
Schumpeterian growth 
with technological 
interdependence: 
An application to US states

by Tim Deeken

No. 75  |  NOVEMBER 2015

WORKING PAPER SERIES IN ECONOMICS

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association econpapers.wiwi.kit.edu



Impressum

Karlsruher Institut für Technologie (KIT)

Fakultät für Wirtschaftswissenschaften

Institut für Volkswirtschaftslehre (ECON)

Schlossbezirk 12

76131 Karlsruhe

KIT – Universität des Landes Baden-Württemberg und 

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Working Paper Series in Economics

No. 75, November 2015

ISSN  2190-9806

econpapers.wiwi.kit.edu



Schumpeterian Growth with Technological
Interdependence: An Application to US States

Tim Deeken∗

November 9, 2015

Abstract

In this paper, the Schumpeterian growth model developed by Ertur and Koch (2011)
that includes spatial interactions between units of observation working via R&D
spillovers is presented in detail. The implications of this model and three addi-
tional growth models with and without spatial interaction that are nested within
this framework are tested for the US states econometrically. It is found that in-
vestments in R&D have a positive impact on steady-state income per worker in the
Schumpeterian growth model without complex interaction between states, but this
effect is absent in the model proposed by Ertur and Koch (2011), even though the
estimate for the coefficient measuring interconnectedness between regions is posi-
tive and significant. This latter result is robust to alternative specifications of the
interaction matrix.
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1 Introduction

Interaction between countries or regions occurs in many forms. One particular dimension
of this interaction concerns the diffusion of knowledge or knowledge spillovers. Given
that knowledge is a key factor in economic development, this implies that the level of
development, measured by, for example, income per capita, in one region depends on
characteristics in the regions it interacts with.

The presence of these interdependent relationships motivates the need to incorporate
these also in theoretic models. One example in the recent economic literature that takes
into account interdependence between countries is the exogenous growth model developed
in Ertur and Koch (2007). In this paper, the transition to an endogenous growth model
will be made by presenting a model by the same authors (Ertur and Koch, 2011), which
builds heavily upon the contributions by Aghion and Howitt (1998) and Howitt (2000).
The novelty of the model by Ertur and Koch (2011) is that it incorporates complex
spatial interactions, modeled via technological interdependence between regions, in the
context of an endogenous growth model, in which profit-driven investment in research
and development (R&D) determines the rate of technological progress. In particular, the
authors develop an integrated theoretical and empirical framework that nests a series of
growth models.

This paper fills a gap in the literature as, to the best of my knowledge, the model has
not yet been investigated empirically for the US states. The shift in focus from a cross-
country to a cross-regional setting is important for the following reasons. First, the
United States is the global leader in investments in R&D. In 2011, R&D investments in
the United States accounted for approximately 30% of the global total, far ahead of the
next-ranked countries China, Japan, and Germany with shares of 15%, 10%, and 7%, re-
spectively. The dominance was even higher in 2001, when the United States’ global share
was 37% (all figures are from National Science Board (2014, 4-17)). The second reason
for choosing US states as the units of analysis addresses interdependence between these
units. As Keller (2002) points out, the strength of technological knowledge spillovers
declines with the geographic distance between the originating and the receiving country,
implying that diffusion of technology is not a frictionless process. Geographic distance in
this situation captures, for instance, socio-economic differences, but also those in insti-
tutions between countries (Ertur and Koch, 2007, 1036), which have been highlighted in
the growth literature as a fundamental determinant of cross-country income differences.1

The advantage of studying diffusion of technology within a single country is the common

1As a starting point, consider the seminal contribution by Acemoglu et al. (2001).
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institutional setting,2 which possibly reduces part of the frictions. The third reason for
choosing the United States relates back to the first. Eaton and Kortum (1996) find that
for the OECD countries the amount of a country’s growth in productivity that depends
on research efforts in the United States is larger than 50%, which points to substantial
spillovers from the United States. In addition, Eaton and Kortum (1999, 558) estimate
that in the past 60% of the United States’ productivity growth originated from research
conducted domestically. This figure is in stark contrast to the corresponding values for
Japan or Germany, with figures of 16% or 35%, respectively, and it raises the question, if
significant spillovers also exist between US states or only between the Unites States and
other countries. The cited figure of 60% is silent about any spillovers between US states.

