AT

Karlsruher Institut fur Technologie

Uniqueness of Markov
equilibrium in stochastic
OLG models with
nonclassical production

by Marten Hillebrand

No. 46 | NOVEMBER 2012

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



Impressum

Karlsruher Institut fur Technologie (KIT)

Fakultat fur Wirtschaftswissenschaften

Institut far Wirtschaftspolitik und Wirtschaftsforschung (IWW)
Institut fur Wirtschaftstheorie und Statistik (ETS)

Schlossbezirk 12

76131 Karlsruhe

KIT — Universitat des Landes Baden-Wirttemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Working Paper Series in Economics

No. 46, November 2012

ISSN 2190-9806

econpapers.wiwi.kit.edu



Uniqueness of Markov Equilibrium in Stochastic
OLG Models with Nonclassical Production*

Marten Hillebrand'

November 27, 2012

Abstract

This paper studies Markov Equilibria (ME) corresponding to recursive equilib-
ria on the natural state space in the stochastic OLG model extended to include
non-additive utility, nonclassical production, and Markovian production shocks.
Specifically, we provide sufficient conditions under which the ME is unique. It
turns out that uniqueness obtains for a large class of economies and that restric-
tions either on the consumption side or the production side alone are sufficient
to guarantee this result. We also discuss additional properties such as continuity
or smoothness of the equilibrium mappings and whether additional recursive or
non-recursive equilibria exist.
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Introduction

Starting with the pioneering work of Wang (1993), researchers have studied the existence
and properties of equilibria in overlapping generations (OLG) models with random pro-
duction shocks. Of particular interest in these studies is the class of recursive equilibria
(RE) where the equilibrium variables are determined by time-invariant mappings on the
natural state space with the state variable consisting of current capital and the produc-
tion shock. Following the terminology introduced in Kiibler & Polemarchakis (2004),
such equilibria will be referred to as Markov equilibria (ME). Studying the properties
of ME for a large class of stochastic OLG models is the theme of the present paper.

In a setting with classical production functions, i.i.d. shocks, and time-additive utility,
Wang (1993) showed that a capital-income monotonicity condition on the production
technology is sufficient for a unique ME to exist. In addition, he established several
additional properties of the equilibrium mappings such as smoothness and monotonicity.
The model in Wang (1993) was generalized in Wang (1994) to include non-additive
utility and general Markovian shocks processes and further in Morand & Reffett (2007)
who, in addition, allow for non-classical production functions. The latter were originally
introduced in Greenwood & Huffman (1995) and Coleman (1991) in a non-OLG setting.
While Wang (1994) uses the methods and results of Duffie et a. (1994) to study the
existence of so-called Generalized Markov Equilibria (GME) where the state space may
include additional variables such as sunspots, etc., Morand & Reffett (2007) continue
to focus on ME and present a very general approach to study their existence. Their
approach employs methods from functional analysis to obtain ME as fixed points of
a suitably defined operator. Using the Knaster-Tarski fixed point theorem permitted
them to derive sufficient conditions for a ME to exist in their setup.

Building on the existence results of Morand & Reffett (2007), the present paper seeks
to establish additional properties of ME while maintaining the same level of generality
as their study. As our main contribution, we establish sufficient conditions under which
the ME is unique and the equilibrium mappings possess additional properties such as
monotonicity, continuity, or even smoothness. Similar properties were derived in Wang
(1993) but it is not yet known under what conditions they hold for the much larger class
of economies studied in Morand & Reffett (2007). Knowing these additional properties
is important not only for theoretical reasons and welfare analysis, but also for applied
numerical work as, e.g., in Feng et al. (2012).

Conceptually, we employ the same operator-based approach used in Morand & Reffett
(2007). In general, uniqueness of a fixed point obtains only under very special circum-
stances, e.g., if the underlying operator is a contraction or satisfies a set of additional
and rather restrictive conditions as in Coleman (1991). However, we demonstrate in
this paper that the operator developed in Morand & Reffett (2007) possesses a very
special structure that is unique to their OLG setup with two-period lived consumers



but not exploited in their paper. It is precisely this additional property that will allow
us to obtain the uniqueness results of this paper. In fact, it will turn out that the ME
is unique for most cases studied in Morand & Reffett (2007). Moreover, we also show
that if the ME is unique, it is in fact the unique sequential equilibrium of the economy.

The paper is organized as follows. Section 1 introduces the model. The formal structure
to study ME is developed in Section 2. The main results are presented in Section 3.
Section 4 concludes, proofs for all results are placed in the Mathematical Appendix.

1 The Model

This section presents the basic setup of the model which extends the one in Morand &
Reffett (2007) by relaxing several of their assumptions.

Consumption sector

The consumption sector consist of overlapping generations of consumers who live for two
periods. In their first period of life, consumers supply one unit of labor inelastically to
receive the wage w;, > 0 which is used for saving s; and consumption when young c¢; =
w; — s¢. Savings earn the random capital return ;4 in the following period in which no
further income is received such that second-period consumption is given by the random
variable ¢f,; = s;741. Given labor income w; > 0 and the perceived random capital
return of the following period r;, 1, consumers choose savings s; to maximize expected
lifetime utility based on some von-Neumann Morgenstern utility function function U :
Ri — R defined over consumption in both periods. The decision problem reads

mgx{]Et [U(wt — s, srt+1)] |0 <s< wt}. (1)

Here, E; denotes the expectations operator conditional on information at time ¢ which
is formally defined below. The following restrictions are imposed on U.

