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Abstract

We conduct an experiment to uncover the reasons behind the typically large behavioral

variation and low explanatory power of Nash equilibrium observed in Tullock contests. In our

standard contest treatment, only 7% of choices are consistent with Nash equilibrium which is

in line with the literature and roughly what random (uniform) choice would predict (6.25%).

We consider a large class of social, risk and some other “non-standard” preferences and show

that heterogeneity in preferences cannot explain these results. We then systematically vary

the complexity of both components of Nash behaviour: (i) the difficulty to form correct

beliefs and (ii) the difficulty to formulate best responses. In treatments where both the

difficulty of forming correct beliefs and of formulating best responses is reduced behavioural

variation decreases substantially and the explanatory behaviour of Nash equilibrium increases

dramatically (explaining 65% of choices with a further 20% being “close” to NE). Our results

show that bounded rationality rather than heterogeneity in preferences is the reason behind

the huge behavioral variation typically observed in Tullock contests.
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1 Introduction

Many economic, political and social environments can be described as contests in which com-

peting agents expend considerable resources (time, effort, money) in order to increase their

chances of winning a “prize”. Examples range from the competition for mates (Andersson and

Iwasa (1996)), patents or research grants (Baye and Hoppe (2003)), to promotions or other rel-

ative reward schemes in firms (Chen (2003)), lobbying politicians (Baye et al. (1993)), elections

(Buchanan and Tullock (1962)), sports competitions (Szymanski (2003)), and ethnic conflicts

(Esteban and Ray (2011)). Because of their many applications, these environments have at-

tracted considerable attention in a wide range of fields, both in- and out-side of economics and

there is a mature theoretical literature (for a survey see Konrad (2009)).

Experimental economists have tried to understand behaviour in contests empirically. The ad-

vantage of conducting experiments on contests (as opposed to empirical field studies) is that

effort choices are observable and causal inferences can be drawn via treatment variations. One,

maybe surprising, result that has emerged from this literature is that there is huge behavioural

variation and Nash equilibrium has little explanatory power in typical Tullock contests (see

Millner and Pratt, 1989, Potters et al., 1998, Sheremeta, 2010, among others). Figure 1 illus-

trates the behavioural variation in experimental Tullock contests and compares it to first- and

second-price auctions.1 The figure shows the cumulative distribution of observed choices rela-

tive to the (risk-neutral) Nash prediction for a typical Tullock contest experiment, a first-price

auction (FPA), a second-price auction (SPA) and according to NE. According to theory (NE),

all the mass should be at 1, because all choices should equal the Nash prediction. Evidently,

in the two auction formats (FPA and SPA), the cumulative distribution is pretty similar to

theory. Most of the mass is concentrated at 1, where choices equal the Nash prediction. The

Nash prediction clearly has something to say about the data here. In the contest, however, this

pattern is completely different. Choices seem to have little to do with the unique pure strategy

Nash equilibrium and in fact investments are spread across the whole strategy space with no

meaningful concentration around any specific value or range of values.

In this paper we try to understand why behavioural variation is so large and why Nash equi-

librium (understood more broadly than the risk neutral point prediction) has so little to say

about the data in the standard contest. By contrast, most of the literature has focused on

the so-called “overbidding phenomenon”, the fact that on average investments are above the

risk-neutral Nash equilibrium. Explanations have focused on specific preferences or correlates

of individual behaviour with specific forms of bounded rationality (see the survey by Sheremeta

(2013)). Examples of preference based explanations include spiteful preferences, inequality aver-

sion (Bartling et al. (2009)) or the “joy of winning hypothesis” (Schmitt et al. (2004), Cason

et al. (2010)). The “overbidding phenomenon” has also been explained by QRE (Sheremeta

(2011), Lim et al. (2014)), distortion of probabilities (Baharad and Nitzan (2008)) or learning

1Auctions and contests are both “competitive” allocation games, where everyone bids for a prize but there

is one winner. Two differences are that in auctions there is incomplete information, while there is complete

information in the contest we study. In addition, in auctions the prize allocation is deterministic, while in the

typical contest it is non-deterministic.
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Figure 1: Cumulative Distribution of choices relative to Nash prediction in the Contest (Data

from Abbink et al. (2010)), the first-price auction (Data from Brosig and Reiss (2007)), the

second-price auction (Data from Cooper and Fang (2008)) and according to Nash equilibrium.

(Fallucchi et al. (2013)). However none of these studies explicitly addresses or explains the large

observed behavioral variation. It has been conjectured, though, that heterogeneity in preferences

or demographics might be one explanation (Sheremeta (2013)).

In this paper we try to explain both, the large amount of behavioural variation observed and

the low explanatory power of Nash equilibrium in these games. We distinguish between two

classes of alternative explanations: one based on preferences, the other on bounded rationality.

Potentially, there are two sources of complexity that can inhibit the explanatory power of NE

if agents are boundedly rational: (i) the difficulty to form correct beliefs and (ii) the difficulty

to formulate best responses (even if beliefs were correct). In our experiment we vary these two

sources of complexity systematically. If complexity is indeed the underlying reason for the large

behavioural variation and the low explanatory power of NE in this game, then we should see

(approximate) Nash behavior once both these sources of complexity are removed.2

In our benchmark treatment DiffDiff participants play a standard Tullock contest. Treatment

EasyDiff exogenously manipulates the difficulty to formulate best responses. This treatment

coincides with DiffDiff except for the fact that prize allocation is deterministic. In the light

of ample evidence that people find it difficult to reduce uncertainty (Kahneman and Tversky

(1972)), this should make it easier to formulate best responses. Treatment DiffTriv exogenously

manipulates the difficulty of forming correct beliefs. It coincides with DiffDiff , but partici-

pants in this treatment play against computer opponents that play pre-determined actions that

are announced to participants before they make their choices. Hence there is no strategic un-

certainty in this treatment and forming beliefs about the opponent’s choices is trivial. Finally

2Since we do not observe preferences directly, it is hard to say what the “right” Nash equilibrium benchmark

is. Virtually all of the existing literature uses the risk neutral NE as a benchmark (see survey below). We also

use risk neutral expected utility maximizers as a benchmark, but, in addition, we also consider a wide range of

other preferences. The classes of preferences we study include different risk preferences and social preferences.
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treatment EasyTriv coincides with DiffTriv, but prize allocation is again deterministic. Hence

in this treatment both best response formulation and belief formation should be easy or trivial,

respectively.

Our main findings are as follows. As in previous experiments, investments in the standard

contest (DiffDiff ) are spread across the whole strategy space and Nash equilibrium has almost

no explanatory power. When only one source of difficulty is removed (EasyDiff or DiffTriv),

choices are still very different from the Nash prediction, more than half of the time players choose

strategies that are strictly dominated and investments choices are highly variable. However,

when both best response and belief formation are easy or trivial, respectively (EasyTriv), players

choose strategies that are very close to the prediction of the risk neutral model and behavioural

variation is much lower. Bounded rationality can explain the large behavioural variation and

low explanatory power of Nash equilibrium in this game.

In order to understand possible interaction effects between our treatment manipulations and

participants’ (social) preferences, we also conducted a treatment, where we replace computers

by humans in treatment EasyTriv and show that our treatment rankings are unaffected by this

change. We also show that all our treatment comparisons and conclusions remain valid if we

allow for risk-aversion, risk-seeking preferences or different types of social preferences.

We then ask whether heterogeneity in preferences can explain the large behavioural variation in

the standard contest. To these ends we conduct extensive simulations where we consider many

possible population compositions of agents with differing risk, social, joy of winning and standard

preferences and show that none of these is able to recover the behavioural variation found in

the standard contest (DiffDiff ). We conclude that, while some preference based explanations

can explain the so-called “overbidding phenomenon”, they cannot explain the large behavioural

variation typically found in these games. Reducing the complexity of the environment, on

the other hand, eliminates the large behavioural variation and leads to behaviour that is very

consistent with the predictions of the risk neutral model.

Complexity has been found to play an important role in other games and decision-problems.

Grimm and Mengel (2012) show that players are able to learn the Nash equilibrium in normal

form games with a unique pure strategy Nash equilibrium in situations of low complexity (few

games and easy access to feedback), but not in situations with higher complexity (many games

or difficult access to feedback.) Huck et al. (2010) show that participants have more difficulty

to form correct beliefs as the environment gets more complex. In decision problems Huck and

Weizsäcker (1999) find that players are more likely to deviate from expected value maximization

when choosing between a pair of lotteries if the task is more complex, as measured by the number

of possible outcomes (see also Rabin and Weizsäcker (2009)).