Indicative evidence for the potential existence of these spillovers is provided by the map
in Figure 1, which shows the average R&D investment rate (or R&D intensity) over the
period 1997-2007 in the 48 continental US states plus the District of Columbia.3 States
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Figure 1: Average R&D Investment Rate for the 48 Continental US States plus Washing-
ton, D.C. over the period 1997-2007 (Data: OECD, 2015).

with average R&D investment rates above 2% can be found predominantly on the western
seaboard and in the south-west (with the exception of Nevada) as well as in the north-east
and the region around the Great Lakes (the notable exception in these regions is Maine).

2However, US states have considerable autonomy in the United States’ federalist system. For a
comparison with the German system on this aspect, see Halberstam and Hills, Jr. (2001).

3A correspondence between state abbreviations and names is provided in Table E.6 in Appendix E.
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In regions where states with high R&D intensities abound, the potential for spillovers
and a subsequent impact on output is high.

Figure 2 illustrates the data on the R&D intensities in a different way. It shows a Moran
scatterplot of the average R&D intensity (in standardized form) on the horizontal axis,
and the vertical axis measures the standardized value of the spatial lag of this variable.
The value of the spatial lag for a given state comprises the average of the R&D intensities
of this states’ direct neighbors.

Each point in the scatterplot corresponds to a single state so that states in the upper right
quadrant have average R&D intensities above the mean and are also surrounded by states
for which the same holds. The reverse holds for states in the lower left quadrant, whereas
in the upper left quadrant states can be found whose own average R&D investment rate
is below the mean, but who are neighbors to states with above-average R&D intensities.
The dot labeled “NM” in the figure denotes New Mexico, which has the highest R&D
intensity in the sample.4 However, its neighboring states fall below the average.
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Figure 2: Moran Scatterplot of the Average R&D Investment Rate for the 48 Continental US
States plus Washington, D.C. over the period 1997-2007 (Data from (OECD, 2015)).

Note: The variables are in the form of deviations from the mean so that the value 0 on the abscissa
is equivalent to the mean value of 2.2%.

4The high value for New Mexico can be explained by the presence of Los Alamos National Labo-
ratory and Sandia National Laboratories, which are federally funded research and development centers.
Compare the information by the National Science Foundation available under http://www.nsf.gov/
statistics/infbrief/nsf02322/ (accessed: 9 August, 2015).
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The paper is organized as follows: Section 2 introduces the basic structure of the multi-
region Schumpeterian before Section 3 specifies the nature of technological interdepen-
dence between regions and derives the equation for the income per worker in steady state.
In Section 4, the focus is on the empirical specification of the model and the estimation
strategy. The data for the empirical analysis is presented in detail in Section 5, which
also discusses the estimation results. Finally, Section 6 concludes.

2 Multi-Region Schumpeterian Growth Model

without Technological Interdependence

This section describes the multi-region Schumpeterian growth model in Ertur and Koch
(2011), which builds upon work by Aghion and Howitt (1998, Chapter 3 and 12.2) and
Howitt (2000). The expression “multi region” that is attached to this setup might be a
slight misnomer though, as each region is assumed to develop independently from the
other regions so that the term “single-region model” would be more appropriate for this
section. However, to make the transition to the multi-region model in Section 3 easier,
already here a single region in the economy will be indexed. Section 2.1 describes the
production side of the region’s final good sector and Section 2.2 illustrates its intermediate
goods sector, before Section 2.3 clarifies the connections in the research and development
(R&D) sector.

