Morand & Re�ett (2007).Assumption 2(i) Both fun
tions W and R are Borel-measurable.(ii) For ea
h " 2 E , k 7! W(k; ") is in
reasing while k 7! R(k; ") is stri
tly de
reasing.(iii) For ea
h k > 0, " 7! W(k; ") and " 7! W(k; ") are bounded.Produ
tion sho
ks follow a Markov pro
ess with time-invariant transition probabilityQ : E � B(E) �! [0; 1℄. Given an initial state "0 2 E , the transition Q permits to
onstru
t a probability spa
e (
;F ;P) together with a �ltration fFtgt�0 to whi
h thepro
ess f"tgt�0 is adapted su
h that "t : 
 �! E is Ft-measurable, t � 0.1 We denoteby E t [�℄ := E [�jFt ℄ the expe
tation 
onditional on the information represented by Ft.The following assumption adds some te
hni
al restri
tions on Q.Assumption 3Q preserves measurability, i.e., if f : Y � E �! R, Y � Rm , m � 1 is a measurablefun
tion, then g : Y � E �! R, g(y; ") := RE f(y; "0)Q("; d"0) is also measurable.A stronger requirement frequently imposed would be the so-
alled Feller property : IfY � Rm , m � 1 and f : Y � E �! R is a bounded 
ontinuous fun
tion, then so isg : Y � E �! R, g(y; ") := RE f(y; "0)Q("; d"0). We will refrain from imposing thisproperty dire
tly but indi
ate below how it would permit to sharpen some results.EquilibriumThe e
onomy is E = (U;W;R; Q) plus the initial 
ondition x0 := (k0; "0) 2 X :=R++ � E . The set X will be referred to as the (natural) state spa
e of the e
onomy.The following de�nition provides a general 
hara
terization of equilibrium. Note thatthe previous assumptions imply that all equilibrium variables are stri
tly positive.1In what follows, the notion of an adapted sto
hasti
 pro
ess f�tgt�0 taking values in a topologi
alspa
e � implies that ea
h �t : 
 �! � is Ft measurable, i.e., 
an depend only on the random variables("0; : : : ; "t). Measurability of mappings M : Y �! Z between topologi
al spa
es Y and Z is alwaysunderstood with respe
t to the Borel �-algebras B(Y) and B(Z).3



De�nition 1Given x0 2 X, a sequential equilibrium (SE) of e
onomy E is an adapted pro
essfwt; rt; st; kt+1gt�0 with values in R4++ satisfying the following 
onditions for all t � 0:(i) Given wt and the random variable rt+1, st solves (1) while kt+1 = st.(ii) Fa
tor pri
es wt and rt are determined from kt and "t by (2a) and (2b).The indu
ed equilibrium 
onsumption pro
esses f
yt ; 
otgt�0 follow dire
tly by insertingthe equilibrium variables into the 
onsumers' budget 
onstraints.2 Markov Equilibria (ME)De�nition of MEA re
ursive equilibrium (RE) is an equilibrium where all equilibrium variables of periodt are determined by time-invariant fun
tions of some state variable xt taking values inthe state spa
e X. A Markov equilibrium (ME) is a re
ursive equilibrium on the naturalstate spa
e X = R++ � E where the state variable is xt := (kt; "t). It is this 
lass ofequilibria that we will fo
us on in this paper. As the fun
tionsW and R already satisfythe Markov property, a ME is essentially determined by a time-invariant mapping whi
hdetermines the evolution of 
apital respe
tively savings. Formally, we haveDe�nition 2Given x0 2 X, a ME of e
onomy E is a measurable map K : X �! R++ on the naturalstate spa
e X = R++ �E su
h that the pro
ess fwt; rt; st; kt+1gt�0 de�ned re
ursively askt+1 = K(kt; "t) = st, wt =W(kt; "t), and rt = R(kt; "t) for all t � 0 is a SE of E .Constru
ting the operator ATo establish the existen
e and properties of ME, we follow Morand & Re�ett (2007) to
onstru
t an operator A on a suitable fun
tion spa
e S whose �xed points are ME. Inthe sequel we take S to be the 
lass of Borel-measurable fun
tions K : X �! R++ .The operator A is 
onstru
ted from the Euler equations derived from the 
onsumer'sde
ision problem (1). To this end, 
onsider a given period t with state xt = (kt; "t) whi
hdetermines the 
urrent wage wt from (2a) and the 
onditional distributionQ("t; �) of nextperiod's sho
k. To de
ide on her investment st 2 [0; wt℄, the 
onsumer needs to determinethe (
orre
t) distribution of the un
ertain 
apital return rt+1 of the following period.As rt+1 = R(kt+1; "t+1) and the 
onsumer knows the fun