Assumption 1
U is C? and concave with derivatives satisfying Uy < 0 < U;, i € {1,2} and the Inada
conditions lim. _,o Uy (c¥, ¢°) = oo for all ¢° > 0 and limgo_,o Us(c¥, ¢®) = oo for all ¢V > 0.

Given w; > 0 and the random variable r; 1, Assumption 1 guarantees a unique interior
solution 0 < s; < wy to (1) which determines next period’s capital stock k.

Production sector

The production sector produces the consumption good using labor and capital as input
factors. In addition, the production process in period ¢ is subjected to a random shock
g, with values in £ C [emin, €max|- In equilibrium, labor is constant and the wage w; and
capital return r; are determined from the current stock of capital k£; > 0 and the shock



gy € € according to the mappings

W:Ryy x&— Ry, wy = Wk, &) (2a)
R:Ryy x&—Ryy, re = Riki,er). (2b)

Profits are zero at equilibrium. The previous specification includes the cases with clas-
sical production in Wang (1993) and non-classical production in Greenwood & Huffman
(1995), Coleman (1991), and Morand & Reffett (2007) as special cases. Rather than
specifying the underlying production technology directly, we will work with the map-
pings W and R as being part of the primitives of the economy. The following restrictions
are imposed which are slightly weaker than those in Morand & Reffett (2007).

Assumption 2
(i) Both functions W and R are Borel-measurable.

(ii) For each e € £, k — W(k,¢) is increasing while k — R(k, ) is strictly decreasing.

(iii) For each k > 0, £ — W(k,¢) and ¢ — W(k,e) are bounded.

Production shocks follow a Markov process with time-invariant transition probability
Q:ExABE) — [0,1]. Given an initial state g € &, the transition ) permits to
construct a probability space (Q, F,P) together with a filtration {F;};>o to which the
process {&;}¢>0 is adapted such that &, : Q@ — & is Fi-measurable, t > 0.! We denote
by E[-] := E[:|F;] the expectation conditional on the information represented by F;.
The following assumption adds some technical restrictions on Q).

Assumption 3
R preserves measurability, i.e., jff : Y X E — ]R Y C R™, m > 1 is a measurable
function, then g : Y x £ — R, ¢(y, ¢ fg Q(z,de") is also measurable.

A stronger requirement frequently imposed would be the so-called Feller property: If
Y CR" m > 1 and f Y xE — ]R is a bounded continuous function, then so is
g:YxE — R gy,e) = fg Q(e,de"). We will refrain from imposing this
property directly but 1nd1cate below hOW it would permit to sharpen some results.

Equilibrium

The economy is & = (U, W, R,Q) plus the initial condition zg := (ko,e0) € X :=
R, x &£. The set X will be referred to as the (natural) state space of the economy.
The following definition provides a general characterization of equilibrium. Note that
the previous assumptions imply that all equilibrium variables are strictly positive.

'In what follows, the notion of an adapted stochastic process {& }1>0 taking values in a topological
space = implies that each & : @ — = is F; measurable, i.e., can depend only on the random variables
(€0, ---,€¢). Measurability of mappings M : Y — Z between topological spaces Y and Z is always
understood with respect to the Borel o-algebras #A(Y) and ZA(7Z).



Definition 1
Given xy € X, a sequential equilibrium (SE) of economy & is an adapted process
{wy, T4, Sty kgt beso with values in R, satisfying the following conditions for all t > 0:

(i) Given w; and the random variable ry, 1, s; solves (1) while ki1 = s;.

(ii) Factor prices w; and ry are determined from k; and ¢, by (2a) and (2b).

The induced equilibrium consumption processes {cf, ¢} }i>o follow directly by inserting
the equilibrium variables into the consumers’ budget constraints.

2 Markov Equilibria (ME)

Definition of ME

A recursive equilibrium (RE) is an equilibrium where all equilibrium variables of period
t are determined by time-invariant functions of some state variable x; taking values in
the state space X. A Markov equilibrium (ME) is a recursive equilibrium on the natural
state space X = R, x £ where the state variable is z; := (k;,&;). It is this class of
equilibria that we will focus on in this paper. As the functions W and R already satisfy
the Markov property, a ME is essentially determined by a time-invariant mapping which
determines the evolution of capital respectively savings. Formally, we have

Definition 2
Given xy € X, a ME of economy & is a measurable map K : X — R, , on the natural

state space X = Ry, x £ such that the process {wy, 14, s¢, k141 }i>0 defined recursively as
kiv1 = K(ki,er) = s, we = W(ky, g4), and rp = R(ky, g4) for allt > 0 is a SE of &.