The paper is organized as follows. In section 2 we present the experimental design. Section 3 lists

the conjectures that are tested in section 4, where we show how reducing complexity reduces

behavioural variation and increases the explanatory power of Nash equilibrium. Preference

based explanations and heterogeneity in preferences are discussed in section 5 and conclusions

are drawn in section 6. An Appendix contains additional table and figures as well as the
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experimental instructions.

2 Experimental Design

Our experimental design aims to understand whether bounded rationality could be the reason

for the large behavioural variation and low explanatory power of Nash equilibrium in Tullock

contests. In order to reach a Nash equilibrium, players need to do two things: (i) they need to be

able to form correct beliefs and (ii) they need to be able to formulate best responses (to whatever

beliefs they hold). Participants could learn to form correct beliefs or formulate best responses in

a number of ways. Under some learning models they might even learn to play a Nash equilibrium

without explicitly forming beliefs at all (e.g. reinforcement learning). How exactly participants

do so is of secondary concern for us in this study. The question we ask is whether if we make

it “easy enough” to formulate beliefs and best responses behavioural variation in this game will

be (substantially) reduced and the explanatory power of Nash equilibrium increased. In a 2×2

factorial design we hence varied complexity along these two dimensions. Table 1 summarizes

this treatment structure.

Treatment DiffDiff is our benchmark treatment and implements the standard contest as

typically studied in the experimental literature. In treatment EasyDiff , we make it “easy”

to formulate best responses, but keep the difficulty of forming correct beliefs. This reverses

in treatment DiffTriv, where we keep the difficulty of formulating best responses and make

it simple, in fact trivial, to formulate correct beliefs. In treatment EasyTriv, both sources of

complexity are eliminated. Next, we describe these treatments in detail.

Belief Formation

Best Response Formulation Difficult Trivial

Difficult DiffDiff (54) DiffTriv(44)

Easy EasyDiff (54) EasyTriv(44); EasyTriv−h (48)

Table 1: Experimental Design, numbers in brackets indicate the total number of participants in

each treatment. Participants in treatments DiffDiff and EasyDiff were allocated to matching

groups of 6 participants, thus there are 9 independent observations in each of these treatments.

In treatments EasyTriv and DiffTriv each participant is an independent observation. In

EasyTriv−h 24 participants were “dummy” players, so we use the choices of the remaining 24

players in our analysis.

DiffDiff In treatment DiffDiff , subjects participated in the standard Tullock contest. In our

Tullock contest, two players compete for a commonly known prize of 16 Experimental Currency

Units (ECU). In every round, participants received an endowment of 16 ECU. Participants could

then invest an amount from this endowment, i.e. an amount from the action setAi = {1, 2, ..., 16}
with typical element ai (i = 1, 2). Players’ investments are sunk costs and the sets of feasible

monetary payoffs are given by Πi = {16 − ai, 16 + 16 − ai}. The contest success function that

denotes the probability that player i receives the prize and, hence, the payoff of (32− ai) ECU

is given by ρi(a1, a2) = ai
a1+a2

. The experimental instructions can be found in Appendix B.
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The unique (risk-neutral) Nash equilibrium in our contest game is given by (a∗1, a
∗
2) = (4, 4).

This is the unique strategy profile surviving iterated elimination of dominated strategies. All

choices ai > 4 are strictly dominated by ai = 4 under the standard assumptions. Put differently,

there are no beliefs that can support choices above the Nash choice of 4 for risk neutral expected

utility maximizers. Even allowing for moderate degrees of risk aversion or risk seeking does not

affect this property. To demonstrate this, Figure 6 in the Appendix illustrates the best response

correspondence for a risk averse, risk neutral and risk-seeking CRRA agent. These best response

functions are very similar to one another and choices exceeding 4 are not rationalizable for any of

these types. Therefore, we will follow the vast majority of the literature and use the risk-neutral

Nash equilibrium as a benchmark. We will be very careful, though, to account for heterogeneity

in risk and social preferences when interpreting our results and we will investigate this issue

more deeply in section 5.

EasyDiff In treatment EasyDiff we wanted to make it easier for participants to formulate

best responses (compared to DiffDiff ). An obvious treatment manipulation would be to simply

compute the best response for them. Remember, though, that we want to allow for the possibility

that participants may have heterogeneous preferences. If we want to remain agnostic about their

preferences, we cannot compute best responses “for them”. In the light of ample evidence that

people have difficulty to reduce uncertainty (e.g. Kahneman and Tversky (1972); Peters et al.

(2007)), one treatment variation that should make it easier to formulate best responses is to

eliminate random variables.3 One way of doing so is to share the prize between both players

according to their individual investment shares in total investment. Hence, instead of receiving

(32 − ai) ECU with probability ai
a1+a2

and (16 − ai) ECU with complementary probability (as

in DiffDiff ), subjects received as the monetary round payment the hypothetical expected value

ai
a1 + a2

(32− ai) + (1− ai
a1 + a2

)(16− ai) = 16− ai +
16ai

a1 + a2
ECU.

In this treatment - given correct beliefs - formulating best responses should be easier, because

participants do not have to reduce uncertainty. It is still difficult in this treatment, though, to

form correct beliefs.

DiffTriv Making it simpler (or even trivial) to form correct beliefs requires more elaborate

design interventions. If one would like to maintain the simultaneous choice setting (which is

desirable because of treatment comparisons), the only way is to let participants play against

computers or against human players who are so restricted in their choice of strategy that they

could almost be replaced by computers. In the experiment we did both. To be able to eliminate

strategic uncertainty in treatments DiffTriv and EasyTriv, all treatments (including the bench-

mark treatment DiffDiff ) were divided into 4 successive blocks and each block was composed

of 10 rounds of play.

3In section 5.1, we analyze the possibility that this treatment variation interacts with risk preferences to

generate differential results.
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Specifically, strategic uncertainty was removed by matching participants to computers who

played a fixed strategy in every block.4 Players were informed about the opponent’s choices

ex ante and, hence, should hold deterministic and, moreover, correct beliefs about the oppo-

nent’s play. The strategy adopted by the computer was held constant within each block of ten

rounds and changed from one block to the other, thus, each player faced four different strategies.

The four strategies used by the computer were randomized across participants who faced one

of the following sequences where each computer action was played in ten rounds: (1, 14, 11, 8),

(5, 10, 3, 16), (9, 6, 15, 4) or (13, 2, 7, 12). Each sequence was allocated to the same number of

players. Hence, there is an equal number of observations for each computer choice in {1, ..., 16}.
Sequences were selected such that each participant faced the same average level of computer

investment and some “high” as well as “low” investment levels.

EasyTriv In treatment EasyTriv both sources of complexity were eliminated using the same

procedures as adopted for treatments DiffTrivand EasyDiff , respectively. Since players were

ex ante informed about the investment choice of the computer, they should hold correct beliefs

in EasyTriv(just as in DiffTriv). The question is whether - given correct beliefs - participants

engage in best response behaviour. This should be easiest in EasyTrivwhere both sources of

complexity are eliminated.

EasyTriv-h Treatment EasyTriv-h coincides with treatment EasyTriv except that computers

were replaced by human players that were restricted to choose the same strategy in each block

of ten rounds where the strategies. Moreover, subjects had to choose from a set of four different

strategies. The four different sets were {1, 14, 11, 8}, {5, 10, 3, 16}, {9, 6, 15, 4}or{13, 2, 7, 12}. To

give the human players some choices in treatments EasyTriv-h, they could pick the order in which

they played the strategies, while in EasyTrivthe computer played them in a fixed sequence not

known to the human participants. Essentially, treatment EasyTriv-h serves as a robustness check

to understand whether introducing computers instead of human subjects affects our treatment

comparison, e.g., due to social preferences. This is, by far, not the only robustness check we do,

however to account for this possibility (see section 5.2).

Other Details To give subjects the opportunity of experimenting and learning about the

game situation at no cost, during the experiment players were facing an alternating pattern of

5 non-incentivized and 5 incentivized rounds. This design was chosen to encourage participants

to practice and understand the design and incentives well. After all 40 rounds were completed,

players took an incentivized numeracy test that measured the ability to understand and manip-

ulate probabilities.5 At the end of the experiment, one incentivized round was randomly chosen

4A similar procedure was used e.g. by Johnson et al. (2002), who match players to “robots” in three-round

bargaining game. Robots were playing according to the subgame-perfect Nash equilibrium prediction and induced

human players to choose strategies that are closer to the theoretical prediction.
5Questions for the numeracy test were taken from Peters et al. (2007). From the 15 questions in the original

test we removed 7 questions that were found too simple (correctly answered by at least 80% of the population

with higher education). We did so to increase incentives of answering the more complicated questions and to

7



from each block and participants received the earnings from the chosen rounds as well as the

payment for correct answers in the questionnaire. The experiment was conducted in March and

September 2012 using z-Tree (Fischbacher, 2007) and ORSEE (Greiner, 2004) at the BEElab

at Maastricht University. A total of 244 students participated in the experiment. The average

duration of the experiment was 60 minutes and participants on average earned 15.15 euros.