tion R and the 
onditionaldistribution of "t+1 (whi
h are part of the fundamentals of the e
onomy), this amountsto (
orre
tly) fore
asting next period's 
apital sto
k kt+1 > 0 whi
h, 
onditional on theinformation at time t, is a value rather than a random variable. Suppose the 
onsumerholds a per
eived law of motion for the 
apital sto
k K 2 S to 
ompute her fore
ast4



kt+1 = K(kt; "t). Then, given (xt; kt+1) 2 X � R++ , an optimal savings de
ision stderived from (1) must satisfy the �rst-order 
onditions H(st; kt; "t; kt+1) = 0 whereH(s; k; "; k0) := � ZE U1(W(k; ")� s; sR(k0; "0))Q("; d"0) (3)+ ZE R(k0; "0)U2(W(k; ")� s; sR(k0; "0))Q("; d"0):Under the Inada assumptions (whi
h ensure existen
e) and the 
on
avity of U (whi
himplies uniqueness), the fun
tion H(�; x; k0) has a unique zero for all x 2 X and k0 > 0.Thus, there exists a (savings) fun
tion S : X � R++ �! R++ whi
h determines theunique solution st = S(kt; "t; kt+1) to (1). The following lemma is the key ingredient tode�ne the operator A below.Lemma 2.1Under Assumptions 1, 2, and 3, the mapping S : X � R++ �! R++ is measurable.Substituting the per
eived law of motion K into S one obtains an operator A whi
hasso
iates with K 2 S the new fun
tion AK : X �! R++ de�ned as(AK)(x) := S(x;K(x)) for x 2 X: (4)As S is measurable by Lemma 2.1 and the 
omposition of measurable fun
tions is againmeasurable, it is evident that A maps S into itself.2 As kt+1 = st at equilibrium, a ME
orresponds pre
isely to a �xed point of A.Fixed points of AUnder a set of additional restri
tions, Morand & Re�ett (2007) establish the existen
eof �xed points of A. Their argument is based on the Knaster-Tarski �xed point theoremfor whi
h they impose additional restri
tions su
h as monotoni
ity on the set S .In this paper, we follow a di�erent route whi
h determines �xed points of A pointwiseas zeroes of a real-valued fun
tion. This approa
h is possible due to a key property ofthe operator A whi
h is evident from (4) but not exploited in Morand & Re�ett (2007):For ea
h x 2 X, the value (AK)(x) depends only on the value K(x) and not on theentire fun
tion K. Formally, for any two fun
tions K1;K2 2 S , K1(x) = K2(x) implies(AK1)(x) = (AK2)(x).3 The main impli
ation of this property is that �xed-points ofA 
an be 
onstru
ted point-wise, for ea
h state x 2 X. This fa
t is stated formallyin the following lemma the proof of whi
h follows dire
tly from (4) and the previousarguments.2It is straightforward to show that A maps S into the 
lass S 0 of measurable fun
tions K : X �!R++ whi
h satisfy, in addition, K(x) < W(x) for all x 2 X. Thus, �xed points of A must ne
essar-ily be elements of S 0. If limk!0W(0; ") = 0 for all " 2 E , one also infers the boundary behaviorlimk!0 K(k; ") = 0 for any K 2 S 0.3This very spe
ial stru
ture is unique to overlapping generations models with two-period lived 
on-sumers. In most ma
roe
onomi
 models with multiperiod or in�nitely-lived 
onsumers, the operator Awill vary with the entire fun
tion K, i.e., the value (AK)(w) depends on the entire fun
tion K.5



Lemma 2.2The map K 2 S is a �xed point of A, i.e., (AK)(x) = K(x) for all x 2 X, if and only ifS(x;K(x)) = K(x) 8x 2 X: (5)General uniqueness 
onditionsThe result from Lemma 2.2 will permit us to establish many additional properties ofME not derived in Morand & Re�ett (2007). In parti
ular, we will provide suÆ
ient
onditions under whi
h the e
onomy has a unique ME. To prepare these results, let� : X � R++ �! R, �(x; k0) := k0 � S(x; k0): (6)Note that Lemma 2.1 implies that � is measurable. Using Lemma 2.2, it follows thatfor ea
h x 2 X, the value k? = K?(x) of any �xed point K? 2 S of A must must be azero of �(x; �), i.e., �(x; k?) = 0: (7)Equation (7) is pre
isely the 
ondition employed in de la Croix & Mi
hel (2002) in adeterministi
 setting. It is also equivalent to { in fa
t, merely a restatement of{ theself-
on�rming expe
tations approa
h in Wang (1993). De�ne the 
orresponden
e	 : X � R++ ; 	(x) := fk0 2 R++ j�(x; k0) = 0g: (8)Then, determining a ME is equivalent to �nding a measurable sele