Constructing the operator A

To establish the existence and properties of ME, we follow Morand & Reffett (2007) to
construct an operator A on a suitable function space .¥ whose fixed points are ME. In
the sequel we take .7 to be the class of Borel-measurable functions K : X — R, .
The operator A is constructed from the Euler equations derived from the consumer’s
decision problem (1). To this end, consider a given period ¢ with state z; = (k, £;) which
determines the current wage w; from (2a) and the conditional distribution Q (g, -) of next
period’s shock. To decide on her investment s; € [0, w], the consumer needs to determine
the (correct) distribution of the uncertain capital return r,; of the following period.
As i1 = R(kyy1,£051) and the consumer knows the function R and the conditional
distribution of €411 (which are part of the fundamentals of the economy), this amounts
to (correctly) forecasting next period’s capital stock &, > 0 which, conditional on the
information at time ¢, is a value rather than a random variable. Suppose the consumer
holds a perceived law of motion for the capital stock L € . to compute her forecast



kiv1 = K(ki,et). Then, given (4, ki) € X x Riy, an optimal savings decision s,
derived from (1) must satisfy the first-order conditions H (sy; ky, 4, k1) = 0 where

H(s: ke k) = / Uy OW(k, &) — 5, sR(K £))Q (e, d=') (3)

/R W(k,e) — s, sR(K',"))Q(e, de").

Under the Inada assumptions (which ensure existence) and the concavity of U (which
implies uniqueness), the function H(-; z, k") has a unique zero for all x € X and £’ > 0.
Thus, there exists a (savings) function § : X x R, — R, which determines the
unique solution s; = S(ky, &4, kii1) to (1). The following lemma is the key ingredient to
define the operator A below.

Lemma 2.1
Under Assumptions 1, 2, and 3, the mapping § : X x R, — R, is measurable.

Substituting the perceived law of motion K into S one obtains an operator A which
associates with IC € .7 the new function AKX : X — R, defined as

(AK)(z) :== S(x,K(x)) for z € X. (4)

As S is measurable by Lemma 2.1 and the composition of measurable functions is again
measurable, it is evident that A maps .7 into itself.? As k,;; = s, at equilibrium, a ME
corresponds precisely to a fixed point of A.

Fized points of A

Under a set of additional restrictions, Morand & Reffett (2007) establish the existence
of fixed points of A. Their argument is based on the Knaster-Tarski fixed point theorem
for which they impose additional restrictions such as monotonicity on the set .%.

In this paper, we follow a different route which determines fixed points of A pointwise
as zeroes of a real-valued function. This approach is possible due to a key property of
the operator A which is evident from (4) but not exploited in Morand & Reffett (2007):
For each z € X the value (AK)(x) depends only on the value K(z) and not on the
entire function K. Formally, for any two functions Ky, Ky € .7, Ky(2) = Ko(x) implies
(AK:)(z) = (AK3)(z).®> The main implication of this property is that fixed-points of
A can be constructed point-wise, for each state x € X. This fact is stated formally
in the following lemma the proof of which follows directly from (4) and the previous
arguments.

2Tt is straightforward to show that A maps . into the class . of measurable functions K : X —
R, which satisfy, in addition, K(z) < W(z) for all x € X. Thus, fixed points of A must necessar-
ily be elements of '. If limy_,oW(0,e) = 0 for all ¢ € £, one also infers the boundary behavior
limy_,o K(k,e) =0 for any K € ..

3This very special structure is unique to overlapping generations models with two-period lived con-
sumers. In most macroeconomic models with multiperiod or infinitely-lived consumers, the operator A
will vary with the entire function K, i.e., the value (AK)(w) depends on the entire function K.



Lemma 2.2
The map K € .7 is a fixed point of A, i.e., (AK)(x) = K(z) for all x € X, if and only if

S(z,K(x)) = K(z) Ve e X. (5)

General uniqueness conditions
The result from Lemma 2.2 will permit us to establish many additional properties of
ME not derived in Morand & Reffett (2007). In particular, we will provide sufficient
conditions under which the economy has a unique ME. To prepare these results, let
O: XxRy — R

Oz, k') =k — S(x, k). (6)

Note that Lemma 2.1 implies that & is measurable. Using Lemma 2.2, it follows that
for each z € X, the value k* = K*(z) of any fixed point K* € . of A must must be a
zero of ®(z,-), i.e.,

O (z, k*) = 0. (7)
Equation (7) is precisely the condition employed in de la Croix & Michel (2002) in a

deterministic setting. It is also equivalent to — in fact, merely a restatement of— the
self-confirming expectations approach in Wang (1993). Define the correspondence

T:X = R.,, U(a):={KecR.|dK)=0l (8)

Then, determining a ME is equivalent to finding a measurable selection of W, i.e., a
measurable function £ : X — R, such that K(z) € ¥(x) for all x € X. Clearly, a
necessary condition for ME to exist is that ¥ be non-empty valued. It is also clear that
if ¥ is single-valued, i.e., a function, then there can be at most one ME. In this latter
case, the next result shows that ¥ will automatically be measurable, i.e., a unique ME
exists. On the other hand, if for each z € X the map ®(z, -) has at most one zero, there
can be at most one ME. Thus, a sufficient condition for uniqueness is that ®(x,-) be
strictly monotonic for all z € X. The following final result of this section summarizes
these insights which will be key for the uniqueness result derived in the next section.

