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IntrodutionStarting with the pioneering work of Wang (1993), researhers have studied the existeneand properties of equilibria in overlapping generations (OLG) models with random pro-dution shoks. Of partiular interest in these studies is the lass of reursive equilibria(RE) where the equilibrium variables are determined by time-invariant mappings on thenatural state spae with the state variable onsisting of urrent apital and the produ-tion shok. Following the terminology introdued in K�ubler & Polemarhakis (2004),suh equilibria will be referred to as Markov equilibria (ME). Studying the propertiesof ME for a large lass of stohasti OLG models is the theme of the present paper.In a setting with lassial prodution funtions, i.i.d. shoks, and time-additive utility,Wang (1993) showed that a apital-inome monotoniity ondition on the produtiontehnology is suÆient for a unique ME to exist. In addition, he established severaladditional properties of the equilibrium mappings suh as smoothness and monotoniity.The model in Wang (1993) was generalized in Wang (1994) to inlude non-additiveutility and general Markovian shoks proesses and further in Morand & Re�ett (2007)who, in addition, allow for non-lassial prodution funtions. The latter were originallyintrodued in Greenwood & Hu�man (1995) and Coleman (1991) in a non-OLG setting.While Wang (1994) uses the methods and results of DuÆe et a. (1994) to study theexistene of so-alled Generalized Markov Equilibria (GME) where the state spae mayinlude additional variables suh as sunspots, et., Morand & Re�ett (2007) ontinueto fous on ME and present a very general approah to study their existene. Theirapproah employs methods from funtional analysis to obtain ME as �xed points ofa suitably de�ned operator. Using the Knaster-Tarski �xed point theorem permittedthem to derive suÆient onditions for a ME to exist in their setup.Building on the existene results of Morand & Re�ett (2007), the present paper seeksto establish additional properties of ME while maintaining the same level of generalityas their study. As our main ontribution, we establish suÆient onditions under whihthe ME is unique and the equilibrium mappings possess additional properties suh asmonotoniity, ontinuity, or even smoothness. Similar properties were derived in Wang(1993) but it is not yet known under what onditions they hold for the muh larger lassof eonomies studied in Morand & Re�ett (2007). Knowing these additional propertiesis important not only for theoretial reasons and welfare analysis, but also for appliednumerial work as, e.g., in Feng et al. (2012).Coneptually, we employ the same operator-based approah used in Morand & Re�ett(2007). In general, uniqueness of a �xed point obtains only under very speial irum-stanes, e.g., if the underlying operator is a ontration or satis�es a set of additionaland rather restritive onditions as in Coleman (1991). However, we demonstrate inthis paper that the operator developed in Morand & Re�ett (2007) possesses a veryspeial struture that is unique to their OLG setup with two-period lived onsumers1



but not exploited in their paper. It is preisely this additional property that will allowus to obtain the uniqueness results of this paper. In fat, it will turn out that the MEis unique for most ases studied in Morand & Re�ett (2007). Moreover, we also showthat if the ME is unique, it is in fat the unique sequential equilibrium of the eonomy.The paper is organized as follows. Setion 1 introdues the model. The formal strutureto study ME is developed in Setion 2. The main results are presented in Setion 3.Setion 4 onludes, proofs for all results are plaed in the Mathematial Appendix.1 The ModelThis setion presents the basi setup of the model whih extends the one in Morand &Re�ett (2007) by relaxing several of their assumptions.Consumption setorThe onsumption setor onsist of overlapping generations of onsumers who live for twoperiods. In their �rst period of life, onsumers supply one unit of labor inelastially toreeive the wage wt > 0 whih is used for saving st and onsumption when young yt =wt� st. Savings earn the random apital return rt+1 in the following period in whih nofurther inome is reeived suh that seond-period onsumption is given by the randomvariable ot+1 = strt+1. Given labor inome wt > 0 and the pereived random apitalreturn of the following period rt+1, onsumers hoose savings st to maximize expetedlifetime utility based on some von-Neumann Morgenstern utility funtion funtion U :R2+ �! R de�ned over onsumption in both periods. The deision problem readsmaxs nE t�U(wt � s; srt+1)� j 0 � s � wto: (1)Here, E t denotes the expetations operator onditional on information at time t whihis formally