2.1 Final Good Sector

The economy under consideration consists of i = 1, . . . , N regions. A single final good is
produced in each region with labor and a continuum of intermediate goods (or varieties)
as input factors. The final good sector operates under perfect competition, and the good
is produced via the following production function, illustrated here for region i,

Yi(t) = Qi(t)
α−1

∫ Qi(t)

0

Ai(v, t)xi(v, t)
αLi(t)

1−α dv, (1)

where Yi(t) is output in region i at time t. This output, besides its use as a consumption
good, also functions as a capital good in the production of intermediates and as an
input into research and development activities. The variable xi(v, t) measures the flow
of intermediate good v used in the production of the final good, and Qi(t) indicates
how many different intermediate goods exist in region i at time t. The continuum of
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intermediates is therefore measured on the interval v ∈ [0, Qi(t)]. Ai(v, t) is a productivity
parameter, which reflects the quality of intermediate product v and thus increases with
successive vintages of the good. Finally, Li(t) = Li(0)enit is the flow of labor, and ni > 0

is the constant growth rate of labor.5 It is assumed that the population and labor force
size coincide and that labor is supplied inelastically.

Following Acemoglu (2009, 435 and 461), the demand for intermediate good v can be cal-
culated by maximizing the instantaneous profits of a representative final goods producer
at time t.6 The problem is

max
xi(v,t)

Πi(v, t) = Qi(t)
α−1

∫ Qi(t)

0

Ai(v, t)xi(v, t)
αLi(t)

1−α dv

−
∫ Qi(t)

0

pi(v, t)xi(v, t) dv − wi(t)Li(t).
(2)

Applying the rule for differentiating under the integral sign, and solving the necessary
condition for pi(v, t) leads to the inverse demand schedule for variety v ∈ [0, Qi(t)]

7

pi(v, t) = αAi(v, t)li(t)
1−αxi(v, t)

−(1−α). (3)

Here, li(t) ≡ Li(t)
Qi(t)

denotes the number of workers per variety. With the help of results
developed in Section 2.2.1, it can be shown that the production function in intensive form
is given by8

ŷi(t) = k̂i(t)
α (4)

where ŷi(t) ≡ Yi(t)
Ai(t)Li(t)

is the output per effective worker, and k̂i(v, t) is capital per effective
worker.

Concerning the production function in Equation (1), it is important to note that the
integral is multiplied by the factor Qi(t)

α−1. The factor is introduced in order to avoid
that producers of the final good become increasingly more productive simply due to the

5The restriction that the labor growth rate is positive is not actually spelled out explicitly in Ertur
and Koch (2011) though. However, since labor is an essential input in the production of the final good
(for the proof, see, for example Barro and Sala-i-Martin (2004, 77-78)), the positive growth rate can be
inferred. This assumption is maybe not as innocuous as it seems, in particular when it comes to testing
the model’s implications empirically. See also Footnote 46 in this context.

6Again this is not explicitly spelled out in Ertur and Koch (2011) either, but, in general, firms
maximize the present discounted value of future profits. However, since firms rent the services of the
input factors labor and capital (in the form of intermediates), and there are no adjustment costs, no
dynamic constraints exist, and the intertemporal maximization problem becomes a static one (or more
precisely, a sequence of static problems (see e.g. Barro and Sala-i-Martin (2004, 32) and Acemoglu (2009,
435))).

7See Appendix B.1 for the derivation.
8See Appendix B.2 for the derivation.
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availability of an increasing number of varieties. This effect, which can be interpreted
as a form of technological progress has, for instance, been developed in the endogenous
growth model by Romer (1990).9

The focus in the model described here is on technological interdependence (or more
specifically, technology transfer) between regions. Hence, it is assumed that regions trade
neither in goods nor in factors (Ertur and Koch, 2011, 220). Therefore, in general, the
intermediate goods used and produced in region i as well as its final good are specific to
this particular region. Nonetheless, due to technological interdependence, this is not the
case for the process by which a specific intermediate good is produced. The respective
idea for the production process might well have originated in a different region (Howitt,
2000, 831). The details of this idea will be provided in Section 3.

2.2 Intermediate Goods Sector

This section describes the production relations in the intermediate goods sector. It starts
with the firms’ optimization problem and illustrates the different assumptions underlying
the generation of horizontal and vertical innovations. In general, horizontal innovations
(or product innovations) increase the number of existing varieties, whereas vertical inno-
vations (or process innovations) increase the productivity (quality) of an already existing
variety.