tion of 	, i.e., ameasurable fun
tion K : X �! R++ su
h that K(x) 2 	(x) for all x 2 X. Clearly, ane
essary 
ondition for ME to exist is that 	 be non-empty valued. It is also 
lear thatif 	 is single-valued, i.e., a fun
tion, then there 
an be at most one ME. In this latter
ase, the next result shows that 	 will automati
ally be measurable, i.e., a unique MEexists. On the other hand, if for ea
h x 2 X the map �(x; �) has at most one zero, there
an be at most one ME. Thus, a suÆ
ient 
ondition for uniqueness is that �(x; �) bestri
tly monotoni
 for all x 2 X. The following �nal result of this se
tion summarizesthese insights whi
h will be key for the uniqueness result derived in the next se
tion.Lemma 2.3Let � : X � R++ �! R de�ned in (6) be measurable. Then, the following holds:(i) E has a unique ME, if and only if �(~x; �) has a unique zero ~k > 0 for ea
h ~x 2 X.(ii) If �(~x; �) has at most one zero for ea
h ~x 2 X, then E has at most one ME.3 Uniqueness of EquilibriumUniqueness of MEExploiting the insights from the previous se
tion, we are now in a position to establish a6



set of additional properties of ME. The �rst main result is the following theorem whi
hlists suÆ
ient 
onditions under whi
h the e
onomy has at most one ME.Theorem 1Let Assumptions 1, 2, and 3 be satis�ed, Then, ea
h of the following restri
tions issuÆ
ient for the e
onomy E to have at most one ME:(i) U(
y; 
o) = u(
y) + v(
o) where v satis�es v00(
)
v0(
) � �1.(ii) U12 � 0 and k 7! kR(k; "), k > 0 is weakly in
reasing for all " 2 E .(iii) 
o U22(
y;
o)U2(
y;
o) > �1 for all (
y; 
o)� 0 and k 7! R(k; ") is di�erentiable for all " 2 Ewhere R1 < 0. In addition, either U21 � 0 or R1(k;")kR(k;") � �4 for all k > 0, " 2 E .The hypotheses of Theorem 1 are satis�ed for a broad 
lass of e
onomies. Condition (i)holds, e.g., if se
ond-period utility displays 
onstant relative risk aversion 0 < � � 1,i.e., v(
) = 
1�� �
1�� � 1�, 
 > 0 or under CES utility v(
) = [1� � + �
%℄1=%, 0 < � < 1if 0 � % < 1. Also note that the restri
tion (i) is pre
isely Assumption 4 in Morand& Re�ett (2007). This shows that the ME in their model is in fa
t unique wheneverthis restri
tion is imposed. Thus, their �ndings 
an 
onsiderably be strengthened if theadditional properties of the operator A identi�ed above are exploited.Condition (ii) in Theorem 1 is the natural extension of the uniqueness 
ondition in Wang(1993) to the present more general setting. For the 
ase with a 
lassi
al produ
tion fun
-tion f , it holds, e.g., if f is of the CES form f(k; ") = "g(k) where g(k) = "[1��+�k%℄ 1% ,0 < � < 1 and 0 � % < 1 where % = 0 gives a Cobb-Douglas te
hnology. The additionalrestri
tion U12 � 0 is imposed throughout in Morand & Re�ett (2007).Finally, under the additional di�erentiability 
ondition, (iii) permits to relax (ii) (whi
hwould imply R1(k;")kR(k;") � �1) while imposing an additional restri
tion on U . The lat-ter generalizes (i) to the non-additive 
ase and holds, e.g., for Cobb-Douglas utilityU(
y; 
o) = (
y)�(
o)�, �; � > 0. Furthermore, for the 
lassi
al CES produ
tion fun
tionmentioned above, R1(k;")kR(k;") = kg00(k)g0(k) = �(1� %) 1��1��+�k% whi
h implies that the restri
tionon R in (iii) holds i� % � �3. The latter 
ould further be relaxed if an upper bound onk su
h as k < f(k; "max) { whi
h is done in Morand & Re�ett (2007) { is imposed.As a general insight, Theorem 1 shows that restri
tions either on the 
onsumptionside (
ondition (i)) or the produ
tion side (
ondition (ii)) alone are already suÆ
ient toindu
e a unique ME on
e it exists. It also reveals that the elasti
ities of the 
apital returnfun
tion R and se
ond-period marginal utility are key to the uniqueness of equilibriumwhile neither the wage fun
tion W nor the marginal utility of �rst-period 
onsumptionnor the transition Q play a 
ru
ial role. As a 
onsequen
e, multiple ME 
an o

uronly if 
apital in
ome de
reases very rapidly and the marginal utility of se
ond-period
onsumption is very elasti
. Thus, it seems rather diÆ
ult to obtain 
ases in whi
hmultiple MEs exist, and one may 