de�ned below. The following restritions are imposed on U .Assumption 1U is C2 and onave with derivatives satisfying Uii < 0 < Ui, i 2 f1; 2g and the Inadaonditions limy!0 U1(y; o) =1 for all o > 0 and limo!0 U2(y; o) =1 for all y > 0.Given wt > 0 and the random variable rt+1, Assumption 1 guarantees a unique interiorsolution 0 < st < wt to (1) whih determines next period's apital stok kt+1.Prodution setorThe prodution setor produes the onsumption good using labor and apital as inputfators. In addition, the prodution proess in period t is subjeted to a random shok"t with values in E � ["min; "max℄. In equilibrium, labor is onstant and the wage wt andapital return rt are determined from the urrent stok of apital kt > 0 and the shok2



"t 2 E aording to the mappingsW : R++ � E �! R++ ; wt = W(kt; "t) (2a)R : R++ � E �! R++ ; rt = R(kt; "t): (2b)Pro�ts are zero at equilibrium. The previous spei�ation inludes the ases with las-sial prodution in Wang (1993) and non-lassial prodution in Greenwood & Hu�man(1995), Coleman (1991), and Morand & Re�ett (2007) as speial ases. Rather thanspeifying the underlying prodution tehnology diretly, we will work with the map-pingsW andR as being part of the primitives of the eonomy. The following restritionsare imposed whih are slightly weaker than those in Morand & Re�ett (2007).Assumption 2(i) Both funtions W and R are Borel-measurable.(ii) For eah " 2 E , k 7! W(k; ") is inreasing while k 7! R(k; ") is stritly dereasing.(iii) For eah k > 0, " 7! W(k; ") and " 7! W(k; ") are bounded.Prodution shoks follow a Markov proess with time-invariant transition probabilityQ : E � B(E) �! [0; 1℄. Given an initial state "0 2 E , the transition Q permits toonstrut a probability spae (
;F ;P) together with a �ltration fFtgt�0 to whih theproess f"tgt�0 is adapted suh that "t : 
 �! E is Ft-measurable, t � 0.1 We denoteby E t [�℄ := E [�jFt ℄ the expetation onditional on the information represented by Ft.The following assumption adds some tehnial restritions on Q.Assumption 3Q preserves measurability, i.e., if f : Y � E �! R, Y � Rm , m � 1 is a measurablefuntion, then g : Y � E �! R, g(y; ") := RE f(y; "0)Q("; d"0) is also measurable.A stronger requirement frequently imposed would be the so-alled Feller property : IfY � Rm , m � 1 and f : Y � E �! R is a bounded ontinuous funtion, then so isg : Y � E �! R, g(y; ") := RE f(y; "0)Q("; d"0). We will refrain from imposing thisproperty diretly but indiate below how it would permit to sharpen some results.EquilibriumThe eonomy is E = (U;W;R; Q) plus the initial ondition x0 := (k0; "0) 2 X :=R++ � E . The set X will be referred to as the (natural) state spae of the eonomy.The following de�nition provides a general haraterization of equilibrium. Note thatthe previous assumptions imply that all equilibrium variables are stritly positive.1In what follows, the notion of an adapted stohasti proess f�tgt�0 taking values in a topologialspae � implies that eah �t : 
 �! � is Ft measurable, i.e., an depend only on the random variables("0; : : : ; "t). Measurability of mappings M : Y �! Z between topologial spaes Y and Z is alwaysunderstood with respet to the Borel �-algebras B(Y) and B(Z).3



De�nition 1Given x0 2 X, a sequential equilibrium (SE) of eonomy E is an adapted proessfwt; rt; st; kt+1gt�0 with values in R4++ satisfying the following onditions for all t � 0:(i) Given wt and the random variable rt+1, st solves (1) while kt+1 = st.(ii) Fator pries wt and rt are determined from kt and "t by (2a) and (2b).The indued equilibrium onsumption proesses fyt ; otgt�0 follow diretly by insertingthe equilibrium variables into the onsumers' budget onstraints.2 Markov Equilibria (ME)De�nition of MEA reursive equilibrium (RE) is an equilibrium where all equilibrium variables of periodt are determined by time-invariant funtions of some state variable xt taking values inthe state spae X. A Markov equilibrium (ME) is a reursive equilibrium on the naturalstate spae X = R++ � E where the state variable is xt := (kt; "t). It is this lass ofequilibria that we will fous on in this paper. As the funtionsW and R already satisfythe Markov property, a ME is essentially determined by a time-invariant mapping whihdetermines the evolution of apital respetively savings. Formally, we haveDe�nition 2Given x0 2 X, a ME of eonomy E is a measurable map K : X �! R++ on the naturalstate spae X = R++ �E suh that the proess fwt; rt; st; kt+1gt�0 de�ned reursively askt+1 = K(kt; "t) = st, wt =W(kt; "t), and rt = R(kt; "t) for all t � 0 is a SE of E .Construting the operator ATo establish the existene and properties of ME, we follow Morand & Re�ett (2007) toonstrut an operator A on a suitable funtion spae S whose �xed points are ME. Inthe sequel we take S to be the lass