2.2.1 Firms in the Intermediate Goods Sector

In the sector for intermediate goods, the production function for each monopolist in a
given sector v is described by

xi(v, t) =
Ki(v, t)

Ai(v, t)
(5)

where Ki(v, t) is the capital input in terms of the final good. From the functional form
of the production function, it can be inferred that the production of varieties of higher
quality becomes increasingly more capital intensive. This follows from the presence of
the factor Ai(v, t) in the denominator which rises with each new vintage of the good. In
order to produce the intermediate good, the monopolist needs to rent capital at the price
of ri(t) + δi per unit, where ri(t) is the interest rate in region i and δi is the exogenously
given region-specific depreciation rate. With this information, and, since Ki(v, t) =

9The absence of an effect of an increasing number of varieties on productivity in the model presented
here is demonstrated at the end of Appendix B.2.
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Ai(v, t)xi(v, t) from Equation (5), it follows that the monopolist’s profit function is

πi(v, t) = pi(v, t)xi(v, t)− [ri(t) + δi]Ai(v, t)xi(v, t). (6)

Solving the inverse demand function in Equation (3) for xi(v, t) leads to the direct demand
function for intermediates

xi(v, t) = [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α . (7)

Hence, the profit maximization problem for the monopolist is given by the constrained
optimization problem of maximizing the profits in Equation (6) subject to the demand
function in Equation (7). Substituting the expression for xi(v, t) into the profit function
above, leads to the unconstrained profit maximization problem of the monopolist

max
pi(v,t)

πi(v, t) = pi(v, t) [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α

− [ri(t) + δi]Ai(v, t) [αAi(v, t)]
1

1−α li(t)pi(v, t)
− 1

1−α .

Setting the derivative ∂πi(v,t)
∂pi(v,t)

equal to zero, results in the necessary condition

− α

1− α
[αAi(v, t)]

1
1−α li(t)pi(v, t)

− α
1−α−1

+
1

1− α
[ri(t) + δi]α

1
1−αAi(v, t)

2−α
1−α li(t)pi(v, t)

− 1
1−α−1 = 0

and solving for the profit-maximizing price yields

pi(v, t) = [ri(t) + δi]
Ai(v, t)

α
. (8)

Substituting this price into Equation (7) leads to

xi(v, t) = α
2

1−α li(t) [ri(t) + δi]
− 1

1−α .

This result shows that the production of the intermediate good is independent of v (i.e. in-
dependent of the specific variety produced), and hence it holds that

xi(v, t) = xi(t), (9)

implying that the equilibrium in the intermediate goods sector is symmetric so that
independent of the specific variety v all monopolists produce the identical amount xi(t)

7



of their respective variety.10

Noting that in equilibrium xi(t) = k̂i(t)li(t) holds,11 it follows that the equilibrium interest
rate is given by

ri(t) = α2k̂i(t)
α−1 − δi. (10)

Finally, using the profit-maximizing price in Equation (8), substituting the equilibrium
interest rate and the expression for the quantity, xi(t) = k̂i(t)li(t), in the symmetric
equilibrium into the profit function in Equation (6), implies that the monopolist’s profits
are given by

πi(v, t) = Ai(v, t)π̃i
(
k̂i(t)

)
li(t), (11)

where the function π̃i
(
k̂i(t)

)
is defined as π̃i

(
k̂i(t)

)
≡ α(1− α)k̂i(t)

α.

2.2.2 Horizontal Innovations in the Intermediate Goods Sector

The relevant assumption concerning horizontal innovations is that new varieties are cre-
ated by imitation. Moreover, no resources are spent on this activity so that imitation
is not a deliberate effort by individuals. As Aghion and Howitt (1998, 107) laconically
put it: “imitation just happens”. Hence, individuals in the economy can be sure that
new varieties will enter the economy, but the specific point in time when a new interme-
diate good will be available for production of final output or when a new sector opens
up in which to reap monopoly profits remains uncertain. Therefore, the occurrence of
innovations is governed by a random process, and the specific random process assumed
is a Poisson process. In more formal terms, each agent in region i imitates with equal
likelihood, and her Poisson arrival rate12 of imitation is given by ξ > 0, which is identical
across regions. This implies that the aggregate flow of new intermediate goods is given
by

Q̇i(t) = ξLi(t). (12)

10Naturally, this also results, if one sets up the profit maximization problem with quantity as the
decision variable (see, for example, Varian, 1992, 234) so that

max
xi(v,t)

= αAi(v, t)xi(v, t)
α−1li(t)

1−αxi(v, t)− [ri(t) + δi]Ai(v, t)xi(v, t).