3 Conjectures

Our first Conjecture is that reducing complexity by reducing the difficulty of formulating best

responses and forming correct beliefs leads to less behavioural variation.

Conjecture 1. Behavioural Variation is highest in DiffDiff and lowest in EasyTriv.

We introduce our measure of behavioural variation further below (Section 4). Before we do that,

we formulate conjectures about the explanatory power of NE in our four treatments. Since we

induce non-Nash choices by computerized players in the treatments with trivial belief formation,

DiffTriv and EasyTriv , the percentage of choices which are Nash is not a reasonable measure.

Instead we decompose Nash behaviour into the two components that motivated our design: (i)

correct beliefs and (ii) best response behaviour. In the following we explain how our treatment

variations impact each of these components.

We start by looking at the effect of making it easier to formulate best response. There is a

large body of evidence that people have difficulty in comprehending probabilistic statements

and in making decisions in probabilistic environments (Kahneman and Tversky (1972)). If NE

has explanatory power, then we would expect that removing this uncertainty facilitates best

response behaviour. As a consequence, we expect a larger share of choices to be consistent

with best response behaviour to some beliefs when best response formulation is easy, i.e. in

EasyDiff compared to DiffDiff and in EasyTriv compared to DiffTriv. What does it mean

to be “consistent with best response behaviour”? It means that choices are rationalizable, i.e.

that there exists a belief that would justify the player’s choice. Since dominated choices are not

consistent with best response behaviour, we expect to see less of these choices when best response

formulation is easy, as in EasyDiff compared to DiffDiff and in EasyTriv compared to

DiffTriv. Of course, what constitutes a dominated strategy depends on the agent’s preferences.

We follow the vast majority of the literature and assume a risk neutral expected utility maximizer

as a benchmark, but we carefully look at risk and social preferences in Section 5. There, we

demonstrate that our results obtain for very large classes of preferences.

Conjecture 2 A larger share of choices is undominated with easier best response formulation,

i.e. in EasyDiff compared to DiffDiff and in EasyTriv compared to DiffTriv.

Furthermore, if the difficulty in dealing with probabilistic statements is the main reason partic-

ipants make suboptimal decisions in non-deterministic environments, then participants that are

enable better differentiation based on performance. Subject were paid 1 ECU (0.25 euro) for a correct answer for

each of the first 7 questions, and 2 ECU (=0.5 euro) for a correct answer to the final question that was the most

difficult one.
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better at understanding probabilistic environments should do “better”. In other words subjects

with higher scores in the numeracy test should choose strategies consistent with best response

behaviour more often than others (in treatments EasyDiff and EasyTriv). We address this

issue in Section 4.3, where we present evidence from our questionnaire.

Since belief formation is trivial in treatments DiffTriv and EasyTriv, participants should have

“correct” beliefs in these treatments. As a consequence, if NE has explanatory power, then we

expect that a larger share of choices to be a best response to the opponent’s behaviour with

trivial belief formation, i.e. in DiffTriv compared to DiffDiff and in EasyTriv compared to

EasyDiff .

Conjecture 3 A larger share of choices is a best response to the opponent’s behaviour with

trivial belief formation, i.e. in DiffTriv compared to DiffDiff and in EasyTriv compared to

EasyDiff .

4 Results: Reducing Complexity

In this section, we present our main results. We start by evaluating Conjecture 1 on behavioural

variation and compare it across treatments (section 4.1). Subsequently, we focus on the ex-

planatory power of Nash equilibrium regarding its two components, best response behaviour

and correct beliefs, and evaluate Conjectures 2 and 3 (section 4.2). Unless explicitly stated

otherwise, throughout the paper we analyze data generated in the incentivized rounds during

the second half of the experiment. The reason is that we want to focus on mature behaviour

and eliminate behavioural variation that would disappear after some learning has occurred.

4.1 Behavioural Variation

Figure 2 is the analogue of Figure 1 and compares treatments DiffDiff and EasyTriv in

terms of behavioural variation. The figure plots the empirical cumulative distribution functions

(cdf) of choices ai divided by the equilibrium prediction along with the theoretically predicted

cdf. Theoretically, hence, all the observations should yield a degenerate cdf where all the cdf

mass cumulates at one, because choices should equal the equilibrium prediction in each period.

What is the equilibrium prediction for both treatments? As discussed before, in treatment

DiffDiff (i) the risk-neutral Nash equilibrium prescribes an investment of a∗i = 4 ECU and (ii)

the best response of a risk-neutral agent to the empirical distribution of choices in DiffDiff is

also a∗i = 4. In treatment EasyTriv, however, the theoretical prediction is different. Since the

predetermined computer’s choice can differ from 4 ECU and is announced, hence, known before

making a choice, the prediction is simply the best response to that predetermined choice. The

resulting best responses range from 1 to 4 depending on the computer’s choice, noting that all

choices exceeding 4 are strictly dominated.

Figure 2 shows that our benchmark treatment DiffDiff produces results for the Tullock contest

that are “standard” in the sense of high behavioural variation and choices completely discon-

nected from the theoretical (Nash) prediction. There does not seem to be more cdf mass at 1,

9



Figure 2: Cumulative distributions of ratio variable, where investment choices are divided by

equilibrium prediction, in theory and treatments DiffDiff as well as EasyTriv.

where the actual choice equals the theory prediction, than elsewhere. Note also that all the cdf

mass to the right of 1 stems from dominated choices for a risk-neutral and moderately risk-averse

(see section 5.1) agents. In treatment EasyTriv, on the other hand, the theoretical prediction

clearly has something to say about the data with most cdf mass concentrated at 1.

We use two measures previously used in the literature to obtain more conventional measures

of behavioural variation. The first measure is the standard deviation of choices. The second

measure is entropy, which evaluates the stochastic variation of a random variable that can

assume a finite set of values (Shannon, 1948). Entropy has been used, e.g. by Bednar et al.

(2011), to evaluate behavioural variation in normal-form games. While standard deviation is

a very common measure, the advantage of using entropy is that it yields a measure of the

average unpredictability of a random variable that captures the amount of information needed

to describe a distribution. This is why it captures nicely the difficulty to form correct beliefs. If

a is the random variable of investments and pi = P (a = ai) is its probability density function

for all possible strategies ai = 1, 2, . . . , 16, entropy is computed as:

H = −
∑

i=1,2,...,16

pi log2(pi)

It is common to use a logarithm to base 2, so that entropy can be interpreted as the total number

of bits needed to describe the data. For our strategy space with 16 possible choices, the entropy

measure can take values from 0 (if a single strategy is always chosen) to 4 (if all strategies are

chosen with equal frequency).6

To compare behavioural variation across treatments, we compute our measures (entropy and

standard deviation) by treatment conditional on the strategy chosen by the opponent. Aggregate

entropy in each treatment is then computed as the weighted average of the conditional entropy

levels and the weights are determined by the frequency with which each of these strategies

6To accommodate the case that a strategy is never played, we follow the literature and assume 0 · log(0) = 0.
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are chosen in the standard contest (DiffDiff ). Conditioning on opponents’ strategies ensures

that the behavioural variation is zero in all treatments if all participants always choose best

responses to correct beliefs. Without this conditioning, there would be artificial variation in

treatments DiffTriv and EasyTriv, which is merely due to the computer changing strategies

between blocks, which in some cases changes the best response.7

DiffDiff EasyDiff DiffTriv EasyTriv

Entropy 3.21 2.79 2.45 1.50

Std. dev. 3.27 2.42 3.15 1.16

Table 2: Behavioral variation across treatments. Data from incentivized rounds in the the second

half of the experiment.

Both measures are summarized in Table 2. Both entropy and standard deviation are highest

in the standard contest (DiffDiff ) and lowest when complexity is lowest (EasyTriv). The two

measures disagree on ranking the intermediate treatments, where either best response formu-

lation or belief formation is simplified (but not both): entropy is higher in EasyDiff than in

DiffTriv, but standard deviation ranks them the other way round. Table 12 in Appendix A.6

shows that both within and between subject variability contribute to the high amount of be-

havioural variability observed in DiffDiff and that eliminating uncertainty (as in EasyTriv)

reduces both types of variability.