of Borel-measurable funtions K : X �! R++ .The operator A is onstruted from the Euler equations derived from the onsumer'sdeision problem (1). To this end, onsider a given period t with state xt = (kt; "t) whihdetermines the urrent wage wt from (2a) and the onditional distributionQ("t; �) of nextperiod's shok. To deide on her investment st 2 [0; wt℄, the onsumer needs to determinethe (orret) distribution of the unertain apital return rt+1 of the following period.As rt+1 = R(kt+1; "t+1) and the onsumer knows the funtion R and the onditionaldistribution of "t+1 (whih are part of the fundamentals of the eonomy), this amountsto (orretly) foreasting next period's apital stok kt+1 > 0 whih, onditional on theinformation at time t, is a value rather than a random variable. Suppose the onsumerholds a pereived law of motion for the apital stok K 2 S to ompute her foreast4



kt+1 = K(kt; "t). Then, given (xt; kt+1) 2 X � R++ , an optimal savings deision stderived from (1) must satisfy the �rst-order onditions H(st; kt; "t; kt+1) = 0 whereH(s; k; "; k0) := � ZE U1(W(k; ")� s; sR(k0; "0))Q("; d"0) (3)+ ZE R(k0; "0)U2(W(k; ")� s; sR(k0; "0))Q("; d"0):Under the Inada assumptions (whih ensure existene) and the onavity of U (whihimplies uniqueness), the funtion H(�; x; k0) has a unique zero for all x 2 X and k0 > 0.Thus, there exists a (savings) funtion S : X � R++ �! R++ whih determines theunique solution st = S(kt; "t; kt+1) to (1). The following lemma is the key ingredient tode�ne the operator A below.Lemma 2.1Under Assumptions 1, 2, and 3, the mapping S : X � R++ �! R++ is measurable.Substituting the pereived law of motion K into S one obtains an operator A whihassoiates with K 2 S the new funtion AK : X �! R++ de�ned as(AK)(x) := S(x;K(x)) for x 2 X: (4)As S is measurable by Lemma 2.1 and the omposition of measurable funtions is againmeasurable, it is evident that A maps S into itself.2 As kt+1 = st at equilibrium, a MEorresponds preisely to a �xed point of A.Fixed points of AUnder a set of additional restritions, Morand & Re�ett (2007) establish the existeneof �xed points of A. Their argument is based on the Knaster-Tarski �xed point theoremfor whih they impose additional restritions suh as monotoniity on the set S .In this paper, we follow a di�erent route whih determines �xed points of A pointwiseas zeroes of a real-valued funtion. This approah is possible due to a key property ofthe operator A whih is evident from (4) but not exploited in Morand & Re�ett (2007):For eah x 2 X, the value (AK)(x) depends only on the value K(x) and not on theentire funtion K. Formally, for any two funtions K1;K2 2 S , K1(x) = K2(x) implies(AK1)(x) = (AK2)(x).3 The main impliation of this property is that �xed-points ofA an be onstruted point-wise, for eah state x 2 X. This fat is stated formallyin the following lemma the proof of whih follows diretly from (4) and the previousarguments.2It is straightforward to show that A maps S into the lass S 0 of measurable funtions K : X �!R++ whih satisfy, in addition, K(x) < W(x) for all x 2 X. Thus, �xed points of A must neessar-ily be elements of S 0. If limk!0W(0; ") = 0 for all " 2 E , one also infers the boundary behaviorlimk!0 K(k; ") = 0 for any K 2 S 0.3This very speial struture is unique to overlapping generations models with two-period lived on-sumers. In most maroeonomi models with multiperiod or in�nitely-lived onsumers, the operator Awill vary with the entire funtion K, i.e., the value (AK)(w) depends on the entire funtion K.5



Lemma 2.2The map K 2 S is a �xed point of A, i.e., (AK)(x) = K(x) for all x 2 X, if and only ifS(x;K(x)) = K(x) 8x 2 X: (5)General uniqueness onditionsThe result from Lemma 2.2 will permit us to establish many additional properties ofME not derived in Morand & Re�ett (2007). In partiular, we will provide suÆientonditions under whih the eonomy has a unique ME. To prepare these results, let� : X � R++ �! R, �(x; k0) := k0 � S(x; k0): (6)Note that Lemma 2.1 implies that � is measurable. Using Lemma 2.2, it follows thatfor eah x 2 X, the value k? = K?(x) of any �xed point K? 2 S of A must must be azero of �(x; �), i.e., �(x; k?) = 0: (7)Equation (7) is preisely the ondition employed in de la Croix & Mihel (2002) in adeterministi setting. It is also equivalent to { in fat, merely a restatement of{ theself-on�rming expetations approah in Wang (1993). De�ne the orrespondene	 : X � R++ ; 	(x) := fk0 2 R++ j�(x; k0) = 0g: (8)Then, determining a ME is equivalent to �nding a measurable seletion of 	, i.e., ameasurable funtion K : X �! R++ suh that K(x) 2 	(x) for all x 2 X. Clearly, aneessary ondition for ME to exist is that 	 be non-empty valued. It is also lear thatif 	 is single-valued, i.e., a funtion, then there an be at most one ME. In this latterase, the next result shows that 	 will automatially be measurable, i.e., a unique MEexists. On the other hand, if for eah x 2 X the map �(x; �) has at most one zero, therean be at most one ME. Thus, a suÆient ondition for uniqueness is that �(x; �) bestritly monotoni for all x 2 X. The following �nal result of this setion summarizesthese insights whih will be key for the uniqueness result derived in the next setion.Lemma 2.3Let � : X � R++ �! R de�ned in (6) be measurable. Then, the following holds:(i) E has a unique ME, if and only if �(~x; �) has a unique zero ~k > 0 for eah ~x 2 X.