Taking the derivative with respect to quantity, it follows that the marginal revenue and marginal cost
function are proportional to Ai(v, t), and, since this is the only difference between the firms producing
an intermediate product, the symmetric equilibrium in Equation (9) follows (Howitt, 2000, 832).

11This result is derived in Appendix B.2 as an intermediate result in the derivation of the production
function in intensive form.

12See Appendix A for a primer on Poisson processes.
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As Appendix B.3 demonstrates, the number of workers per variety li(t) converges to

li =
ni
ξ
, (13)

which is independent of time t and thus constant.

2.3 Research and Development – Vertical Innovations

Apart from increases in the number of intermediate goods (horizontal innovations), a key
characteristic of the model are quality, i.e. productivity, improvements of already existing
intermediate products (vertical innovations). On a general level, quality improvements
for a given variety result from investment in R&D in that particular sector.13 Here, the
final good is the relevant input factor. It is assumed that the inventor of a higher-quality
variety in sector v at the same time also is the producer of this intermediate good.14

The mere fact of engaging in research activities naturally is no guarantee for success. As
is standard in this type of models (see, for example, Aghion and Howitt, 1998, 54-55),
the underlying random process for the occurrence of vertical innovations is also assumed
to be a Poisson process. However, in this case, the Poisson arrival rate in any sector
v ∈ [0, Qi(t)] is slightly more complicated as it is not given by a single parameter, but
instead by the function

φi(t) = λiκi(t)
φ. (14)

The variable κi(t) denotes the sector-specific expenditures on vertical R&D adjusted for
productivity, and the parameter φ, for which 0 ≤ φ ≤ 1 holds, gauges the strength of
a given amount of R&D expenditures on λi (Ertur and Koch, 2011, 222). To be more
precise with respect to R&D expenditures, these are given by κi(t) =

SA,i(t)

Qi(t)Ai(t)max
, where

SA,i(t) is the total input into R&D in region i, so that SA,i(t)

Qi(t)
reflects the total amount

invested in a given sector aggregated over all firms. Ai(t)
max is the maximal value of

Ai(v, t) (or the leading-edge productivity parameter), and it is defined by

Ai(t)
max ≡ max {Ai(v, t); v ∈ [0, Qi(t)]} . (15)

13The specific setup in the intermediate sector with imitation leading to new varieties and innovation
to a higher quality of existing varieties was introduced by Young (1998), who formalized ideas expressed
verbally in earlier work by Gilfillan (1935a,b). In this approach, a scale effect (i.e. a positive effect of
population on the per capita growth rate), which was criticized by Jones (1995a,b) is not present. See
also, Aghion and Howitt (1998, 106-110).

14This assumption is made for convenience. As Barro and Sala-i-Martin (2004, 290) state, results
would be the same, if one alternatively assumed that inventors charged producers of intermediate goods
a license fee for the use of the blueprint or process innovation.
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An important assumption is made concerning this parameter. Potential innovators all
have immediate access to this technological knowledge and thus “all draw on the same
pool” (Aghion and Howitt, 1998, 87-88).

Adjustment of the sector-specific resource investment by the leading-edge technology pa-
rameter captures the assumption of ever increasing complexity in the research process
(Ertur and Koch, 2011, 222). With technology ever increasing, more and more resources
need to be spent to prevent the rate of innovation from slowing down. In other words,
“as technology advances, the resource cost of further advances increases proportionally”
(Aghion and Howitt, 1998, 410). Note that, since the prospective payoffs from an inno-
vation are identical across sectors, productivity-adjusted R&D investment, κi(t), is also
identical for each sector in region i.

Potential innovators face the questions of whether to conduct research at all, and if so
how much to invest in R&D. Concerning these decisions, the value of an innovation to a
successful innovator in a given sector is a critical variable. This value is given by

Vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s))dsπi(τ) dτ. (16)

At some point in the future, a higher-quality variety will be invented in this sector, and
the incumbent will be replaced by the successful innovator and lose his profits.15 The
equation above takes this into account and adjusts for it by including the Poisson arrival
rate of new innovations in the discount factor.16 Adjusted for productivity, the value of
an innovation is defined as vi(t) ≡ Vi(t)

Ai(t)max
(Ertur and Koch, 2011, 222) so that

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) ds

1

Ai(τ)max
πi(τ) dτ.