on
lude that in the present 
lass of models, uniqueness7



of ME { in fa
t, of equilibrium, as we show below in Theorem 3 { is a generi
 property.Also note that Theorem 1 does not ensure the existen
e of a ME. Imposing the additionalrestri
tions of Morand & Re�ett (2007), existen
e follows dire
tly from their results.Smoothness and monotoni
ity of MEIn 
ases where the ME is unique, one may ask whi
h additional properties of K 
anbe inferred. In Wang (1993), the fa
tor pri
ing fun
tions R and W are both C1 whi
himplies that the map K is also C1 and stri
tly in
reasing in his model. In the present
ase, a similar result holds in the sense that K essentially inherits the properties of thefa
tor pri
ing fun
tions. The result needs the following additionalAssumption 4For all " 2 E , the map k 7�! R(k; "), k > 0 in (2b) satis�es the boundary behaviorlimk!0R(k; ") =1 and limk!0 kR(k; ") <1:Note that unlike Theorem 1 the following result also asserts the existen
e of a ME.Theorem 2Let Assumptions 1, 2, 3, and 4 and any of the hypotheses (i), (ii), or (iii) of Theorem 1be satis�ed. In addition, suppose k 7! W(k; ") and k 7! R(k; ") are 
ontinuous for all" 2 E . Then the e
onomy E has a unique ME K 2 S with the following properties:(i) For all " 2 E , k 7! K(k; "), k > 0, is 
ontinuous. It is in
reasing if U21 � 0.(ii) If W and R are 
ontinuous and Q has the Feller property, then K is 
ontinuous.(iii) If for all " 2 E k 7! W(k; ") and k 7! R(k; ") are C1, then k 7! K(k; ") is C1.(iv) If, in addition to (iii), sho
ks are i.i.d., E is an interval, and W is C1, then K isC1. Further, if W2 > 0, then K2 > 0.Uniqueness of SEThe previous dis
ussion revolved around whether Markov equilibria are unique. Thisraises the question of whether there are other equilibria, i.e., re
ursive equilibria on alarger state spa
e or non-re
ursive SE. A striking feature of the equilibrium stru
turefrom Se
tion 2 is that the savings fun
tion S is independent of how the fore
ast kt+1was obtained. In other words, it is independent of any hypothesized law of motion andjust depends on the value predi
ted for the following period. As a 
onsequen
e, anyequilibrium pro
ess { re
ursive or not { must satisfy the 
ondition kt+1 2 	(kt; "t) forall t � 0. This shows that if the ME is unique, i.e., the fun
tion �(x; �) has a uniquezero for all x 2 X, ea
h state xt has a unique 
ontinuation value kt+1 whi
h is pre
iselythe value determined by the ME. Thus, the equilibrium 
apital pro
ess fkt+1gt�0 isuniquely de�ned. As the other equilibrium variables follow dire
tly from this pro
ess,the equilibrium is in fa
t unique whenever the ME is unique. We state these insights asthe following �nal theorem. The proof follows dire
tly from the previous arguments.8



Theorem 3Suppose the e
onomy E has a unique ME. Then, this is also the unique SE of E .Note, however, that this result does not say that the number of ME is identi
al tothe number of SE for the e
onomy. The reason is that if there are multiple solutionsto (7), then so-
alled Generalized Markov Equilibria (GME) exist whi
h are obtainedby randomizing over possible 
ontinuation values. This is the 
ase studied in Wang(1994) using the powerful te
hniques of DuÆe et al. (1994). Clearly, in this 
ase, anun
ountable number of distin
t equilibrium pro
esses 
an be generated.4 Con
lusionsOur analysis provides suÆ
ient 
onditions under whi
h a broad 
lass of OLG e
onomieswith sto
hasti
 non-
lassi
al produ
tion and two-period lived 
onsumers has at most oneME. The 
onditions obtained are quite general and should be easy to verify in appliedwork as they are stated dire
tly on the primitives of the model.One aspe
t not dis
ussed in this paper is whether the ME gives rise to a Station-ary Markov Equilibrium (SME) 
orresponding to an invariant distribution on the statespa
e. Using di�erent te
hniques, this issue is studied at length in Wang (1994) andMorand & Re�ett (2007). As the restri
tions imposed in this paper are weaker thanthose in Morand & Re�ett (2007), their �ndings remain dire
tly appli