We conduct Wilcoxon ranksum (Mann-Whitney) tests to check for the statistical significance

of these differences. To account for the dependency of observations within matching groups we

compute entropy (standard deviation) separately for each matching group and then compare

the distribution of the results using two-sided ranksum tests. Since in treatments DiffTriv and

EasyTriv each participant is an independent observation, we can either compare matching

group averages with individual levels or form artificial matching groups in the DiffDiff and

EasyDiff treatments and then compare matching groups. We do both and report the

lower/higher p-value, whichever is more relevant. For entropy, we find that the difference be-

tween DiffDiff and EasyTriv is significant (p < 0.0544). Hence, reducing both dimensions

of complexity significantly reduces behavioural variation. If best response formulation is easy,

making belief formation trivial also significantly reduces behavioural variation. The difference

between EasyDiff and EasyTriv is significant (p < 0.0210). The comparisons between the

intermediate treatments EasyDiff and DiffTriv are never significant (p > 0.7003), so that

both one-dimensional reductions of complexity affect behavioural variation similarly.

In terms of the standard deviation we again find significant differences between DiffDiff and

EasyTriv(p < 0.0005) and DiffTriv and EasyTriv(p < 0.0047) and no statistical significance

when comparing EasyDiff and DiffTriv(p > 0.2110). Overall we find clear support for Con-

jecture 1 and conclude that reducing complexity along the two dimensions in our design does

reduce behavioural variation.

7Despite this fact - even if entropy and standard deviation are computed by simply pooling all the observations

in a treatment, treatments are ranked similarly. The only exception would be treatment DiffTrivwhich in that

case exhibits larger behavioural variation than DiffDiff .
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Result 1 Behavioral variation is lowest in EasyTriv , where best response formulation is easy

and belief formation trivial, among all treatments and it is lower in EasyDiff and

DiffTriv , where one dimension of complexity is reduced, compared to DiffDiff .

4.2 Explanatory Power of Nash Equilibrium

Now that we have established that making best response formulation easy and belief formation

trivial reduces behavioral variation substantially, we examine whether the explanatory power

of Nash equilibrium responds accordingly. We evaluate this conjecture in detail in this section.

We follow the vast majority of the literature and focus on the benchmark prediction for risk

neutral agents. In Sections 5.1 and 5.2 we relax this assumption and explore different preference

specifications, in particular different risk preferences and social preferences.

DiffDiff EasyDiff DiffTriv EasyTriv

P (a = NE) 7.04% 13.33% - -

P (a = BR) 7.04% 12.04% 22.50% 65.23%

P (|a−NE| ≤ 1) 25.74% 32.78% - -

P (|a−BR| ≤ 1) 26.30% 31.30% 47.95% 83.64%

P (a > 4) 60.19% 62.78% 51.36% 16.14%

Table 3: Indicators measuring the explanatory power of Nash equilibrium across treatments.

Data from the incentivized rounds in the second half of the experiment.

Table 3 shows summary statistics on different measures of the explanatory power of Nash equi-

librium. Let us first focus on the benchmark treatment DiffDiff . In this treatment, we ob-

serve only 7 percent of choices equal to the Nash prediction. To get a sense of how little this

is, note that a player choosing uniformly at random between the possible investment levels

ai ∈ {1, ..., 16} would play the Nash choice 6.25 percent of the time. The explanatory power

of NE is not much improved when we look at the percentage of choices that are “close” to the

Nash choices (ai ∈ {3, 4, 5}). This percentage is barely above 25 percent. Note again that a

random player would hit these numbers in 18.75 percent of the cases. Moreover, approximately

60 percent of all choices in DiffDiff are strictly dominated (a > 4). The top-left panel of

Figure 3 illustrates these results, where the dashed line separates dominated (a > 4) from un-

dominated choices (a ≤ 4). Our results in the benchmark treatment DiffDiff hence display

the low explanatory power of NE typically found in Tullock contest data (Abbink et al. (2010),

Sheremeta (2013)). We now study how it changes when we reduce the difficulty of (i) best

response formulation and (ii) belief formation.

“Easy best responses” (Conjecture 2) Let us first see whether and how the explanatory

power of NE is increased by making it easier to formulate best responses. As outlined in Section

3, we expect participants to choose strategies that are consistent with best responses to any

belief, i.e. undominated strategies, more often when best response formulation is easier, i.e. in

EasyDiff compared to DiffDiff and in EasyTriv compared to DiffTriv. For risk-neutral

(and moderately risk averse) agents, investment levels below or equal 4 are undominated. Table
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Figure 3: Distribution of investment choices by treatment in the incentivized rounds of the

second half of the experiment (rounds 26-30 and 36-40). The vertical dashed lines separate

undominated (≤ 4) from dominated choices (> 4).

3 shows the percentage of dominated choices by treatment. If belief formation is difficult, then

making best response formulation easy does not improve the explanatory power of NE, as the

comparison of treatments DiffDiff and EasyDiff shows. In fact the percentage of strictly

dominated strategies is even slightly higher under EasyDiff compared to DiffDiff , though this

difference is not statistically significant (see Table 8 in Appendix A.2). Overall, the explanatory

power of Nash equilibrium is very low in both treatments. This is also illustrated by Figure 3

(top-left vs bottom-left panel).

If belief formation is trivial, on the other hand, we observe a strong effect, as shown in Figure

3 (top-right vs bottom-right panel). Comparing treatments DiffTriv and EasyTriv, we find

that making best response formulation easy, substantially improves NE’s explanatory power.

While 51.36% of choices are strictly dominated in DiffTriv, only 16.14% are so in EasyTriv(see

Table 3). This difference is highly statistically significant (p < 0.0001) according to a simple

logit regression reported in Table 8 in Appendix A.2. Hence making it easier for participants to

formulate best responses, reduces the frequency of dominated choices if and only if it is trivial

to form correct beliefs.

Figure 4 illustrates this effect in more detail. The figure plots the quartiles of responses to

each of the strategies chosen by the computer. The difference between the first and the third

quartiles is much larger in treatment DiffTriv, especially for large investment values chosen

by the computer. In treatment EasyTriv median investments track the best response function

well.8. Table 9 in Appendix A shows that differences between treatments do not disappear

8Additional evidence for this effect can be found in Table 10 in Appendix A that compares the median
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Figure 4: Best-response (dashed line) and the empirical distribution of investments, conditional

on the strategy played by the computer. Box plots represent the medians, differences between

25th and 75th percentiles and lower and upper adjacent values.

with learning. The difference between the DiffDiff and EasyDiff is insignificant in every

block except for the first one where it is marginally significant, while the difference between

DiffTriv and EasyTriv is highly significant throughout the experiment.

To sum up, there is a complementary effect. Making it easier to formulate best responses reduces

the frequency of dominated choices if and only if it is trivial to form correct beliefs.

Result 2 Making best response formulation easy, increases the explanatory power of NE if and

only if belief formation is trivial. More choices are undominated under EasyTriv compared

to DiffTriv.

“Trivial Beliefs” (Conjecture 3) If beliefs are correct, then the explanatory power of Nash

equilibrium is reflected in the share of choices which are best responses to the opponent’s be-

haviour. Recall, that in the treatments with trivial belief formation the opponent’s behaviour

is announced, giving rise to correct beliefs. For comparison to the treatments with difficult

belief formation we report the frequency of choices that are best response to actual opponents’

behaviour in the latter.9

Consistently with Conjecture 3, Table 3 shows that the share of best responses increases as belief

formation becomes trivial irrespective of whether best response formulation is difficult or easy.

investments for each choice of the opponent across treatments DiffTriv and EasyTriv. It can be seen that the

median investment level tends to be closer to the best response in EasyTriv and that the treatment difference is

particularly large for situations where the opponent chooses a very high investment level (5 and above)
9Results are qualitatively the same if we consider best responses to population averages, instead.
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While less than 10% of participants best respond to their opponent’s choices in DiffDiff this

number more than doubles in DiffTriv and reaches 22.50%. Table 8 in Appendix A.2 shows

that the treatment difference is significant (p < 0.0001). The effect is even stronger if we

compare EasyDiff and EasyTriv. Here the share of choices which are best responses to the

opponent’s behaviour increases from about 12% to more than 65%. Also this treatment difference

is statistically significant (p < 0.0001, Table 8). 83.64% of choices in EasyTrivdeviate from the

best response by 1 ECU or less.10

Result 3 Making belief formation trivial, increases the explanatory power of NE. More choices

are best responses to the opponent’s behaviour under EasyTriv compared to EasyDiff and

under DiffTriv compared to DiffDiff .