(ii) If �(~x; �) has at most one zero for eah ~x 2 X, then E has at most one ME.3 Uniqueness of EquilibriumUniqueness of MEExploiting the insights from the previous setion, we are now in a position to establish a6



set of additional properties of ME. The �rst main result is the following theorem whihlists suÆient onditions under whih the eonomy has at most one ME.Theorem 1Let Assumptions 1, 2, and 3 be satis�ed, Then, eah of the following restritions issuÆient for the eonomy E to have at most one ME:(i) U(y; o) = u(y) + v(o) where v satis�es v00()v0() � �1.(ii) U12 � 0 and k 7! kR(k; "), k > 0 is weakly inreasing for all " 2 E .(iii) o U22(y;o)U2(y;o) > �1 for all (y; o)� 0 and k 7! R(k; ") is di�erentiable for all " 2 Ewhere R1 < 0. In addition, either U21 � 0 or R1(k;")kR(k;") � �4 for all k > 0, " 2 E .The hypotheses of Theorem 1 are satis�ed for a broad lass of eonomies. Condition (i)holds, e.g., if seond-period utility displays onstant relative risk aversion 0 < � � 1,i.e., v() = 1�� �1�� � 1�,  > 0 or under CES utility v() = [1� � + �%℄1=%, 0 < � < 1if 0 � % < 1. Also note that the restrition (i) is preisely Assumption 4 in Morand& Re�ett (2007). This shows that the ME in their model is in fat unique wheneverthis restrition is imposed. Thus, their �ndings an onsiderably be strengthened if theadditional properties of the operator A identi�ed above are exploited.Condition (ii) in Theorem 1 is the natural extension of the uniqueness ondition in Wang(1993) to the present more general setting. For the ase with a lassial prodution fun-tion f , it holds, e.g., if f is of the CES form f(k; ") = "g(k) where g(k) = "[1��+�k%℄ 1% ,0 < � < 1 and 0 � % < 1 where % = 0 gives a Cobb-Douglas tehnology. The additionalrestrition U12 � 0 is imposed throughout in Morand & Re�ett (2007).Finally, under the additional di�erentiability ondition, (iii) permits to relax (ii) (whihwould imply R1(k;")kR(k;") � �1) while imposing an additional restrition on U . The lat-ter generalizes (i) to the non-additive ase and holds, e.g., for Cobb-Douglas utilityU(y; o) = (y)�(o)�, �; � > 0. Furthermore, for the lassial CES prodution funtionmentioned above, R1(k;")kR(k;") = kg00(k)g0(k) = �(1� %) 1��1��+�k% whih implies that the restritionon R in (iii) holds i� % � �3. The latter ould further be relaxed if an upper bound onk suh as k < f(k; "max) { whih is done in Morand & Re�ett (2007) { is imposed.As a general insight, Theorem 1 shows that restritions either on the onsumptionside (ondition (i)) or the prodution side (ondition (ii)) alone are already suÆient toindue a unique ME one it exists. It also reveals that the elastiities of the apital returnfuntion R and seond-period marginal utility are key to the uniqueness of equilibriumwhile neither the wage funtion W nor the marginal utility of �rst-period onsumptionnor the transition Q play a ruial role. As a onsequene, multiple ME an ouronly if apital inome dereases very rapidly and the marginal utility of seond-periodonsumption is very elasti. Thus, it seems rather diÆult to obtain ases in whihmultiple MEs exist, and one may onlude that in the present lass of models, uniqueness7



of ME { in fat, of equilibrium, as we show below in Theorem 3 { is a generi property.Also note that Theorem 1 does not ensure the existene of a ME. Imposing the additionalrestritions of Morand & Re�ett (2007), existene follows diretly from their results.Smoothness and monotoniity of MEIn ases where the ME is unique, one may ask whih additional properties of K anbe inferred. In Wang (1993), the fator priing funtions R and W are both C1 whihimplies that the map K is also C1 and stritly inreasing in his model. In the presentase, a similar result holds in the sense that K essentially inherits the properties of thefator priing funtions. The result needs the following additionalAssumption 4For all " 2 E , the map k 7�! R(k; "), k > 0 in (2b) satis�es the boundary behaviorlimk!0R(k; ") =1 and limk!0 kR(k; ") <1:Note that unlike Theorem 1 the following result also asserts the existene of a ME.Theorem 2Let Assumptions 1, 2, 3, and 4 and any of the hypotheses (i), (ii), or (iii) of Theorem 1be satis�ed. In addition, suppose k 7! W(k; ") and k 7! R(k; ") are ontinuous for all" 2 E . Then the eonomy E has a unique ME K 2 S with the following properties:(i) For all " 2 E , k 7! K(k; "), k > 0, is ontinuous. It is inreasing if U21 � 0.