able in our setupif their additional restri
tions are imposed.As shown in Se
tion 2 { and also in Wang (1994) { the key obje
t for studying equilibria{re
ursive or not { is the equilibrium 
orresponden
e de�ned in (8). If this 
orrespon-den
e is multi-valued, i.e., not a fun
tion, the stru
ture developed in Se
tion 2 
an beused to expli
itly 
onstru
t Generalized Markov equilibria by randomizing over di�erent
ontinuation values. While in this 
ase, an un
ountable number of SE exist, one 
ouldstill quantify the equilibrium set by establishing bounds on the number of 
ontinuationvalues, i.e, the maximum the number of zeroes of the map �(x; �) de�ned in (6) for all
hoi
es x 2 X. For the latter purpose, the semi-algebrai
 approa
h developed in Kue-bler & S
hmedders (2007) { although 
urrently designed for stati
 ex
hange e
onomies{ 
ould be
ome a useful tool. This might be an interesting avenue of future resear
h.A Mathemati
al AppendixA.1 Auxiliary resultsWe begin by re
alling some 
on
epts and introdu
ing some te
hni
al results that willbe used subsequently. Given some topologi
al spa
e X with topology TX � P(X), we9



endow subsets Y of X with the relative (tra
e) topology TY := fO \Y jO 2 TXg. Re
allthat if Y is open in X, then TY � TX. The Eu
lidean spa
e Rm , m � 1 is endowed withthe usual topology whi
h is generated by the Eu
lidean metri
. Unless stated otherwise,
ontinuity of fun
tions is always understood with respe
t to these topologies.A topologi
al spa
e X be
omes a measurable spa
e when endowed with the Borel �-algebra B(X) whi
h is generated by the open sets TX. On subspa
es Y � X the Borel-�algebra B(Y) is generated by the relative topology TY but also 
oin
ides with the tra
e�-algebra, i.e., B(Y) = fA \ Y jA 2 B(X)g, 
f. Aliprantis & Border (2007, p.138,Lemma 4.20). In parti
ular, if Y 2 B(X), i.e., is measurable in X, then B(Y) � B(X).Also re
all that A 2 B(X), B 2 B(Y ) implies A�B 2 B(X � Y ).The following lemmas will be used in the proofs of our results below.Lemma A.1 (Measurable Graph Theorem)A fun
tion f : X �! Y where both X and Y are 
omplete separable metri
 spa
es, isBorel-measurable, if and only if graph(f) := f(x; y) 2 X � Y j y = f(x)g is a Borel-measurable subset of the produ
t spa
e X � Y, i.e., graph(f) 2 B(X � Y).Proof: See Bu
kley (1974, x3, Propositions 1 and 6).Lemma A.2 (Closed Graph Theorem)A fun
tion f : X �! Y from a topologi
al spa
e X into a 
ompa
t Hausdor� spa
e Yis 
ontinuous if and only if graph(f) := f(x; y) 2 X �Y j y = f(x)g is a 
losed subset ofthe produ
t spa
e X � Y (endowed with the produ
t topology).Proof: See Aliprantis & Border (2007, p.51, Theorem 2.58).Lemma A.3Let f : X �! Y be a map between two topologi
al spa
es X (with topology TX) and Y.Suppose there is a sequen
e fXngn�1 of open subsets (Xn 2 TX) of X whi
h is in
reasing(Xn � Xn+1) and 
onverges to X, i.e., X = Sn�1Xn . Further, suppose that for ea
hn � 1 the restri
ted map fn := fjXn : Xn �! Y is 
ontinuous. Then f is 
ontinuous.Proof: Endow ea
h Xn with the relative topology Tn := fU \ Xn jU 2 TXg. As Xn isopen, Tn � TX for all n � 1. Let O be an open subset of Y. We have to show thatf�1(O ) 2 TX. As ea
h fn is 
ontinuous, f�1n (O ) 2 Tn � TX and, therefore, f�1n (O ) 2 TXfor all n � 1. We 
laim that f�1(O ) = Sn�1 f�1n (O ). Let x 2 f�1(O ) be arbitrary. Sin
eX = Sn�1 Xn , there is some Xm su
h that x 2 Xm and f(x) = fm(x) 2 O . Hen
e, x 2f�1m (O ) � Sn�1 f�1n (O ) whi
h, sin
e x was arbitrary shows that f�1(O ) � Sn�1 f�1n (O ).Conversely, let x 2 Sn�1 f�1n (O ). Then, x 2 f�1m (O ) for some m, i.e., x 2 Xm � X andfm(x) = f(x) 2 O . Con
lude that x 2 f�1(O ) whi
h, sin
e x was arbitrary, impliesf�1(O ) � Sn�1 f�1n (O ). Thus, we have shown that f�1(O ) is the union of open setsf�1n (O ) 2 TX. Sin
e any union of open sets is open again, this implies f�1(O ) 2 TX. �10



Lemma A.4Let f : X �! Y be a map between two topologi
al spa
es X and Y endowed with theBorel �-algebras B(X) and B(Y). Suppose there is a sequen
e fXngn�1 of measurablesubsets (Xn 2 B(X)) of X whi
h is in
reasing (Xn � Xn+1) and 