It should be noted that the difference between EasyTriv and EasyDiff is larger than the

difference between DiffTriv and DiffDiff , i.e. making belief formation trivial is more effective

in increasing the explanatory power of NE if best response formation is easy (χ2 : p < 0.0023,

see Appendix A.2). Recall, also that we have seen that making best response formation easy

is effective only if belief formation is trivial (no significant difference between EasyDiff and

DiffDiff ). Hence both sources of complexity compound to decrease the explanatory power

of NE. Removing both sources of complexity leads to very high consistency with best response

behavior and a consequently high explanatory power of Nash equilibrium. These results suggest

that bounded rationality is a key force behind the typically low explanatory power of NE in

Tullock contests.

4.3 Cognitive Abilities and Equilibrium Deviations

In the previous subsection we have established that, while behavioural variation is huge in

DiffDiff and significantly reduced in EasyTriv, there remains a substantial amount of be-

havioural variation in DiffTriv. This shows that, even if belief formation is trivial, participants

still find it difficult to formulate best responses with probabilistic prize allocation. Since in

EasyTriv (where prize allocation is deterministic) this variation disappears, the difficulty in

forming best responses seems to be related to (some) participants’ difficulty in dealing with

probabilistic choice situations.

In this subsection we evaluate this hypothesis using data from our post-play questionnaire on

cognitive ability and risk numeracy.11 If complexity is indeed one of the main reasons why

participants’ choices are not consistent with best response behaviour in the experiment, then

one might conjecture that those with better scores in a risk numeracy test should have less

difficulty in dealing with this complexity and hence should be closer to best response behaviour.

As argued above, we expect risk numeracy to matter particularly in treatment DiffTriv, where

belief formation is trivial, but best response formation difficult. It is not clear why cognitive

10EasyTriv is the treatment where most learning is observed (see Table 9 in Appendix A). The change in

average equilibrium deviations decreases by 63% from the first to the fourth block.
11The entire questionnaire, as well as summary statistics on answers can be found in Appendix D.
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ability (as measured in numeracy tests) should help to form correct beliefs, i.e. explain variation

in DiffDiff and EasyDiff . In treatment EasyTriv, on the other hand, where both best response

formation and belief formation are easy we have seen that behavioural variation is low. We focus

hence on DiffTriv. Figure 5 plots the score in the numeracy test (higher score means higher

numeracy) against the distance a participant’s choice has on average from the best response

(Figure 5(a)) and against the computer strategy (Figure 5(b)).
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(b) Distance to Computer Strategy

Figure 5: Relationship between the performance in a numeracy test and absolute difference

between investments and computer’s strategy/best response, averaged by subjects. Incentivized

rounds from the second half of the experiment.

The figure shows data points as well as predicted values from an OLS regression and the asso-

ciated 95 percent confidence interval. It can be seen quite clearly that participants with higher

scores in the numeracy test are closer on average to best response behaviour. They are also

less prone to imitating the computer strategy, as Figure 5(b) suggests, but the statistical sig-

nificance here is somewhat lower. The underlying regression tables can be found in Appendix

D. Both results provide further support to our conjecture that the difficulty of participants to

make decisions in uncertain environments is a main cause for the low explanatory power of Nash

equilibrium in the Tullock contest.

Result 4 Participant who do better in the numeracy test best respond more often and imitate

less often than those who do worse in treatment DiffTriv.
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5 Preference Based Explanations

In this section we first ask whether our treatment comparisons and conclusions remain valid

under alternative assumptions on preferences. We first look at risk preferences (Section 5.1) and

then at social preferences (Section 5.2). Afterwards, in Section 5.3 we ask whether heterogeneity

in preferences can explain the large behavioural variation observed in the standard contest.

5.1 Risk Preferences

In this subsection we show that our results and interpretation are robust to considering differ-

ent risk preferences. First, note that results on behavioural variation are independent of our

participant’s preferences. In this section, we hence focus on our results from Section 4.2 (on

the explanatory power of Nash equilibrium) and show that they are robust when different risk

preferences are considered.

The first question to ask is how risk aversion (or risk seeking behaviour) affects the theoretical

predictions in the standard contest. Figure 6 in Appendix A shows the best response function for

a risk-seeking (parameter r = −0.5), risk-neutral (r = 0) and risk-averse (r = 0.5) CRRA agent.

The figure shows that the best response to choices below or equal to four are almost identical for

these three types. It further shows that all choices above 4 are never a best response for any of

these types. In addition, the more risk-averse an agent is, the more the best-response function

shifts downwards, i.e. the lower his best response is. Hence choices above the Nash level of 4

cannot be explained by risk aversion (see also Hillman and Katz (1984) or Abbink et al. (2010)).

Table 4 shows that the percentage of choices consistent with best response behaviour are much

higher in EasyTriv compared to all other treatments also for risk averse and risk-loving agents

and they remain very low (barely above uniformly random) in treatment DiffDiff . Further,

risk aversion and in particular also risk-seeking preferences are even less consistent with evidence

in EasyTriv, suggesting that risk aversion did not play a major role in the experiment. It has

also been shown that loss aversion or S-shape probability weighting cannot explain such choices

Baharad and Nitzan (2008). This also means that the results shown in Table 3 would remain

unchanged if moderately risk averse or risk-loving CRRA agents are considered.

Treatment DiffDiff EasyDiff DiffTriv EasyTriv

Risk neutrality 7.04% 12.04% 22.50% 65.23%

Risk aversion (r=0.5) 8.89% 10.56% 25.12% 45.00%

Risk seeking (r=-1) 10.00% 13.06% 8.75% 26.25%

Table 4: Percentage of choices that are best responses to the opponent’s choice (DiffTriv and

EasyTriv) or the empirical distribution of choices (DiffDiff and EasyDiff ) for risk averse

(CRRA with r = 0.5)/risk-neutral/risk-seeking (CRRA with r = −1) players.

A different question is whether, in the presence of risk averse agents, our treatment comparisons

are distorted by making prize allocation deterministic, as this reduces risk for our participants.

In particular a risk-averse CRRA agent might respond to the risk associated with probabilistic
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prize allocation in treatments DiffDiff and DiffTriv, but behave as if he was risk neutral in

EasyTriv, because all risk has been eliminated there. The preceding discussion suggests that

- given moderate degrees of risk aversion - this should not make too much of a difference. In

particular, Figure 6 in Appendix A shows that under CRRA utility risk averse participants

invest more than risk neutral participants if the opponent invests very little and less than risk

neutral participants if the opponent invests a lot. Since in treatments DiffTriv and EasyTriv,

participants know their opponents’ investments, we can use this to test for such distortions. If

risk aversion plays a significant role in explaining the differences between these treatments, then

we should expect that investments are higher in DiffTriv compared to EasyTriv for low invest-

ment choices of the opponent and lower for high investment choices of the opponent. Figure 4

shows that this is not the case. Mostly behavioural variation is higher under DiffTriv compared

to EasyTriv, but if at all investments in DiffTriv are lower for low investments and higher for

high investments of the opponent compared to EasyTriv. Hence we can rule out this type of

distortion of our treatment comparisons.

We conclude that the results summarized in Table 3 as well as treatment rankings are robust to

considering moderate degrees of risk aversion or risk seeking behaviour.

5.2 Social Preferences

Similarly we ask whether our conclusions drawn so far, and in particular our treatment com-

parisons, are valid if our participants had social preferences (inequity aversion, joy of winning,

reciprocity etc.).

One might for example argue, that some participants might have preferences over the outcomes

for other participants in the treatments DiffDiff and EasyDiff , but not over the computer’s

outcomes in treatments DiffTriv and EasyTriv and that this affects our results. To address

this potential concern we ran a treatment that coincides with EasyTriv, but where computers

are replaced by human opponents. We are interested in seeing whether this change reverses any

of our treatment rankings and therefore affects any of the conclusions we drew.

DiffDiff EasyDiff DiffTriv EasyTriv-h

Entropy 3.21 2.79 2.45 1.13

sd 3.27 2.42 3.15 0.91

Table 5: Behavioral variation across treatments. Data from incentivized rounds in the the second

half of the experiment.

Table 5 corresponds to Table 2, but treatment EasyTrivhas been replaced by treatment EasyTriv-

h. It can be seen that the conclusions are the same. Irrespective of the measure (entropy or

standard deviation) behavioural variation is much lower in EasyTriv-h compared to any of the

other treatments.