Lemma 2.3
Let @ : X x Ry, — R defined in (6) be measurable. Then, the following holds:

(i) & has a unique ME, if and only if ®(Z,-) has a unique zero k > 0 for each & € X.

(ii) If ®(z,-) has at most one zero for each & € X, then & has at most one ME.

3 Uniqueness of Equilibrium

Uniqueness of ME
Exploiting the insights from the previous section, we are now in a position to establish a
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set of additional properties of ME. The first main result is the following theorem which
lists sufficient conditions under which the economy has at most one ME.

Theorem 1
Let Assumptions 1, 2, and 3 be satisfied, Then, each of the following restrictions is
sufficient for the economy & to have at most one ME:

(i) U(cY,¢®) = u(c¥) + v(c°) where v satisfies U:,((i))c > —1.

(ii)) Ujp > 0 and k — kR(k,¢), k > 0 is weakly increasing for all ¢ € £.

(iii) < U”Cyczoc > —1 for all (¢¥,¢°) > 0 and k — R(k,¢) is differentiable for all € € £
where R < 0. In addition, either Uy; < 0 or Rﬁgk E; > —4 forallk>0,c€€&.

The hypotheses of Theorem 1 are satisfied for a broad class of economies. Condition (i)
holds, e.g., if second-period utility displays constant relative risk aversion 0 < 6 < 1,
i.e, v(c) =% (¢"? = 1), v > 0 or under CES utility v(c) = [1 — 0+ 6c?]'/2, 0 <6 < 1
if 0 < p < 1. Also note that the restriction (i) is precisely Assumption 4 in Morand
& Reffett (2007). This shows that the ME in their model is in fact unique whenever
this restriction is imposed. Thus, their findings can considerably be strengthened if the
additional properties of the operator A identified above are exploited.

Condition (ii) in Theorem 1 is the natural extension of the uniqueness condition in Wang
(1993) to the present more general setting. For the case with a classical production func-
tion f, it holds, e.g., if f is of the CES form f(k,e) = eg(k) where g(k) = 6[1—@—{-&/479]%,
0<a<land0<p<1where p=0 gives a Cobb-Douglas technology. The additional
restriction Ujp > 0 is imposed throughout in Morand & Reffett (2007).

Finally, under the additional differentiability condition, (iii) permits to relax (ii) (which
would imply ngk E; > —1) while imposing an additional restriction on U. The lat-
ter generalizes (i) to the non-additive case and holds, e.g., for Cobb-Douglas utility
U(c?, %) = (¢)*(c°)?, a, 8 > 0. Furthermore, for the classical CES production function
Rﬁgzgk = k;’,lél(g';) —(1 = 0) ;=% which implies that the restriction
on R in (iii) holds iff p > —3. The latter could further be relaxed if an upper bound on
k such as k < f(k,e™®) — which is done in Morand & Reffett (2007) — is imposed.

mentioned above,

As a general insight, Theorem 1 shows that restrictions either on the consumption
side (condition (i)) or the production side (condition (ii)) alone are already sufficient to
induce a unique ME once it exists. It also reveals that the elasticities of the capital return
function R and second-period marginal utility are key to the uniqueness of equilibrium
while neither the wage function YV nor the marginal utility of first-period consumption
nor the transition () play a crucial role. As a consequence, multiple ME can occur
only if capital income decreases very rapidly and the marginal utility of second-period
consumption is very elastic. Thus, it seems rather difficult to obtain cases in which
multiple MEs exist, and one may conclude that in the present class of models, uniqueness
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of ME — in fact, of equilibrium, as we show below in Theorem 3 — is a generic property.
Also note that Theorem 1 does not ensure the existence of a ME. Imposing the additional
restrictions of Morand & Reffett (2007), existence follows directly from their results.

Smoothness and monotonicity of ME

In cases where the ME is unique, one may ask which additional properties of K can
be inferred. In Wang (1993), the factor pricing functions R and W are both C' which
implies that the map K is also C! and strictly increasing in his model. In the present
case, a similar result holds in the sense that IC essentially inherits the properties of the
factor pricing functions. The result needs the following additional

Assumption 4
For all ¢ € £, the map k — R(k,¢), k > 0 in (2b) satisfies the boundary behavior
limR(k,e) =oc0 and limkR(k,e) < oo.

k—0

k—0
Note that unlike Theorem 1 the following result also asserts the existence of a ME.

Theorem 2

Let Assumptions 1, 2, 3, and 4 and any of the hypotheses (i), (ii), or (iii) of Theorem 1
be satisfied. In addition, suppose k — W(k,e) and k — R(k,e) are continuous for all
e € £. Then the economy & has a unique ME K € . with the following properties:

(i) For alle € £, k — K(k,¢), k > 0, is continuous. It is increasing if Uy; > 0.

(ii)) If W and R are continuous and @) has the Feller property, then K is continuous.
(iii) If for alle € € k — W(k,e) and k — R(k,¢) are C', then k — K(k,¢e) is C".

(iv) If, in addition to (iii), shocks are i.i.d., £ is an interval, and W is C', then K is
C'. Further, if W, > 0, then Ky > 0.