onverges to X, i.e.,X = Sn�1 Xn . Further, suppose that for ea
h n � 1 the restri
ted map fn := fjXn :Xn �! Y is measurable. Then f is measurable.Proof: Endow ea
h Xn with the tra
e-� algebra Bn := fA \ Xn jA 2 B(X)g. As Xn ismeasurable, Bn � B(X) for n � 1. Let A 2 B(Y). We show that f�1(A) 2 B(X). Asea
h fn is Bn�B(Y) measurable, f�1n (A) 2 Bn � B(X) and, therefore, f�1n (A) 2 B(X)for all n � 1. Following the exa
t same arguments as in the proof of Lemma A.3(with 'open' repla
ed by 'measurable'), it is straightforward to show that f�1(A) =Sn�1 f�1n (A), i.e., f�1(A) is the 
ountable union of measurable subsets f�1n (A) 2 B(X).As B(X) is 
losed under 
ountable unions, this implies f�1(A) 2 B(X), as 
laimed. �A.2 Proof of Lemma 2.1De�ne U := f(w; s) 2 R2++ js < w g, V := R++ � E � U, and let v : R++ � U �! R,v(r; w; s) := �U1(w � s; s r) + r U2(w � s; s r): (A.1)The map v is C1 and, therefore, measurable. As the 
omposition of measurable fun
tionsis measurable, Assumption 2 implies measurability of (k0; "0; w; s) 7! v(R(k0; "0); w; s)and, invoking Assumption 3, of the fun
tion V : V �! R,V (k0; "; w; s) := ZE v(R(k0; "0); w; s)Q("; d"0): (A.2)Using the same arguments as in Se
tion 2, the fun
tion V (k0; "; w; �) :℄0; w[�! R hasa unique zero 0 < s < w for ea
h (k0; "; w) 2 S := R++ � E � R++ whi
h may bewritten as a fun
tion ~S : S�! R+ , s = ~S(k0; "; w). We will show that ~S is measurable.This and measurability of W due to Assumption 2 will then imply that S(k; "; k0) =~S(k0; ";W(k; ")) is measurable.4For n � 1, de�ne Sn := [ 1n ; n℄ � E � [ 1n ; n℄ � S. Observe that fSngn�1 is an in
reasing(Sn � Sn+1) sequen
e of measurable (Sn 2 B(S)) subsets of S that 
onverges to S =Sn�1 Sn. Thus, by Lemma A.4, it suÆ
es to show that ea
h ~Sn := ~SjSn : Sn �! [0; n℄4Until here, the argument is similar to the proof of Lemma 5 in Morand & Re�ett (2007). At thispoint, however, their argument 
on
ludes that 
ontinuity of ~S(�; ") in w and k0 for ea
h �xed " 2 Eimplies measurability of S. While this is 
orre
t if sho
ks are i.i.d., it negle
ts that, in general, therewill also be a dire
t in
uen
e of " on ~S through the transition Q. Then, the previous argument seemsno longer valid to infer measurability of ~S . The following proof presents an alternative whi
h �xes thisproblem and also shows that measurability of ~S obtains even under the more general restri
tions of thispaper. 11



is measurable. Observe that both the domain and range of ~Sn being 
losed subsets of
omplete separable metri
 spa
es are 
omplete separable metri
 spa
es. Thus, by LemmaA.2, ~Sn is measurable if and only if graph( ~Sn) is a measurable subset of Sn� [0; n℄, i.e.,graph( ~Sn) 2 B(Sn� [0; n℄).For n � 1, de�ne Vn := f(k0; "; w; s) 2 [ 1n ; n℄�E�[ 1n ; n℄�[0; n℄ j s < wg = V\(Sn�[0; n℄)whi
h is a measurable subset of V. Consider the restri
tion Vn := VjVn : Vn �! R whi
his measurable as the restri
tion of a measurable map V to a measurable subset of itsdomain. As f0g is a measurable subset of R this implies that V �1n (f0g) = f(k0; "; w; s) 2Vn jVn(k0; "; w; s) = 0g = f(k0; "; w; s) 2 Sn� [0; n℄ j s = ~Sn(k0; "; w)g = graph( ~Sn) is ameasurable subset of Vn , i.e., graph( ~Sn) 2 B(Vn). Sin
e Vn is a measurable subset ofSn� [0; n℄, B(Vn) � B(Sn� [0; n℄) whi
h implies that graph( ~Sn) 2 B(Sn� [0; n℄). �A.3 Proof of Lemma 2.3(i) Suppose the e
onomy has a unique ME K. Then, K is a measurable sele
tion ofthe 
orresponden
e 	 de�ned in (8). By 
ontradi
tion, suppose for some ~x 2 X, thefun
tion �(~x; �) has at least two zeroes, say k1 and k2. W.l.o.g., suppose k1 = K(~x).Then, the fun
tion K2 : X �! R++ ,K2(x) := K(x) + 1f~xg(x)(k2 � k1) = � k2 x = ~xK(x) otherwiseis a measurable fun
tion that satis�es K2(x) 2 	(x) for all x 2 X, i.e., is another ME,
ontradi
ting uniqueness of the ME.Conversely, suppose for all ~x 2 X, the fun
tion �(~x; �) has a unique zero. In this 
ase,the 
orresponden
e 	 : X �! R++ is a fun
tion whose domain X = R2++ � E is theprodu
t of an open and a 
losed subset of R whi
h is a Polish spa
e. As open and 
losedsubsets of Polish spa