Substituting for πi(τ) from Equation (11) and noting that by assumption the productivity
level of a firm that innovates at time t is at the leading edge, implies that Ai(v, t) =

15Innovations will result from new entrants into the sector due to the Arrow replacement effect (Arrow,
1962). This effect states that incumbents who innovate would only replace part of their existing profits.
On the other hand, researchers entering the sector have access to the leading-edge technology parameter,
and, if they are successful, can reap the complete monopoly profits. Hence, these researchers have higher
incentives to innovate than incumbents.

16A formal derivation of this value is provided in Appendix B.4.
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Ai(t)
max in this case. Therefore17

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) ds

Ai(τ)max

Ai(τ)max
π̃i
(
k̂i(τ)

)
li(τ) dτ

=

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ.

Taking the derivative of this equation with respect to time, leads to the following research-
arbitrage equation18

v̇i(t)

vi(t)
= ri(t) + φi(t)−

li(t)π̃i
(
k̂i(t)

)
vi(t)

. (17)

Written in this form, the function in Equation (16) is also known as the (stationary)
Hamilton-Jacobi-Bellman Equation (see, for example, Acemoglu, 2009, 245 and 462-463).
Expressed equivalently as

ri(t)vi(t) = li(t)π̃i
(
k̂i(t)

)
+ v̇i(t)− φi(t)vi(t),

it shows that the required return on an innovation, ri(t)vi(t), for a firm that engages in
R&D, needs to equal its flow profits, li(t)π̃i

(
k̂i(t)

)
, plus any capital gains, v̇i(t), adjusted

for the fact that with positive probability φi(t) a new innovation occurs at some point in
time, and the monopolist’s product thus becomes obsolete from this point onwards.

An individual considering conducting R&D with the aim of improving a particular vari-
ety v has expected profits πeA,i. In particular,

πeA,i = λiκi(t)
φ SA,i(v, t)

SA,i(t)/Qi(t)
· Vi(t) + (1− λiκi(t)φ)

SA,i(v, t)

SA,i(t)/Qi(t)
· 0− SA,i(v, t). (18)

Here, λiκi(t)φ is the probability of being successful in research, and 1 − λiκi(t)φ is the
complementary probability of failure in research. SA,i(v, t) denotes how many resources
the firm invests in R&D, and the division by SA,i(t)/Qi(t) captures negative externalities
in the research process. More precisely, overlap and duplication of research efforts are
underlying this assumption (Ertur and Koch, 2011, 222). Hence, there is no linear increase
in profits with resources invested in R&D. Note that the R&D technology requires only
output as an input.19 In other words, only laboratory equipment is required to engage
in research activities, but no workers or scientists need to be employed. Therefore, this

17In the article by Ertur and Koch the dependence of the number of workers per variety li on τ is
missing.

18This derivation involves applying Leibniz’s Formula, and the detailed steps are provided in Ap-
pendix B.5.

19The price of these resources is normalized to 1 as they are measured in units of the output good,
which is the numéraire in this model.
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model is a variant of a “lab-equipment” model (see, for instance, Acemoglu, 2009, 433).

Incumbent firms in the R&D sector then face the following profit-maximization problem
(this follows from simplifying Equation (18) and dropping the superscript for expectations
to enhance readability)

max
SA,i(v,t)

πA,i(v) = λiκi(t)
φ SA,i(v, t)

SA,i(t)/Qi(t)
Vi(t)− SA,i(v, t).

The necessary condition therefore reads

∂πA,i(v)

∂SA,i(v, t)
= 0 ⇐⇒ λiκi(t)

φ

SA,i(t)/Qi(t)
Vi(t) = 1.

By substituting Vi(t) = vi(t)Ai(t)
max and using the definition of κi(t) in this condition,

it follows that the value of an innovation is given by

vi(t) =
1

λi
κi(t)

1−φ.