Uniqueness of SE

The previous discussion revolved around whether Markov equilibria are unique. This
raises the question of whether there are other equilibria, i.e., recursive equilibria on a
larger state space or non-recursive SE. A striking feature of the equilibrium structure
from Section 2 is that the savings function § is independent of how the forecast k;
was obtained. In other words, it is independent of any hypothesized law of motion and
just depends on the value predicted for the following period. As a consequence, any
equilibrium process — recursive or not — must satisfy the condition k1 € U(k;,e4) for
all ¢ > 0. This shows that if the ME is unique, i.e., the function ®(z,-) has a unique
zero for all © € X/ each state x; has a unique continuation value k; 1 which is precisely
the value determined by the ME. Thus, the equilibrium capital process {k.11}i>0 is
uniquely defined. As the other equilibrium variables follow directly from this process,
the equilibrium is in fact unique whenever the ME is unique. We state these insights as
the following final theorem. The proof follows directly from the previous arguments.



Theorem 3
Suppose the economy & has a unique ME. Then, this is also the unique SE of &.

Note, however, that this result does not say that the number of ME is identical to
the number of SE for the economy. The reason is that if there are multiple solutions
to (7), then so-called Generalized Markov Equilibria (GME) exist which are obtained
by randomizing over possible continuation values. This is the case studied in Wang
(1994) using the powerful techniques of Duffie et al. (1994). Clearly, in this case, an
uncountable number of distinct equilibrium processes can be generated.

4 Conclusions

Our analysis provides sufficient conditions under which a broad class of OLG economies
with stochastic non-classical production and two-period lived consumers has at most one
ME. The conditions obtained are quite general and should be easy to verify in applied
work as they are stated directly on the primitives of the model.

One aspect not discussed in this paper is whether the ME gives rise to a Station-
ary Markov Equilibrium (SME) corresponding to an invariant distribution on the state
space. Using different techniques, this issue is studied at length in Wang (1994) and
Morand & Reffett (2007). As the restrictions imposed in this paper are weaker than
those in Morand & Reffett (2007), their findings remain directly applicable in our setup
if their additional restrictions are imposed.

As shown in Section 2 — and also in Wang (1994) — the key object for studying equilibria
—recursive or not — is the equilibrium correspondence defined in (8). If this correspon-
dence is multi-valued, i.e., not a function, the structure developed in Section 2 can be
used to explicitly construct Generalized Markov equilibria by randomizing over different
continuation values. While in this case, an uncountable number of SE exist, one could
still quantify the equilibrium set by establishing bounds on the number of continuation
values, i.e, the maximum the number of zeroes of the map ®(x,-) defined in (6) for all
choices x € X. For the latter purpose, the semi-algebraic approach developed in Kue-
bler & Schmedders (2007) — although currently designed for static exchange economies
— could become a useful tool. This might be an interesting avenue of future research.

A Mathematical Appendix

A.1 Auxiliary results

We begin by recalling some concepts and introducing some technical results that will
be used subsequently. Given some topological space X with topology Tx C Z(X), we



endow subsets Y of X with the relative (trace) topology Ty := {ONY|O € Tx}. Recall
that if Y is open in X, then 7y C Tx. The Euclidean space R™, m > 1 is endowed with
the usual topology which is generated by the Euclidean metric. Unless stated otherwise,
continuity of functions is always understood with respect to these topologies.

A topological space X becomes a measurable space when endowed with the Borel o-
algebra Z(X) which is generated by the open sets Tx. On subspaces Y C X the Borel-o
algebra Z(Y) is generated by the relative topology 7y but also coincides with the trace
o-algebra, i.e., Z(Y) = {ANY|A € #A(X)}, cf. Aliprantis & Border (2007, p.138,
Lemma 4.20). In particular, if Y € #(X), i.e., is measurable in X then Z(Y) C #(X).
Also recall that A € #(X), B € Z(Y) implies A x B € #(X xY).

The following lemmas will be used in the proofs of our results below.

Lemma A.1 (Measurable Graph Theorem)

A function f : X — Y where both X and Y are complete separable metric spaces, is
Borel-measurable, if and only if graph(f) := {(z,y) € X x Y|y = f(x)} is a Borel-
measurable subset of the product space X x Y, i.e., graph(f) € Z(X x Y).

Proof: See Buckley (1974, §3, Propositions 1 and 6).

Lemma A.2 (Closed Graph Theorem)

A function f : X — Y from a topological space X into a compact Hausdorff space Y
is continuous if and only if graph(f) := {(z,y) € Xx Y|y = f(x)} is a closed subset of
the product space X x Y (endowed with the product topology).

Proof: See Aliprantis & Border (2007, p.51, Theorem 2.58).

Lemma A.3

Let f : X — Y be a map between two topological spaces X (with topology Tx) and Y.
Suppose there is a sequence {X, },>1 of open subsets (X,, € Tx) of X which is increasing
(X, C X,41) and converges to X, i.e., X = |J,-, X,,. Further, suppose that for each
n > 1 the restricted map f, := fix, : X, — Y is continuous. Then f is continuous.