es are Polish and so are their produ
t, both the domain and rangeof 	 are Polish spa
es. By Aliprantis & Border (2007, Theorem 12.28, p.450), 	 ismeasurable if and only if graph(	) is a measurable subset of X � R++ . By assumption,� : X � R++ �! R is a measurable fun
tion whi
h implies that ��1(f0g) = f(x; k0) 2X � R++ j�(x; k0) = 0g = f(x; k0) 2 X � R++ j k0 = 	(x)g = graph(	) is a measurablesubset of X � R++ .(ii) If for some ~x 2 X, �(~x; �) fails to have a zero, then 	(~x) = ;. As any ME is ameasurable sele
tion of 	, there will be no ME in this 
ase. If, for all ~x 2 X, �(~x; �) haspre
isely one zero, then a ME exists by (i). �A.4 Proof of Theorem 1Let x = (k; ") 2 X and w := W(k; ") > 0 be arbitrary but �xed. Using Lemma 2.3(ii),we show that the map �(x; �) : R++ �! R de�ned in (6) has at most one zero k0 > 0.12



De�ne ~S as in the proof of Lemma 2.1. Then, using (6) and (A.2)�(x; k0) = 0 , k0 = ~S(k0; "; w) , V (k0; w; "; k0) = 0: (A.3)Thus, letting G(w; "; k0) := V (k0; w; "; k0) with V de�ned as in (A.2), it suÆ
es to showthat G(w; "; �) :℄0; w[�! R is stri
tly monotoni
. De�ningg(w; k0; "0) := �U1(w � k0; k0R(k0; "0)) +R(k0; "0)U2(w � k0; k0R(k0; "0)) (A.4)the fun
tion G may be written asG(w; "; k0) = ZE g(w; k0; "0)Q("; d"0): (A.5)As integration preserves monotoni
ity, it suÆ
es to show that k0 7! g(w; k0; "0) is stri
tlymonotoni
 { in fa
t, de
reasing { in ea
h of the three 
ases below.(i) Under the hypotheses, the map g in (A.4) takes the formg(w; k0; "0) = �u0(w � k0) + f(k0;R(k0; "0)) (A.6)where f : R2++ �! R++ , f(x; y) := yv0(yx). The �rst term in (A.6) is a stri
tlyde
reasing fun
tion of k0. Thus, it suÆ
es to show that k0 7! f(k0;R(k0; "0)) is de
reasingfor all "0 2 E , whi
h follows dire
tly from f1(x; y) = y2v00(yx) < 0 � f2(x; y) = v0(yx) +yxv00(yx) and k0 7! R(k0; "0) being stri
tly de
reasing by Assumption 2.(ii) Under the hypotheses, it is straightforward to show that k0 7! g(w; k0; "0), 0 < k0 < wde�ned in (A.4) is stri
tly de
reasing for all (w; "0) 2 R++ � E .(iii) Under the additional hypothesis, the fun
tion k0 7! g(w; "0; k0) de�ned in (A.4) is
ontinuously di�erentiable for all (w; "0) 2 R++ � E and so is G. As di�erentiationand integration over a 
ompa
t set may be inter
hanged, the partial derivative of G
omputes G3(w; "; k0) = ZE g3(w; k0; "0)Q("; d"0): (A.7)It suÆ
es to show that g3 < 0. Dropping the respe
tive arguments for 
onvenien
e, thederivative of (A.4) may be written asg3(w; "0; k0) = R1 [U2 + k0RU22℄ + U11 � 2RU21 +R2U22 � U21k0R1: (A.8)The �rst term is stri
tly negative as R1 < 0 and the bra
keted term is stri
tly positiveby assumption. Suppose �rst that U21 � 0. Then, the last term in (A.8) is negative aswell, so we need to show that U11 � 2RU21 +R2U22 � 0 or, using Uii < 0 for i 2 f1; 2gM := jU11j � 2RjU21j+R2jU22j � 0: (A.9)The 
on
avity of U implies a negative semi-de�nite Hessian matrix, so U11U22 � U212,whi
h may be restated as jU12j � jU11j 12 jU22j 12 . Substituting this result into (A.9) givesM � jU11j � 2RjU11j 12 jU22j 12 +R2jU22j = (jU11j 12 �RjU22j 12 )2 � 0: (A.10)13



Se
ond, suppose that k0R1 � �4R. If U21(w � k0; k0R(k0; "0)) � 0, the argument of theprevious step remains un
hanged, so suppose U21(w � k0; k0R(k0; "0)) > 0. Then,U11 � 2RU21 +R2U22 � U21kR1 � U11 + 2RU21 +R2U22 = �Mwith M de�ned in (A.9). As shown before, M � 0, whi
h proves the 
laim. �A.5 Proof of Theorem 2De�ne the maps g and G as in (A.4) and (A.5). Note that the 
ontinuity assumptionimplies that g is a 
ontinuous fun
tion in k0. As integration over a 
ompa
t set preserves
ontinuity, G is 
ontinuous in k0 for all (w; ") 2 R++ � E . The existen
e of a MEwill follow from Lemma 2.3 (i) if we show that G(w; "; �) has a unique zero for all(w; ") 2 R++�E . To this end, observe that Assumption 4 implies the boundary behaviorlimk&w g(w; "0; k) = �1 and limk%0 g(w; "0; k) = 1. This being true for all "0 2 Eimplies that limk&wG(w; "; k) = �1 and limk%0G(w; "; k) =1 for all (w; ") 2 R++�E .By 
ontinuity of G(w; "; �), this ensures existen
e of a zero whi
h is ne
essarily uniqueby monotoni