(ii) If W and R are ontinuous and Q has the Feller property, then K is ontinuous.(iii) If for all " 2 E k 7! W(k; ") and k 7! R(k; ") are C1, then k 7! K(k; ") is C1.(iv) If, in addition to (iii), shoks are i.i.d., E is an interval, and W is C1, then K isC1. Further, if W2 > 0, then K2 > 0.Uniqueness of SEThe previous disussion revolved around whether Markov equilibria are unique. Thisraises the question of whether there are other equilibria, i.e., reursive equilibria on alarger state spae or non-reursive SE. A striking feature of the equilibrium struturefrom Setion 2 is that the savings funtion S is independent of how the foreast kt+1was obtained. In other words, it is independent of any hypothesized law of motion andjust depends on the value predited for the following period. As a onsequene, anyequilibrium proess { reursive or not { must satisfy the ondition kt+1 2 	(kt; "t) forall t � 0. This shows that if the ME is unique, i.e., the funtion �(x; �) has a uniquezero for all x 2 X, eah state xt has a unique ontinuation value kt+1 whih is preiselythe value determined by the ME. Thus, the equilibrium apital proess fkt+1gt�0 isuniquely de�ned. As the other equilibrium variables follow diretly from this proess,the equilibrium is in fat unique whenever the ME is unique. We state these insights asthe following �nal theorem. The proof follows diretly from the previous arguments.8



Theorem 3Suppose the eonomy E has a unique ME. Then, this is also the unique SE of E .Note, however, that this result does not say that the number of ME is idential tothe number of SE for the eonomy. The reason is that if there are multiple solutionsto (7), then so-alled Generalized Markov Equilibria (GME) exist whih are obtainedby randomizing over possible ontinuation values. This is the ase studied in Wang(1994) using the powerful tehniques of DuÆe et al. (1994). Clearly, in this ase, anunountable number of distint equilibrium proesses an be generated.4 ConlusionsOur analysis provides suÆient onditions under whih a broad lass of OLG eonomieswith stohasti non-lassial prodution and two-period lived onsumers has at most oneME. The onditions obtained are quite general and should be easy to verify in appliedwork as they are stated diretly on the primitives of the model.One aspet not disussed in this paper is whether the ME gives rise to a Station-ary Markov Equilibrium (SME) orresponding to an invariant distribution on the statespae. Using di�erent tehniques, this issue is studied at length in Wang (1994) andMorand & Re�ett (2007). As the restritions imposed in this paper are weaker thanthose in Morand & Re�ett (2007), their �ndings remain diretly appliable in our setupif their additional restritions are imposed.As shown in Setion 2 { and also in Wang (1994) { the key objet for studying equilibria{reursive or not { is the equilibrium orrespondene de�ned in (8). If this orrespon-dene is multi-valued, i.e., not a funtion, the struture developed in Setion 2 an beused to expliitly onstrut Generalized Markov equilibria by randomizing over di�erentontinuation values. While in this ase, an unountable number of SE exist, one ouldstill quantify the equilibrium set by establishing bounds on the number of ontinuationvalues, i.e, the maximum the number of zeroes of the map �(x; �) de�ned in (6) for allhoies x 2 X. For the latter purpose, the semi-algebrai approah developed in Kue-bler & Shmedders (2007) { although urrently designed for stati exhange eonomies{ ould beome a useful tool. This might be an interesting avenue of future researh.A Mathematial AppendixA.1 Auxiliary resultsWe begin by realling some onepts and introduing some tehnial results that willbe used subsequently. Given some topologial spae X with topology TX � P(X), we9



endow subsets Y of X with the relative (trae) topology TY := fO \Y jO 2 TXg. Reallthat if Y is open in X, then TY � TX. The Eulidean spae Rm , m � 1 is endowed withthe usual topology whih is generated by the Eulidean metri. Unless stated otherwise,ontinuity of funtions is always understood with respet to these topologies.A topologial spae X beomes a measurable spae when endowed with the Borel �-algebra B(X) whih is generated by the open sets TX. On subspaes Y � X the Borel-�algebra B(Y) is generated by the relative topology TY but also oinides with the trae�-algebra, i.e., B(Y) = fA \ Y jA 2 B(X)g, f. Aliprantis & Border (2007, p.138,Lemma 4.20). In partiular, if Y 2 B(X), i.e., is measurable in X, then B(Y) � B(X).Also reall that A 2 B(X), B 2 B(Y ) implies A�B 2 B(X � Y ).The following lemmas will be used in the proofs of our results below.Lemma A.1 (Measurable Graph Theorem)A funtion f : X �! Y where both X and Y are omplete separable metri spaes, isBorel-measurable, if and only if graph(f) := f(x; y) 2 X � Y j y = f(x)g is a Borel-measurable subset of the produt spae X � Y, i.e., graph(f) 2 B(X � Y).Proof: See Bukley (1974, x3, Propositions 1 and 6).Lemma A.2 (Closed Graph Theorem)A funtion f : X �! Y from a topologial spae X into a ompat Hausdor� spae Yis ontinuous if and only if graph(f) := f(x; y) 2 X �Y j y = f(x)g is a losed subset ofthe produt spae X � Y (endowed with the produt topology).Proof: See Aliprantis & Border (2007, p.51, Theorem 2.58).Lemma A.3Let f : X �! Y be a map between two topologial spaes X (with topology TX) and Y.Suppose there is a sequene fXngn�1 of open subsets (Xn 2 TX) of X whih is inreasing(Xn � Xn+1) and onverges to X, i.e., X = Sn�1Xn . Further, suppose that for eahn � 1 the restrited map fn := fjXn : Xn �! Y is ontinuous. Then f is ontinuous.Proof: Endow eah Xn with the relative topology Tn := fU \ Xn jU 2 TXg. As Xn isopen, Tn � TX for all n � 1. Let O be an open subset of Y. We have to show thatf�1(O ) 2 TX. As eah fn is ontinuous, f�1n (O ) 2 Tn � TX and, therefore, f�1n (O ) 2 TXfor all n � 1. We laim that f�1(O ) = Sn�1 f�1n (O ). Let x 2 f�1(O ) be arbitrary. SineX = Sn�1 Xn , there is some Xm suh that x 2 Xm and f(x) = fm(x) 2 O . Hene, x 2f�1m (O ) � Sn�1 f�1n (O ) whih, sine x was arbitrary shows that f�1(O ) � Sn�1 f�1n (O ).Conversely, let x 2 Sn�1 f�1n (O ). Then, x 2 f�1m (O ) for some m, i.e., x 2 Xm � X andfm(x) = f(x) 2 O . Conlude that x 2 f�1(O ) whih, sine x was arbitrary, impliesf�1(O ) � Sn�1 f�1n (O ). Thus, we have shown that f�1(O ) is the union of open setsf�1n (O ) 2 TX. Sine any union of open sets is open again, this implies f�1(O ) 2 TX. �10



Lemma A.4Let f : X �! Y be a map between two topologial spaes X and Y endowed with theBorel �-algebras B(X) and B(Y). Suppose there is a sequene fXngn�1 of measurablesubsets (Xn 2 B(X)) of X whih is inreasing (Xn � Xn+1) and onverges to X, i.e.,X = Sn�1 Xn . Further, suppose that for eah n � 1 the restrited map fn := fjXn :Xn �! Y is measurable. Then f is measurable.Proof: Endow eah Xn with the trae-� algebra Bn := fA \ Xn jA 2 B(X)g. As Xn ismeasurable, Bn � B(X) for n � 1. Let A 2 B(Y). We show that f�1(A) 2 B(X). Aseah fn is Bn�B(Y) measurable, f�1n (A) 2 Bn � B(X) and, therefore, f�1n (A) 2 B(X)for all n � 1. Following the exat same arguments as in the proof of Lemma A.3(with 'open' replaed by 'measurable'), it is straightforward to show that f�1(A) =Sn�1 f�1n (A), i.e., f�1(A) is the ountable union of measurable subsets f�1n (A) 2 B(X).As B(X) is losed under ountable unions, this implies f�1(A) 2 B(X), as laimed. �A.2 Proof of Lemma 2.1De�ne U := f(w; s) 2 R2++ js < w g, V := R++ � E � U, and let v : R++ � U �! R,v(r; w; s) := �U1(w � s; s r) + r U2(w � s; s r): (A.1)The map v is C1 and, therefore, measurable. As the omposition of measurable funtionsis measurable, Assumption 2 implies measurability of (k0; "0; w; s) 7! v(R(k0; "0); w; s)and, invoking Assumption 3, of the funtion V : V �! R,V (k0; "; w; s) := ZE v(R(k0; "0); w; s)Q("; d"0): (A.2)Using the same arguments as in Setion 2, the funtion V (k0; "; w; �) :℄0; w[�! R hasa unique zero 0 < s < w for eah (k0; "; w) 2 S := R++ � E � R++ whih may bewritten as a funtion ~S : S�! R+ , s = ~S(k0; "; w). We will show that ~S is measurable.This and measurability of W due to Assumption 2 will then imply that S(k; "; k0) =~S(k0; ";W(k; ")) is measurable.4For n � 1, de�ne Sn := [ 1n ; n℄ � E � [ 1n ; n℄ � S. Observe that fSngn�1 is an inreasing(Sn � Sn+1) sequene of measurable (Sn 2 B(S)) subsets of S that onverges to S =Sn�1 Sn. Thus, by Lemma A.4, it suÆes to show that eah ~Sn := ~SjSn : Sn �! [0; n℄4Until here, the argument is similar to the proof of Lemma 5 in Morand & Re�ett (2007). At thispoint, however, their argument onludes that ontinuity of ~S(�; ") in w and k0 for eah �xed " 2 Eimplies measurability of S. While this is orret if shoks are i.i.d., it neglets that, in general, therewill also be a diret inuene of " on ~S through the transition Q. Then, the previous argument seemsno longer valid to infer measurability of ~S . The following proof presents an alternative whih �xes thisproblem and also shows that measurability of ~S obtains even under the more general restritions of thispaper. 11