Table 6 corresponds to Table 3, but again treatment EasyTriv has been replaced by treatment

EasyTriv-h. Again our conclusions are robust. The share of choices corresponding to best

response behaviour or being “close” to best response behaviour is much larger in EasyTriv-h
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DiffDiff EasyDiff DiffTriv EasyTriv-h

P (x = NE) 7.04% 13.33% - -

P (x = BR) 7.04% 12.04% 22.50% 50.42%

P (|x−NE| ≤ 1) 25.74% 32.78% - -

P (|x−BR| ≤ 1) 26.30% 31.30% 47.95% 74.58%

P (x > 4) 60.19% 62.78% 51.36% 23.33%

Table 6: Indicators measuring the explanatory power of Nash equilibrium across treatments.

Data from the incentivized rounds in the the second half of the experiment.

compared to any of the other treatments. Hence, while some participants may well have social

preferences we conclude that (i) homogeneous social preferences cannot explain the large (within

subject) variation in behaviour we observe and (ii) our treatment rankings and conclusions are

not affected by allowing for this possibility. In the next subsection we ask whether heterogeneity

in social or other preferences can explain the large behavioural variation we observe.

5.3 Heterogeneity

In this subsection we report the results of simulations based on a number of different popula-

tions with heterogeneous preferences. Since in our experiment (treatment DiffDiff ) we had

matching groups of 6 players, we form arbitrary populations consisting of 6 players with different

preferences. The preference types we consider are the following

• τ1: risk neutral expected utility maximizers.

• τ2: risk averse CRRA agents with CRRA parameter r = 0.5 (see Appendix A)

• τ3: risk-seeking CRRA agents with CRRA parameter r = −0.5 (see Appendix A)

• τ4: social preferences: Charness-Rabin (ρ, σ) = (0.4, 0) (Charness and Rabin (2002))

• τ5: social preferences: Charness-Rabin (ρ, σ) = (0.8, 0.1) (Charness and Rabin (2002))

• τ6: joy of winning preferences: additional utility of 8 for winning (Sheremeta (2013))

Types τ1 − τ3 vary risk preferences. Types τ4 − τ5 very social preferences as in Charness and

Rabin (2002). Type τ4 reflects the parameters estimated from their experiments and type τ5 has

the same parameters but multiplied by two. Type τ6 receives an additional utility of 8 if s/he

wins the contest. These type of “joy of winning” preferences have received a lot of attention in

the contest literature to explain the so-called “overbidding phenomenon” (see Sheremeta (2013)).

An additional utility of 8 reflects a 50% increase in expected utility at the risk-neutral Nash

equilibrium.

We simulated different population compositions of these types for 40 periods. Before the first

period we randomly match agents into pairs. In period 1 they all play an initial action drawn

uniformly at random from 1, ..., 16. In all subsequent periods they play a myopic best response to

the action of their previous match. To compute the myopic best response for the Charness-Rabin
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types τ4 and τ5 we assume that the prize is shared proportionally as in treatment EasyDiff . All

populations compositions are run 100 times to account for path dependence caused by random

matchings and initial actions. We report the minimal, maximal, mean and median entropy

across these 100 runs.

composition (τ1, ..., τ6) min max median mean

(6, 0, 0, 0, 0, 0) 0.217 0.530 0.391 0.379

(0, 6, 0, 0, 0, 0) 0.255 0.538 0.430 0.425

(0, 0, 6, 0, 0, 0) 0.147 0.429 0.321 0.315

(0, 0, 0, 6, 0, 0) 0.806 2.104 1.624 1.656

(0, 0, 0, 0, 6, 0) 0.754 2.076 1.613 1.584

(0, 0, 0, 0, 0, 6) 0.213 0.426 0.333 0.328

(0, 2, 0, 2, 2, 0) 0.320 0.974 0.710 0.694

(1, 1, 1, 1, 1, 1) 1.158 1.649 1.415 1.409

(1, 2, 0, 1, 1, 1) 1.339 1.695 1.550 1.543

(1, 2, 0, 2, 1, 0) 0.327 0.541 0.549 0.758

(2, 0, 0, 2, 1, 1) 1.099 1.587 1.330 1.344

(2, 0, 0, 2, 2, 0) 0.406 0.952 0.690 0.683

(2, 1, 1, 1, 1, 0) 0.252 0.628 0.444 0.447

(2, 2, 0, 1, 1, 0) 0.262 0.638 0.464 0.464

(3, 0, 0, 2, 1, 0) 0.247 0.790 0.547 0.536

(3, 0, 0, 3, 0, 0) 0.192 0.801 0.522 0.522

(3, 1, 0, 1, 1, 0) 0.264 0.652 0.473 0.466

(3, 2, 0, 1, 0, 0) 0.255 0.597 0.425 0.423

(3, 3, 0, 0, 0, 0) 0.186 0.525 0.412 0.405

DiffDiff 3.21

EasyDiff 2.79

Table 7: Minimal, maximal, median and mean entropy across 100 runs of simulated populations.

Mean entropy in treatments DiffDiffand EasyDiff from incentivized rounds in second half of

experiment.

Table 7 shows the results of our simulations. The highest levels of entropy are reached in ho-

mogeneous populations of agents with Charness-Rabin preferences. The reason is that, because

there are multiple Nash equilibria in this case, the process converges much more slowly. However,

even in these populations the average levels of entropy observed (1.656 or 1.584, respectively)

fall well short of the high levels of entropy observed in treatment DiffDiff (where mean entropy

equals 3.21). We conclude that heterogeneity in preferences cannot explain the high behavioural

variation observed in treatments DiffDiff , EasyDiffand DiffTriv.

6 Conclusion

We conducted an experiment to understand the reasons behind the large behavioural varia-

tion and the low explanatory power of Nash equilibrium typically found in Tullock contests.

Across treatments we vary the difficulty of (i) forming correct beliefs and (ii) formulating best

responses. In the treatment where both belief formation and best response formulation are

“easy”, behavioural variation is substantially lower and the explanatory power of Nash equilib-
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rium much higher. Via additional treatments and several simulations we show that heterogeneity

in preferences cannot explain the large behavioural variation found in the standard contest. We

conclude that bounded rationality rather than preference heterogeneity is the reason for the

typically large behavioural variation in experimental Tullock contests.
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A Additional Tables and Figures

A.1 Risk Preferences

Figure 6 illustrates the best response correspondence for an agent with CRRA preferences

U(x) = x1−r

1−r with parameter r ∈ {−0.5, 0, 0.5}. The figure shows that all choices above 4

are dominated for all these types. Best response correspondences are of similar shape and the

Nash equilibrium is (4, 4) for any pairwise match between agents of either of these three types.

Figure 6: Best Response Correspondence for an agent with CRRA preferences with parameter

r ∈ {−0.5, 0, 0.5}

A.2 Regression Explanatory Power of Nash equilibrium

Table 8 shows the results of logit regressions where either (in columns (1) and (2)) we regress a

binary variable indicating an undominated choice (a < 5) on treatment dummies or (in columns

(3) and (4)) we regress a binary variable indicating a best response to the opponent’s choice on

treatment variables. The results illustrate the statistical significance of the differences seen in

Table 3. A χ2 test shows that the difference between DiffDiff and DiffTriv is smaller than

the difference between EasyDiff and EasyTriv (p < 0.0023).
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Pr(a < 5) Pr(a < 5) Pr(a ∈ BR(a−i)) Pr(a ∈ BR(a−i))

“Easy...” −0.109 1.702∗∗∗

(0.392) (0.328)

“...Triv” 1.344∗∗∗ 2.617∗∗∗

(0.234) (0.416)

constant -0.413∗∗ -0.054 -2.581∗∗∗ -1.988∗∗∗

(0.216) (0.198) (0.130) (0.355)

Observations 1080 880 980 980

Baseline DiffDiff DiffTriv DiffDiff EasyDiff

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Logit Regressions Explanatory Power of Nash equilibrium. Standard errors clustered

at matching group level. The first column compares the frequency of undominated choices in

treatments DiffDiff and EasyDiff , the second column compares DiffTriv and EasyTriv.

Column (3) compares the share of choices that are best responses to the opponent’s behaviour

in DiffDiff and DiffTriv and column (4) compares EasyDiff and EasyTriv.
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A.3 Deviations from best responses across blocks

Table 9 shows how much participants choices differ from best responses in each block of the

game, how big the effect of removing either source of uncertainty is and whether these effects

are statistically significant in each block. The statistical comparison between DiffDiff and

EasyDiff treatments was done using matching groups as independent observations, while the

comparison between DiffTriv and EasyTriv was done using individual players as independent

observations. If individual players are used for the first comparison instead, results do not change

and p-values are above 0.1 in every block. Student’s t test yields the similar results, except that

the difference between means of treatments DiffDiff and EasyDiff is marginally significant

in blocks 2, 3 and 4, respective p-values 0.0633, 0.0415 and 0.0186.