ity and de�ned by an impli
it fun
tion ~K : R++ �E �! R++ . By Lemma2.3, the fun
tion K : X �! R++ , K(k; ") := ~K(W(k; "); ") is the unique ME. Clearly,if U12 � 0, then g and G are both stri
tly in
reasing in w, whi
h implies that ~K(�; ") isstri
tly in
reasing. It then follows from Assumption 4(ii) that K(�; ") is in
reasing.(i) Let " 2 E be arbitrary but �xed. De�ne U := f(w; k0) 2 R2++ j 0 < k0 < wgand the map G" : U �! R, G"(w; k) := G(w; "; k). Under the hypotheses, G" is a
ontinuous fun
tion as the integrand is 
ontinuous and integration over a 
ompa
t setpreserves 
ontinuity. As shown in the proof of Theorem 1, for ea
h w > 0 the mapG"(w; �) :℄0; w[�! R is stri
tly de
reasing and, therefore, has a unique zero determinedby some map ~K" : R++ �! R++ . We show that ~K" is 
ontinuous.For n > 1, let Æn > 0 be a small number su
h that Æn < 12n . De�ne the 
ompa
t setUn := f(w; k) 2 R2++ j 1n � w � n; Æn � k � w � Æng and 
onsider the restri
tionG"n := G"jUn : Un �! R. Clearly, G"n is 
ontinuous as the restri
tion of a 
ontinuousfun
tion to a subset of its domain. We seek to determine Æn su
h that ea
h G"n(w; �) :[Æn; w � Æn℄ �! R has a { ne
essarily unique { zero for all w 2 [ 1n ; n℄ determined byK̂"n : [ 1n ; n℄ �! [0; n℄. Then, K̂"n will be the restri
tion ~K" to [ 1n ; n℄. Re
all that G"n(w; �)is 
ontinuous and stri
tly de
reasing for all w 2 [ 1n ; n℄. Thus, to ensure that K̂"n is well-de�ned, it suÆ
es to have G"n(w; Æn) < 0 < G"n(w;w� Æn) for all w 2 [ 1n ; n℄. For Æn > 0,de�ne G"max(Æn) := maxw nG"(w;w � Æn) ���w 2 h1n; nioG"min(Æn) := minw nG"(w; Æn) ���w 2 h1n; nio14



whi
h are well-de�ned due to 
ontinuity of G" and 
ompa
tness of � 1n ; n�. Note thatG"max is stri
tly in
reasing in Æn and limÆ!0G"(w;w � Æ) = �1 for all w > 0 impliesG"max(Æn) < 0 for Æn suÆ
iently small. Likewise, G"min is stri
tly de
reasing in Æn andlimÆ!0G"(w; Æ) =1 for all w > 0, implies G"min(Æn) > 0 for Æn suÆ
iently small. Thus,
hoosing Æn small enough su
h that G"max(Æn) < 0 < G"min(Æn) implies G"(w;w � Æn) <0 < G"(w; Æn) for all w 2 � 1n ; n�. Then, for ea
h w 2 � 1n ; n� there exists a unique zerok0 2 [Æn; w � Æn℄ of G"n(w; �) determined by the fun
tion K̂"n : [ 1n ; n� �! [0; n℄.We show that ea
h K̂"n is 
ontinuous. Employing Lemma A.2, it suÆ
es to show thatgraph(K̂"n) is a 
losed subset of [ 1n ; n�� [0; n℄. As f0g is a 
losed subset of R, 
ontinuityof G"n implies that (G"n)�1(f0g) is a 
losed subset of Un . But (G"n)�1(f0g) = f(w; k) 2Un jG"n(w; k) = 0g = f(w; k) 2 Un j k = K̂"n(w)g = graph(K̂"n). Thus, graph(K̂"n) is a
losed subset of Un . As Un is a 
losed subset of [ 1n ; n�� [0; n℄, graph(K̂"n) is also 
losedin [ 1n ; n�� [0; n℄.Now let ~K"n be the restri
tion of K̂"n to the open subset Sn :=℄ 1n ; n�. Clearly, ea
h ~K"n is
ontinuous as the restri
tion of a 
ontinuous map to a subset of its domain. Moreover,~K"n is also the restri
tion of ~K" to Sn and fSngn>1 is an in
reasing sequen
e of opensubsets of R++ = [n�1Sn. Thus, 
ontinuity of ~K" for all " 2 E follows from LemmaA.3. Sin
e 
ompositions of 
ontinuous fun
tions are 
ontinuous, this implies 
ontinuityof K(�; ").(ii) Under the additional hypotheses, the fun
tion g in (A.4) is 
ontinuous. The Fellerproperty of Q then implies that G in (A.5) is 
ontinuous as well. One 
an now slightlymodify the arguments of the previous step to show that K is a 
ontinuous fun
tion.(iii) Let " 2 E be arbitrary but �xed. Under the additional hypotheses, the fun
tion G"de�ned in (i) is C1. Repeating the proof of Theorem 1 under the additional di�erentia-bility 
ondition, it is straightforward to show that G"2(w; k) > 0. Thus, an appli
ationof the impli
it fun
tion theorem yields that ~K" de�ned in (i) is C1 with derivative~K"1(w) = �G"1(w;K"(w))[G"2(w;K"(w))℄�1.(iv) If the sho
ks are i.i.d, the fun
tions G = G" and ~K = ~K" de�ned in the previoussteps are independent of ". As shown in (iii), ~K is C1 whi
h implies that K = ~K ÆW isC1 under the hypothesis. If, in addition, W2 > 0 then 
learly K2 > 0. �Referen
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