Proof: Endow each X, with the relative topology 7, := {UNX, |U € Tx}. As X, is
open, T, C Tx for all n > 1. Let O be an open subset of Y. We have to show that
fH0) € Tx. As each f, is continuous, f,'(Q) € T, C Tx and, therefore, f,'(Q) € Tx
for alln > 1. We claim that f~'(0) =, >, f, '(0). Let z € f~'(Q) be arbitrary. Since
X = J,-, X,, there is some X,, such that 2 € X,,, and f(2) = f,.(v) € Q. Hence, z €
£ Q) € U,» £, (0) which, since & was arbitrary shows that f~(Q) C U, f, *(0).
Conversely, let z € Unsi fn '(Q). Then, z € £,,'(0) for some m, ie., z € X,, C X and
fm(z) = f(x) € @. Conclude that z € f~'(Q) which, since x was arbitrary, implies
f70) > U, fi'(Q). Thus, we have shown that f~'(Q) is the union of open sets
f71(0) € Tx. Since any union of open sets is open again, this implies f~'(0) € Tx. W
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Lemma A.4

Let f : X — Y be a map between two topological spaces X and Y endowed with the
Borel o-algebras #(X) and Z(Y). Suppose there is a sequence {X, },>1 of measurable
subsets (X, € #(X)) of X which is increasing (X,, C X,,+1) and converges to X i.e.,
X = U,>1 X,,. Further, suppose that for each n > 1 the restricted map f, := fix, :
X,, — Y is measurable. Then f is measurable.

Proof: Endow each X,, with the trace-o algebra %, .= {ANX, |A € A(X)}. As X, is
measurable, 8, C B(X) for n > 1. Let A € B(Y). We show that f~'(A4) € B(X). As
each f, is B, —%(Y) measurable, f'(A) € B, C B(X) and, therefore, ' (A) € B(X)
for all n > 1. Following the exact same arguments as in the proof of Lemma A.3
(with ’open’ replaced by 'measurable’), it is straightforward to show that f~'(4) =
U,>1 fi ' (A), i.e., f7'(A) is the countable union of measurable subsets f,'(A4) € B(X).
As A(X) is closed under countable unions, this implies f~'(4) € #(X), as claimed. B

A.2 Proof of Lemma 2.1
Define U:= {(w,s) e R%  |s<w}, V:=R;; xExU,and let v: R, x U — R,
v(r,w,s) = —=U(w—s,sr)+rUy(w—s,sr). (A.1)

The map v is C* and, therefore, measurable. As the composition of measurable functions
is measurable, Assumption 2 implies measurability of (k' &', w,s) — v(R(k' "), w,s)
and, invoking Assumption 3, of the function V' : V — R,

V(K e w,s) ::/v(R(k',e'),w,s)Q(a,de'). (A.2)
£

Using the same arguments as in Section 2, the function V(&' ¢, w,-) :]0, w[— R has
a unique zero 0 < s < w for each (k' ,e,w) € S := Ry, x & x R, which may be
written as a function S : S — R, s = S(k',e, w). We will show that S is measurable.
This and measurability of YW due to Assumption 2 will then imply that S(k,e, k') =
S(k',e,W(k,¢)) is measurable.*

For n > 1, define S, := [%,n] x £ x [+,n] C S. Observe that {S,},>; is an increasing
(S, C Spi1) sequence of measurable (S, € H(S)) subsets of S that converges to S =
U,>1 Sn- Thus, by Lemma A.4, it suffices to show that each S, := Sjs, : S, — [0, 7]

4Until here, the argument is similar to the proof of Lemma 5 in Morand & Reffett (2007). At this
point, however, their argument concludes that continuity of S(-,¢) in w and k' for each fixed ¢ € &
implies measurability of S. While this is correct if shocks are i.i.d., it neglects that, in general, there
will also be a direct influence of € on S through the transition ). Then, the previous argument seems
no longer valid to infer measurability of S. The following proof presents an alternative which fixes this
problem and also shows that measurability of S obtains even under the more general restrictions of this

paper.
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is measurable. Observe that both the domain and range of S, being closed subsets of
complete separable metric spaces are complete separable metric spaces. Thus, by Lemma
A.2, 8, is measurable if and only if graph(S,) is a measurable subset of S, x [0, 7], i.e.,

graph(S,) € A(S,, x [0,n]).

Forn > 1, define V,, := {(K',e,w, s) € [2,n]xE X[+, n]x[0,n]]s < w} = VN(S, x[0,n])
which is a measurable subset of V. Consider the restriction V;, := Vjy, : V,, — R which
is measurable as the restriction of a measurable map V' to a measurable subset of its
domain. As {0} is a measurable subset of R this implies that V"1 ({0}) = {(K, ¢, w, s) €
Vo | V(K e w,5) = 0} = {(K,e,w,s) € S, x [0,n] | s = Su(k',e,w)} = graph(S,) is a
measurable subset of V,, i.e., graph(S,) € #(V,). Since V,, is a measurable subset of

Sy x [0,n], B(V,) C B(S, x [0,n]) which implies that graph(S,) € Z(S, x [0,n]). W

A.3 Proof of Lemma 2.3

(i) Suppose the economy has a unique ME K. Then, K is a measurable selection of
the correspondence ¥ defined in (8). By contradiction, suppose for some # € X, the

function ®(Z,-) has at least two zeroes, say k; and k. W.l.o.g., suppose ki = K(Z).
Then, the function o : X — R, |

kg Tr=2x

Ksa(z) :== K(z) + 1z (2) (k2 — k1) = { K(x) otherwise

is a measurable function that satisfies Ko(x) € ¥(z) for all z € X i.e., is another ME,
contradicting uniqueness of the ME.