Treatment DiffDiff EasyDiff DiffTriv EasyTriv

First block 3.77 3.04 4.45 1.59

Second block 3.03 2.60 4.41 1.15

Third block 2.86 2.53 3.69 0.74

Fourth block 2.90 2.43 3.23 0.60

Total 3.14 2.65 3.95 1.02

Comparison DiffDiff vs EasyDiff DiffTriv vs EasyTriv

First block 0.0094 0.0000

Second block 0.3008 0.0000

Third block 0.1050 0.0000

Fourth block 0.1224 0.0000

Total 0.0014 0.0000

Table 9: Comparison of mean equilibrium deviations across treatments in every block. Two-

tailed Mann-Whitney U test p-values of pairwise comparisons in the right panel

Table 10 shows the median investment for each strategy played by the opponent in treatments

DiffTriv and EasyTriv. The table illustrates that the strong deviations from best response

behaviour in DiffTriv are not due to outliers but are a systematic pattern. The table also

shows that median choices are largely consistent with best response behaviour in EasyTriv.

Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Theoretical BR 3 4 4 4 4 4 4 3 3 3 2 2 1 1 1 1

EasyTriv(last 20) 3 4 4 4 4 4 4 3 3 3.5 2 2 1 1 1 1

DiffTriv(last 20) 3 5 4 5 5 8 10 8 9 11 1 1 0.5 7 1 1

Table 10: Theoretical best-responses and the median actual investments for each strategy played

by the computer.

A.4 Determinants Behaviour

Table 11 shows the results of a regression looking at what factors induce a player to deviate from

the theoretical prediction. Among the explanatory variables we include personal characteristics:
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the total number of correct answers in a numeracy test and gender as well as variables on

the history of play: opponent’s investment in the previous period (treatments DiffDiff and

EasyDiff ), strategy chosen by the computer ( treatments DiffTriv and EasyTriv), a binary

variable indicating whether the agent won in the previous period and the inverse of the period

variable.

Results of the regression are presented in Table 11. Players who did better in the numeracy

test on average behave more in line with the theoretical prediction in treatment DiffTriv (see

Section 4.3). No significant gender effect is observed. In all the treatments behavior tends to

move towards the equilibrium over time, as seen from the positive coefficient on the inverse

period variable, but the learning effect is strongest in treatment EasyTriv.

DiffDiff EasyDiff DiffTriv EasyTriv

numeracy score -0.142 -0.133 -0.648∗∗∗ -0.214∗

Female -0.128 -0.582 0.0426 0.112

1/period 6.370∗ 5.777∗∗ 6.800 7.808∗∗∗

Won in the previous round -0.103 0.973∗∗∗

Opponent’s action in the previous round 0.0598∗ 0.0584∗∗

Computer’s investment 0.331∗∗∗ -0.0136

Constant 3.217∗∗ 3.021∗∗∗ 3.815∗∗∗ 1.754∗∗∗

Observations 980 1000 820 820

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Random effects estimation, the dependent variable is absolute difference between the

best response prediction and investment level. Standard errors clustered on subject level. Data

from all incentivized rounds.

A.5 Convergence and Dynamics

Figure 7 shows the frequency with which participants switch actions over time in the non-

incentivized and incentivized periods. The figure provides some interesting insights. In the

treatments DiffDiff and EasyDiff there seems to be little learning over time. Participants

switch their choices with a probability of around 0.6 across periods. This number barely declines

over time (with the exception maybe of the first 5 periods, where it drops from 0.8 to 0.6) and

there is no discernible difference between incentivized and non-incentivized periods. There

seems to be almost no learning in these treatments and participants remain unsure about what

to choose until the end of the 40 periods.

The picture looks much different in the treatments DiffTriv and EasyTriv. In the incen-

tivized rounds, participants switch their choice with a probability of roughly 0.4 (DiffTriv)

or 0.3 (EasyTriv) on average. Switching probabilities decrease over time, both within and

across rounds. And there is a clear difference between incentivized and non-incentivized rounds.

Clearly, participants are using the non-incentivized rounds to experiment and learn about best re-

sponses and then apply these in the incentivized rounds. The difference between treatments with

difficult and trivial belief formation is highly statistically significant (one-sided t-test p < 0.0001),

so is the difference between DiffTriv and EasyTriv(one-sided t-test on incentivized rounds only
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Figure 7: Relative frequency of changes in investments from one round to the other, by treat-

ment.

p = 0.0392.

A.6 Within-subject and between-subject variability

Table 12 decomposes the behavioural variation (standard deviation) into within and between

subject variation. The table reports both sum of squares and mean of squares each decom-

posed into between and within subject variation. The table shows that both within-subject

and between-subject variability is lower in EasyDiff compared to DiffDiff and lower in

EasyTriv compared to DiffTriv. Hence making it easier to formulate best responses lowers

both within and between subject variability irrespective of whether belief formation is difficult

or trivial. Furthermore, within subject variation is lower in EasyTriv compared to EasyDiff ,

but the difference between DiffTriv and DiffDiff is not significant. Overall, EasyTriv has the

lowest level of both types of variability whereas DiffDiff and DiffTriv are most variable.

Treatment MSQ Within MSQ Between SSQ Within SSQ Between

DiffDiff 3.96 17.34 1.65 9.17

EasyDiff 2.27 11.16 1.14 5.55

DiffTriv 2.74 49.15 2.28 8.28

EasyTriv 0.36 7.71 0.30 1.25

Table 12: Within-subject and between-subject variability by treatment. Variables: mean squares

(MSQ) and sum of squares (SSQ) within subjects and between subjects. Variability computed

conditional on opponent’s investment and then averaged using the frequency of each strategy

chosen in the standard contest as weights. Data from incentivized rounds in the second half of

the experiment.

29



B Instructions DiffDiff

INSTRUCTIONS

Welcome to the experiment. Please read the instructions carefully. They are identical for all

the participants with whom you will interact during this experiment.

If you have any questions please raise your hand. One of the experimenters will come to you and

answer your questions. From now on communication with other participants is not allowed. If

you do not conform to these rules you will be excluded from the experiment with no payment.

Please do also switch off your mobile phone at this moment.

In this experiment you can earn some money. How much you earn depends on your decisions

and the decisions of the other participants. During the experiment we will refer to ECU (Exper-

imental Currency Unit) instead of Euro. The total amount of ECU that you will have earned

during the experiment will be converted into Euro at the end of the experiment and paid to you

in cash confidentially. The conversion rate that will be used to convert your ECU earnings into

your Euro cash payment will be shown to you on the screen at the beginning of the experiment.

The Experiment

The main part of this experiment consists of 4 blocks with 10 rounds in each block. In each

block, the first five rounds are for practice only so that you can experiment without affecting

your cash earnings from this experiment. At the end of the experiment, one round out of the

final five rounds in each block (that is one round of rounds 6-10 in each block) will be randomly

selected and the sum of your round incomes in these selected rounds will be converted into euros

and paid to you in cash.

The Task

The task is the same in each of the 40 rounds. At the beginning of each round the computer

will randomly match you with another participant in this room. You will not know who the

other participant is, and the other participant you are matched with is likely to change every

round. The other participant that is matched with you will receive the same information and

will face exactly the same task. In each round each participant will receive an endowment of 16

ECU. The endowment can be used to purchase “tokens”. Each token costs 1 ECU so that you

can purchase up to 16 of these tokens. You have to buy at least one token. Any part of your

endowment that you do not spend on tokens will be added to your round income.

After you and the other participant have chosen how many tokens to buy, only one of you will

receive the extra 16 ECU. The probability that you will receive the extra 16 ECU depends on

the number of tokens that you buy and the number of tokens that the other participant buys.

More precisely, the probability that you receive the extra 16 ECU is given by:

Probability of receiving

the extra 16 ECU
=

Number of tokens you bought
×100%

Number of tokens you bought + Number

of tokens the other participant bought

30



For example, if both of you have purchased the same number of tokens, the probability that

each of you will receive the extra 16 ECU is 50%. Note that either you or the other participant

will always receive the extra 16 ECU.

Whether you or the other participant will receive the extra 16 ECU will be determined by a

random draw by the computer according to the probabilities given by the number of tokens

bought by you and by the other participant. Then the computer will compute your round

income based on the number of tokens that you bought and whether you have received the extra

16 ECU or not. Once the round is over, you will be informed about the number of tokens bought

by you and by the other participant, the probability to receive the extra 16 ECU, the outcome

of who receives the extra 16 ECU and your round income, and that of the other participant.