is measurable. Observe that both the domain and range of ~Sn being losed subsets ofomplete separable metri spaes are omplete separable metri spaes. Thus, by LemmaA.2, ~Sn is measurable if and only if graph( ~Sn) is a measurable subset of Sn� [0; n℄, i.e.,graph( ~Sn) 2 B(Sn� [0; n℄).For n � 1, de�ne Vn := f(k0; "; w; s) 2 [ 1n ; n℄�E�[ 1n ; n℄�[0; n℄ j s < wg = V\(Sn�[0; n℄)whih is a measurable subset of V. Consider the restrition Vn := VjVn : Vn �! R whihis measurable as the restrition of a measurable map V to a measurable subset of itsdomain. As f0g is a measurable subset of R this implies that V �1n (f0g) = f(k0; "; w; s) 2Vn jVn(k0; "; w; s) = 0g = f(k0; "; w; s) 2 Sn� [0; n℄ j s = ~Sn(k0; "; w)g = graph( ~Sn) is ameasurable subset of Vn , i.e., graph( ~Sn) 2 B(Vn). Sine Vn is a measurable subset ofSn� [0; n℄, B(Vn) � B(Sn� [0; n℄) whih implies that graph( ~Sn) 2 B(Sn� [0; n℄). �A.3 Proof of Lemma 2.3(i) Suppose the eonomy has a unique ME K. Then, K is a measurable seletion ofthe orrespondene 	 de�ned in (8). By ontradition, suppose for some ~x 2 X, thefuntion �(~x; �) has at least two zeroes, say k1 and k2. W.l.o.g., suppose k1 = K(~x).Then, the funtion K2 : X �! R++ ,K2(x) := K(x) + 1f~xg(x)(k2 � k1) = � k2 x = ~xK(x) otherwiseis a measurable funtion that satis�es K2(x) 2 	(x) for all x 2 X, i.e., is another ME,ontraditing uniqueness of the ME.Conversely, suppose for all ~x 2 X, the funtion �(~x; �) has a unique zero. In this ase,the orrespondene 	 : X �! R++ is a funtion whose domain X = R2++ � E is theprodut of an open and a losed subset of R whih is a Polish spae. As open and losedsubsets of Polish spaes are Polish and so are their produt, both the domain and rangeof 	 are Polish spaes. By Aliprantis & Border (2007, Theorem 12.28, p.450), 	 ismeasurable if and only if graph(	) is a measurable subset of X � R++ . By assumption,� : X � R++ �! R is a measurable funtion whih implies that ��1(f0g) = f(x; k0) 2X � R++ j�(x; k0) = 0g = f(x; k0) 2 X � R++ j k0 = 	(x)g = graph(	) is a measurablesubset of X � R++ .(ii) If for some ~x 2 X, �(~x; �) fails to have a zero, then 	(~x) = ;. As any ME is ameasurable seletion of 	, there will be no ME in this ase. If, for all ~x 2 X, �(~x; �) haspreisely one zero, then a ME exists by (i). �A.4 Proof of Theorem 1Let x = (k; ") 2 X and w := W(k; ") > 0 be arbitrary but �xed. Using Lemma 2.3(ii),we show that the map �(x; �) : R++ �! R de�ned in (6) has at most one zero k0 > 0.12



De�ne ~S as in the proof of Lemma 2.1. Then, using (6) and (A.2)�(x; k0) = 0 , k0 = ~S(k0; "; w) , V (k0; w; "; k0) = 0: (A.3)Thus, letting G(w; "; k0) := V (k0; w; "; k0) with V de�ned as in (A.2), it suÆes to showthat G(w; "; �) :℄0; w[�! R is stritly monotoni. De�ningg(w; k0; "0) := �U1(w � k0; k0R(k0; "0)) +R(k0; "0)U2(w � k0; k0R(k0; "0)) (A.4)the funtion G may be written asG(w; "; k0) = ZE g(w; k0; "0)Q("; d"0): (A.5)As integration preserves monotoniity, it suÆes to show that k0 7! g(w; k0; "0) is stritlymonotoni { in fat, dereasing { in eah of the three ases below.(i) Under the hypotheses, the map g in (A.4) takes the formg(w; k0; "0) = �u0(w � k0) + f(k0;R(k0; "0)) (A.6)where f : R2++ �! R++ , f(x; y) := yv0(yx). The �rst term in (A.6) is a stritlydereasing funtion of k0. Thus, it suÆes to show that k0 7! f(k0;R(k0; "0)) is dereasingfor all "0 2 E , whih follows diretly from f1(x; y) = y2v00(yx) < 0 � f2(x; y) = v0(yx) +yxv00(yx) and k0 7! R(k0; "0) being stritly dereasing by Assumption 2.(ii) Under the hypotheses, it is straightforward to show that k0 7! g(w; k0; "0), 0 < k0 < wde�ned in (A.4) is stritly dereasing for all (w; "0) 2 R++ � E .(iii) Under the additional hypothesis, the funtion k0 7! g(w; "0; k0) de�ned in (A.4) isontinuously di�erentiable for all (w; "0) 2 R++ � E and so is G. As di�erentiationand integration over a ompat set may be interhanged, the partial derivative of Gomputes G3(w; "; k0) = ZE g3(w; k0; "0)Q("; d"0): (A.7)It suÆes to show that g3 < 0. Dropping the respetive arguments for onveniene, thederivative of (A.4) may be written asg3(w; "0; k0) = R1 [U2 + k0RU22℄ + U11 � 2RU21 +R2U22 � U21k0R1: (A.8)The �rst term is stritly negative as R1 < 0 and the braketed term is stritly positiveby assumption. Suppose �rst that U21 � 0. Then, the last term in (A.8) is negative aswell, so we need to show that U11 � 2RU21 +R2U22 � 0 or, using Uii < 0 for i 2 f1; 2gM := jU11j � 2RjU21j+R2jU22j � 0: (A.9)The onavity of U implies a negative semi-de�nite Hessian matrix, so U11U22 � U212,whih may be restated as jU12j � jU11j 12 jU22j 12 . Substituting this result into (A.9) givesM � jU11j � 2RjU11j 12 jU22j 12 +R2jU22j = (jU11j 12 �RjU22j 12 )2 � 0: (A.10)13