Conversely, suppose for all z € X, the function ®(Z,-) has a unique zero. In this case,
the correspondence ¥ : X — R, is a function whose domain X = R%, x £ is the
product of an open and a closed subset of R which is a Polish space. As open and closed
subsets of Polish spaces are Polish and so are their product, both the domain and range
of U are Polish spaces. By Aliprantis & Border (2007, Theorem 12.28, p.450), ¥ is
measurable if and only if graph(¥) is a measurable subset of X x R, . By assumption,
® : X x R;; — R is a measurable function which implies that ®1({0}) = {(z, k') €
X xRy [Pz, k') =0} = {(z,k) € Xx R | k' = U(x)} = graph(¥) is a measurable
subset of X x R, ;.

(ii) If for some & € X, ®(z,-) fails to have a zero, then ¥(z) = (). As any ME is a
measurable selection of W, there will be no ME in this case. If, for all # € X| ®(z, ) has
precisely one zero, then a ME exists by (i). |

A.4 Proof of Theorem 1

Let © = (k,e) € X and w := W(k,2) > 0 be arbitrary but fixed. Using Lemma 2.3(ii),
we show that the map ®(z,-) : R,y — R defined in (6) has at most one zero k' > 0.

12



Define S as in the proof of Lemma 2.1. Then, using (6) and (A.2)

O, k) =0 & K=8F w) o V(E,wek)=0. (A.3)

Thus, letting G(w, e, k") :== V(k',w,e, k") with V defined as in (A.2), it suffices to show
that G(w,¢,-) :]0, w[— R is strictly monotonic. Defining

g(w, k' &) = -U(w— K KR(K, "))+ R(K,eNUs(w — k', K'R(K', ")) (A.4)

the function G' may be written as
Glw, 2, i) = / g(w, K, £)Q (e, de"). (A5)
£

As integration preserves monotonicity, it suffices to show that k' — g(w, k', £') is strictly
monotonic — in fact, decreasing — in each of the three cases below.

(i) Under the hypotheses, the map ¢ in (A.4) takes the form
glw, k' ")y = —u'(w—K)+ f(K',R(K, ") (A.6)

where f : R, — Ryy, f(z,y) := yv'(yx). The first term in (A.6) is a strictly
decreasing function of k'. Thus, it suffices to show that k' — f(k', R(k',¢")) is decreasing
for all & € £, which follows directly from fi(z,y) = y*v"(yz) < 0 < fo(z,y) = v'(yx) +
yxv"(yx) and k" — R(k',€") being strictly decreasing by Assumption 2.

(i) Under the hypotheses, it is straightforward to show that &' +— g(w, k', &"), 0 < k' < w
defined in (A.4) is strictly decreasing for all (w,&’) € Ry, x €.

(iii) Under the additional hypothesis, the function &' — g(w, ', k') defined in (A.4) is
continuously differentiable for all (w,e') € Ry, x £ and so is G. As differentiation
and integration over a compact set may be interchanged, the partial derivative of G
computes

G3(w,e, k') :/Sgg(w,k',e')Q(e,de'). (A.7)

It suffices to show that g3 < 0. Dropping the respective arguments for convenience, the
derivative of (A.4) may be written as

gg(w, 6’, kl) == Rl [UQ + klRUQQ] + U11 — 2RU21 + R2U22 — UglklRl. (AS)

The first term is strictly negative as Ry < 0 and the bracketed term is strictly positive
by assumption. Suppose first that Uy < 0. Then, the last term in (A.8) is negative as
well, so we need to show that Uy — 2RUy; + R?Usy < 0 or, using Uy; < 0 for i € {1,2}

M := |Uni| = 2R|Us1 | + R?|Uss| > 0. (A.9)

The concavity of U implies a negative semi-definite Hessian matrix, so Uy Uy > U122,
which may be restated as [Uya| < |Uy;|2|Uss|?. Substituting this result into (A.9) gives

M > |Up| = 2R|Un |2 |Uss|? + R2|Uss| = (|Un1|2 — R|Uss|2)? > 0. (A.10)
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Second, suppose that ¥Ry > —4R. If Uy (w — k', k'R (K',£")) < 0, the argument of the
previous step remains unchanged, so suppose Uy (w — k', K'"R(k', ")) > 0. Then,