• If you receive the extra 16 ECU, your round income will be:

Round Income = 16 ECU − Number of purchased tokens + 16 ECU

• If you do not receive the extra 16 ECU, your total earnings in the round will be:

Round Income = 16 ECU − Number of purchased tokens

At the end of the experiment, four rounds will be randomly selected for payment. More precisely,

the first round for payment will be randomly selected from rounds 6-10, the second round for

payment from rounds 16-20, the third from rounds 26-30 and the fourth one from rounds 36-40.

Outcomes in all other rounds will not influence your final earnings, but you will not know which

rounds will be selected until the end of the experiment.

After the 40 rounds we will ask you to fill in a short questionnaire. The questionnaire will

have two parts, each of which will be explained on the screen before you start answering the

questions. After the first part of the questionnaire you will be informed about all of your round

incomes as well as about the four rounds that were randomly selected for payment (see Figure 1

on the next page). After the second part of the questionnaire you will be informed about your

final earnings in euro. You will receive these earnings in cash and in private at the end of the

experiment. Please stay seated until we ask you to come to receive the earnings.

If you have any further questions, please raise your hand now.

Summary

The structure of the experiment is as follows:

• The main part of the experiment consisting of 40 rounds.

• Questionnaire, part 1. After answering these questions you will be informed about your

final earnings in ECU.

• Questionnaire, part 2. Once you have completed it, you will be informed about your final

cash earnings in euros.

• Please stay seated until the experimenter asks you to come and receive the earnings.
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C Instructions EasyTriv

INSTRUCTIONS

Welcome to the experiment. Please read the instructions carefully. They are identical for all

the participants with whom you will interact during this experiment.

If you have any questions please raise your hand. One of the experimenters will come to you and

answer your questions. From now on communication with other participants is not allowed. If

you do not conform to these rules you will be excluded from the experiment with no payment.

Please do also switch off your mobile phone at this moment.

In this experiment you can earn some money. How much you earn depends on your decisions

and the decisions of the other participants. During the experiment we will refer to ECU (Exper-

imental Currency Unit) instead of Euro. The total amount of ECU that you will have earned

during the experiment will be converted into Euro at the end of the experiment and paid to you

in cash confidentially. The conversion rate that will be used to convert your ECU earnings into

your Euro cash payment will be shown to you on the screen at the beginning of the experiment.

The Experiment

The main part of this experiment consists of 4 blocks with 10 rounds in each block. In each

block, the first five rounds are for practice only so that you can experiment without affecting

your cash earnings from this experiment. At the end of the experiment, one round out of the

final five rounds in each block (that is one round of rounds 6-10 in each block) will be randomly

selected and the sum of your round incomes in these selected rounds will be converted into euros

and paid to you in cash.

The Task

The task is the same in each of the 40 rounds. In each round you will receive an endowment of

16 ECU. The endowment can be used to purchase “tokens”. Each token costs 1 ECU so that

you can purchase up to 16 of these tokens. You have to buy at least one token. Any part of

your endowment that you do not spend on tokens will be added to your round income.

In every round you will be matched to a computerized participant (computer). The computer

will buy a certain number of tokens (between 1 and 16), and this number is pre-determined

before the start of the experiment. The number of tokens bought by the computer in any round

will be announced on the screen before you make your buying decision for that round. This

amount will be the same in each round of a block, but will change from one block to another.

That means that the computer will buy the same number of tokens in rounds 1-10, 11-20, 21-30

and 31-40.

After you have chosen how many tokens to buy, either you or the computer will receive an extra

16 ECU. The probability that you will receive the extra 16 ECU depends on the number of

tokens that you buy and the number of tokens that are bought by the computer. More precisely,

the probability that you receive the extra 16 ECU is given by:
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Probability of receiving

the extra 16 ECU
=

Number of tokens you bought
×100%

Number of tokens you bought + Number

of tokens the computer bought

For example, if you purchase the same number of tokens as the computer, the share of 16 ECU

will be equal to 50%, meaning that you will receive 8 ECU.

Your round income will be computed based on the number of tokens that you bought and the

share of the extra 16 ECU that you have received. Once the round is over, you will be informed

about the number of tokens bought by you and by the computer, the share of the extra 16 ECU,

your round income, and that of the computer. Information about the number of tokens and the

share of 16 ECU allocated to you and to the other participant will also be represented visually.

• Your round income will be:

Round Income = 16 ECU − Number of purchased tokens + (Share of the extra 16

ECU)*16 ECU

At the end of the experiment, four rounds will be randomly selected for payment. More precisely,

the first round for payment will be randomly selected from rounds 6-10, the second round for

payment from rounds 16-20, the third from rounds 26-30 and the fourth one from rounds 36-40.

Outcomes in all other rounds will not influence your final earnings, but you will not know which

rounds will be selected until the end of the experiment.

After the 40 rounds we will ask you to fill in a short questionnaire. The questionnaire will

have two parts, each of which will be explained on the screen before you start answering the

questions. After the first part of the questionnaire you will be informed about all of your round

incomes as well as about the four rounds that were randomly selected for payment (see Figure 1

on the next page). After the second part of the questionnaire you will be informed about your

final earnings in euro. You will receive these earnings in cash and in private at the end of the

experiment. Please stay seated until we ask you to come to receive the earnings.

If you have any further questions, please raise your hand now.

Summary

• The main part of the experiment consisting of 40 rounds.

• Questionnaire, part 1. After answering these questions you will be informed about your

final earnings in ECU.

• Questionnaire, part 2. Once you have completed it, you will be informed about your final

cash earnings in euros.

• Please stay seated until the experimenter asks you to come and receive the earnings.
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Figure 8: A screenshot of the final profit display. Round incomes in this screenshot were

randomly generated. [Picture used in the instructions of all treatments]

D Questionnaire

D.1 Questions

Apart from questions about age, gender, bachelor programme and previous experience in the

lab, the following 8 questions were asked in the numeracy questionnaire.

• If Person As chance of getting a disease is 1 in 100 in 10 years, and person Bs risk is double

that of A, what is Bs risk?

• Imagine that you are taking a class and your chances of being asked a question in class

are 1% during the first week of class and double each week hereafter (i.e., you would have

a 2% chance in Week 2, a 4% chance in Week 3, an 8% chance in Week 4). What is the

probability that you will be asked a question in class during Week 7? (in %)

• Suppose that 1 out of every 10,000 doctors in a certain region is infected with the SARS

virus; in the same region, 20 out of every 100 people in a particular at-risk population also

are infected with the virus. A test for the virus gives a positive result in 99% of those who

are infected and in 1% of those who are not infected. A randomly selected doctor and a

randomly selected person in the at-risk population in this region both test positive for the

disease. Who is more likely to actually have the disease?

• In the Acme Publishing Sweepstakes, the chance of winning a car is 1 in 1,000. What

percentage of tickets of Acme Publishing Sweepstakes wins a car?

• Imagine that we roll a fair, six-sided die 1,000 times. Out of 1000 rolls, how many times

do you think the die would come up even (2, 4, or 6)?
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• In the Big Bucks Lottery, the chances of winning a 10 prize are 1%. What is your best

guess about how many people would win a 10 prize if 1000 people each buy a single ticket

from Big Bucks?

• The chance of getting a viral infection is 0.0005. Out of 10,000 people, about how many

of them are expected to get infected?

• Suppose you have a close friend who has a lump in her breast and must have a mammogram.

Of 100 women like her, 10 of them actually have a malignant tumor and 90 of them do

not. Of the 10 women who actually have a tumor, the mammogram indicates correctly

that 9 of them have a tumor and indicates incorrectly that 1 of them does not. Of the 90

women who do not have a tumor, the mammogram indicates correctly that 81 of them do

not have a tumor and indicates incorrectly that 9 of them do have a tumor. The graph

below summarizes all of this information. Imagine that your friend tests positive (as if she

had a tumor), what is the likelihood that she actually has a tumor?

D.2 Summary Statistics

DiffDiff EasyDiff DiffTriv EasyTriv

age 21.86 21.57 21.70 21.85

(18,41) (18,26) (18,26) (19,30)

female 0.36 0.53 0.45 0.63

(0,1) (0,1) (0,1) (0,1)

numeracy score 5.20 5.22 5.11 5.27

(1,7) (0,8) (1,8) (0,8)

Table 13: Summary statistics from questionnaire (Mean and Range). The variable female takes

the value 1 for women. The variable numeracy score counts the number of correct answers in

the numeracy test.
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