Seond, suppose that k0R1 � �4R. If U21(w � k0; k0R(k0; "0)) � 0, the argument of theprevious step remains unhanged, so suppose U21(w � k0; k0R(k0; "0)) > 0. Then,U11 � 2RU21 +R2U22 � U21kR1 � U11 + 2RU21 +R2U22 = �Mwith M de�ned in (A.9). As shown before, M � 0, whih proves the laim. �A.5 Proof of Theorem 2De�ne the maps g and G as in (A.4) and (A.5). Note that the ontinuity assumptionimplies that g is a ontinuous funtion in k0. As integration over a ompat set preservesontinuity, G is ontinuous in k0 for all (w; ") 2 R++ � E . The existene of a MEwill follow from Lemma 2.3 (i) if we show that G(w; "; �) has a unique zero for all(w; ") 2 R++�E . To this end, observe that Assumption 4 implies the boundary behaviorlimk&w g(w; "0; k) = �1 and limk%0 g(w; "0; k) = 1. This being true for all "0 2 Eimplies that limk&wG(w; "; k) = �1 and limk%0G(w; "; k) =1 for all (w; ") 2 R++�E .By ontinuity of G(w; "; �), this ensures existene of a zero whih is neessarily uniqueby monotoniity and de�ned by an impliit funtion ~K : R++ �E �! R++ . By Lemma2.3, the funtion K : X �! R++ , K(k; ") := ~K(W(k; "); ") is the unique ME. Clearly,if U12 � 0, then g and G are both stritly inreasing in w, whih implies that ~K(�; ") isstritly inreasing. It then follows from Assumption 4(ii) that K(�; ") is inreasing.(i) Let " 2 E be arbitrary but �xed. De�ne U := f(w; k0) 2 R2++ j 0 < k0 < wgand the map G" : U �! R, G"(w; k) := G(w; "; k). Under the hypotheses, G" is aontinuous funtion as the integrand is ontinuous and integration over a ompat setpreserves ontinuity. As shown in the proof of Theorem 1, for eah w > 0 the mapG"(w; �) :℄0; w[�! R is stritly dereasing and, therefore, has a unique zero determinedby some map ~K" : R++ �! R++ . We show that ~K" is ontinuous.For n > 1, let Æn > 0 be a small number suh that Æn < 12n . De�ne the ompat setUn := f(w; k) 2 R2++ j 1n � w � n; Æn � k � w � Æng and onsider the restritionG"n := G"jUn : Un �! R. Clearly, G"n is ontinuous as the restrition of a ontinuousfuntion to a subset of its domain. We seek to determine Æn suh that eah G"n(w; �) :[Æn; w � Æn℄ �! R has a { neessarily unique { zero for all w 2 [ 1n ; n℄ determined byK̂"n : [ 1n ; n℄ �! [0; n℄. Then, K̂"n will be the restrition ~K" to [ 1n ; n℄. Reall that G"n(w; �)is ontinuous and stritly dereasing for all w 2 [ 1n ; n℄. Thus, to ensure that K̂"n is well-de�ned, it suÆes to have G"n(w; Æn) < 0 < G"n(w;w� Æn) for all w 2 [ 1n ; n℄. For Æn > 0,de�ne G"max(Æn) := maxw nG"(w;w � Æn) ���w 2 h1n; nioG"min(Æn) := minw nG"(w; Æn) ���w 2 h1n; nio14



whih are well-de�ned due to ontinuity of G" and ompatness of � 1n ; n�. Note thatG"max is stritly inreasing in Æn and limÆ!0G"(w;w � Æ) = �1 for all w > 0 impliesG"max(Æn) < 0 for Æn suÆiently small. Likewise, G"min is stritly dereasing in Æn andlimÆ!0G"(w; Æ) =1 for all w > 0, implies G"min(Æn) > 0 for Æn suÆiently small. Thus,hoosing Æn small enough suh that G"max(Æn) < 0 < G"min(Æn) implies G"(w;w � Æn) <0 < G"(w; Æn) for all w 2 � 1n ; n�. Then, for eah w 2 � 1n ; n� there exists a unique zerok0 2 [Æn; w � Æn℄ of G"n(w; �) determined by the funtion K̂"n : [ 1n ; n� �! [0; n℄.We show that eah K̂"n is ontinuous. Employing Lemma A.2, it suÆes to show thatgraph(K̂"n) is a losed subset of [ 1n ; n�� [0; n℄. As f0g is a losed subset of R, ontinuityof G"n implies that (G"n)�1(f0g) is a losed subset of Un . But (G"n)�1(f0g) = f(w; k) 2Un jG"n(w; k) = 0g = f(w; k) 2 Un j k = K̂"n(w)g = graph(K̂"n). Thus, graph(K̂"n) is alosed subset of Un . As Un is a losed subset of [ 1n ; n�� [0; n℄, graph(K̂"n) is also losedin [ 1n ; n�� [0; n℄.Now let ~K"n be the restrition of K̂"n to the open subset Sn :=℄ 1n ; n�. Clearly, eah ~K"n isontinuous as the restrition of a ontinuous map to a subset of its domain. Moreover,~K"n is also the restrition of ~K" to Sn and fSngn>1 is an inreasing sequene of opensubsets of R++ = [n�1Sn. Thus, ontinuity of ~K" for all " 2 E follows from LemmaA.3. Sine ompositions of ontinuous funtions are ontinuous, this implies ontinuityof K(�; ").(ii) Under the additional hypotheses, the funtion g in (A.4) is ontinuous. The Fellerproperty of Q then implies that G in (A.5) is ontinuous as well. One an now slightlymodify the arguments of the previous step to show that K is a ontinuous funtion.(iii) Let " 2 E be arbitrary but �xed. Under the additional hypotheses, the funtion G"de�ned in (i) is C1. Repeating the proof of Theorem 1 under the additional di�erentia-bility ondition, it is straightforward to show that G"2(w; k) > 0. Thus, an appliationof the impliit funtion theorem yields that ~K" de�ned in (i) is C1 with derivative~K"1(w) = �G"1(w;K"(w))[G"2(w;K"(w))℄�1.(iv) If the shoks are i.i.d, the funtions G = G" and ~K = ~K" de�ned in the previoussteps are independent of ". As shown in (iii), ~K is C1 whih implies that K = ~K ÆW isC1 under the hypothesis. If, in addition, W2 > 0 then learly K2 > 0. �ReferenesAliprantis, C. D. & K. C. Border (2007): In�nite Dimensional Analysis. Springer-Verlag, Berlin a.o.Bukley, J. (1974): \Graphs of Measurable Funtions", Proeedings of the AmerianMathematial Soiety, 44, 78{80. 15
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