Uy — 2RUsy; + R?Usy — Uy kR < Uyy + 2RUsy + R2Usy = — M

with M defined in (A.9). As shown before, M > 0, which proves the claim. [ |

A.5 Proof of Theorem 2

Define the maps g and G as in (A.4) and (A.5). Note that the continuity assumption
implies that ¢ is a continuous function in £’. As integration over a compact set preserves
continuity, G is continuous in £’ for all (w,e) € Ry, x €. The existence of a ME
will follow from Lemma 2.3 (i) if we show that G(w,¢,-) has a unique zero for all
(w,e) € Ry x&. To this end, observe that Assumption 4 implies the boundary behavior
limg~p g(w, €', k) = —oo and limy, ~g g(w,€’, k) = oo. This being true for all ¢’ € &
implies that limy~ ,, G(w, €, k) = —oo and limy, - G(w, e, k) = oo for all (w,e) € Ry x&.
By continuity of G(w, e, -), this ensures existence of a zero which is necessarily unique
by monotonicity and defined by an implicit function K : R, x £ — R, . By Lemma
2.3, the function K : X — Ry, K(k,¢) :== K(W(k,¢),¢) is the unique ME. Clearly,
if Uy, > 0, then ¢ and G are both strictly increasing in w, which implies that (-, &) is
strictly increasing. It then follows from Assumption 4(ii) that £(+,¢) is increasing.

(i) Let ¢ € &€ be arbitrary but fixed. Define U := {(w,k') € R3, [0 < ¥ < w}
and the map G° : U — R, G°(w, k) := G(w,e,k). Under the hypotheses, G° is a
continuous function as the integrand is continuous and integration over a compact set
preserves continuity. As shown in the proof of Theorem 1, for each w > 0 the map
G*(w, ) :]0, w[— R is strictly decreasing and, therefore, has a unique zero determined
by some map K¢ : R,, — R,,. We show that K¢ is continuous.

For n > 1, let §, > 0 be a small number such that ¢, < i Define the compact set
U, = {(w,k) € R:, |% < w < nd, <k < w-—294,} and consider the restriction
G = Gfy, : Uy, — R. Clearly, G7, is continuous as the restriction of a continuous
function to a subset of its domain. We seek to determine §,, such that each G (w,-) :
[0, w — 6,] — R has a — necessarily unique — zero for all w € [, n] determined by
Ke [L,n] — [0,n]. Then, K will be the restriction K to [L,n]. Recall that G5 (w, )
is continuous and strictly decreasing for all w € [%, n]. Thus, to ensure that I@Z is well-
defined, it suffices to have G%(w,d,) < 0 < G&(w,w — 8,) for all w € [+, n]. For 4, > 0,

define
we [}

ve L)

G ax(0n) = maX{GE(w,w—(Sn)

w

min
w

cin(0n) = min{GE(w,(Sn)
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which are well-defined due to continuity of G° and compactness of [%,n] Note that
GE

Ginax
lim;_,0 G*(w, 0) = oo for all w > 0, implies G%,;,(,,) > 0 for §,, sufficiently small. Thus,

min

(0,) < 0 < G%,.(0,,) implies G*(w,w — d,,) <

min

is strictly increasing in §, and lims o G*(w, w — §) = —oo for all w > 0 implies
(0,) < 0 for ¢, sufficiently small. Likewise, G% . is strictly decreasing in ¢, and

min

choosing 9,, small enough such that G% .
0 < G°(w,d,) for all w € [%,n] Then, for each w € [%,n] there exists a unique zero

ko € [0, w — 6,] of G (w, ) determined by the function K2 : [X n] —s [0, n).

We show that each I@fb is continuous. Employing Lemma A.2, it suffices to show that
graph(K2) is a closed subset of [L,n] x[0,n]. As {0} is a closed subset of R, continuity
of G¢ implies that (G¢)~'({0}) is a closed subset of U,. But (G5)~'({0}) = {(w,k) €
U, | G¢ (w, k) = 0} = {(w, k) € U, |k = K5(w)} = graph(K2). Thus, graph(K:) is a
closed subset of U,. As U, is a closed subset of [1,n] x [0,n], graph(K?) is also closed
in [1,n] x [0,n].

Now let K2 be the restriction of K2 to the open subset S, :=]1,n[. Clearly, each Kz is
continuous as the restriction of a continuous map to a subset of its domain. Moreover,
l@; is also the restriction of K¢ to S,, and {S,}n>1 is an increasing sequence of open
subsets of Ry, = U,>S,. Thus, continuity of K¢ for all ¢ € & follows from Lemma
A.3. Since compositions of continuous functions are continuous, this implies continuity

of K(-,¢).
(ii) Under the additional hypotheses, the function g in (A.4) is continuous. The Feller

property of () then implies that G in (A.5) is continuous as well. One can now slightly
modify the arguments of the previous step to show that /C is a continuous function.

(iii) Let € € £ be arbitrary but fixed. Under the additional hypotheses, the function G*
defined in (i) is C''. Repeating the proof of Theorem 1 under the additional differentia-
bility condition, it is straightforward to show that G5(w, k) > 0. Thus, an application
of the implicit function theorem yields that K¢ defined in (i) is C' with derivative
K (w) = =G5 (w, K (w))[G5 (w, K£=(w))] "

(iv) If the shocks are i.i.d, the functions G = G* and K = K* defined in the previous
steps are independent of £. As shown in (iii), K is C* which implies that K = K oW is
C! under the hypothesis. If, in addition, W, > 0 then clearly Ky > 0. [
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