Solving for κi(t) and log-differentiating the resulting expression yields κ̇i(t)
κi(t)

= 1
1−φ

v̇i(t)
vi(t)

.
Substituting thereafter from the research-arbitrage equation in (17) and then inserting
the expression for the Poisson arrival rate from (14) leads to the following differential
equation

κ̇i(t)

κi(t)
=

1

1− φ

[
ri(t) + λiκi(t)

φ − λiκi(t)φ−1li(t)π̃i
(
k̂i(t)

)]
. (19)

This equation describes how the resources invested in R&D (measured in terms of the
final good) evolve over time.

In the derivation of this expression, the leading-edge productivity parameter Ai(t)max has
been used. As innovations result in knowledge spillovers, this parameter is not constant.
In particular, its growth rate and thereby the growth rate of technological progress is
equal to

gi(t) ≡
Ȧi(t)

max

Ai(t)max
=

σ

Qi(t)
Qi(t)λiκi(t)

φ = σλiκi(t)
φ. (20)

Basically, therefore, Ai(t)max grows with the aggregate rate of innovations (i.e. the Pois-
son arrival rate from Equation (14) times the number of differentiated varieties Qi(t))
multiplied by a factor of proportionality σ/Qi(t) > 0. This factor captures by how much
public knowledge increases as a result of an additional innovation or, expressed differently,
it measures “the marginal impact of each innovation on the stock of public knowledge”
(Aghion and Howitt, 1998, 411). However, this impact is diminishing in Qi(t). Over
time, horizontal innovations lead to an increase in the number of intermediates, and the

12



division of the factor of proportionality by this number ensures that innovations of a given
size for a particular product, will have a diminishing impact (Ertur and Koch, 2011, 223).

Having determined the growth rate for the leading-edge productivity parameter, it is
helpful for subsequent derivations to look at the corresponding growth rate for the average
productivity parameter, Ai(t). In general, a successful innovation for intermediate good v
changes productivity for this good from Ai(v, t) to Ai(t)max.20 Across innovating sectors,
the average increase from a successful innovation is given by Ai(t)max−Ai(t). Taking into
account that innovations are generated with rate λiκi(t)φ uniformly across all sectors, and
that average productivity remains unaffected by horizontal innovations, it follows that
the change in average productivity can be expressed as

Ȧi(t) = λiκi(t)
φ
(
Ai(t)

max − Ai(t)
)
.

Appendix B.7 demonstrates that the ratio of the leading-edge productivity parameter to
the average productivity parameter converges to the constant 1 + σ so that Ai(t)max =

(1 + σ)Ai(t)∀ t, implying that the growth rates of both variables will be identical.

2.4 Physical Capital Accumulation and Steady State

As in a standard neoclassical Solow model, the accumulation of physical capital is gov-
erned by the general equation

˙̂
ki(t) = sK,ik̂i(t)

α −
(
ni + gi(t) + δi

)
k̂i(t). (21)

Here, sK,i denotes the investment rate for physical capital in region i and δi signifies
the depreciation rate for physical capital, which is region-specific. The evolution of the
economy can then be described by the following system of differential equations:

˙̂
ki(t) = sK,ik̂i(t)

α −
(
ni + gi(t) + δi

)
k̂i(t)

κ̇i(t) =
κi(t)

1− φ

[
ri(t) + λiκi(t)

φ − λiκi(t)φ−1li(t)π̃i
(
k̂i(t)

)]
where the first equation follows from Equation (21) by inserting for the growth rate from
Equation (20), and the second equation above is just Equation (19) multiplied by κi(t).
In steady state, capital in efficiency units and productivity-adjusted R&D investment are

20One might wonder about the distribution of productivities across sectors in this model. Ap-
pendix B.6 demonstrates that the relative productivities ai(v, t) = Ai(v, t)/Ai(t)

max converge to an
invariant distribution, meaning that even though Ai(t)max increases over time and sectors change posi-
tion in the distribution, its shape remains constant in the long run (Aghion and Howitt, 1992, 88).
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constant so that ˙̂
ki(t) = κ̇i(t) = 0. Imposing this condition and denoting steady-state

values with an asterisk, implies that the steady-state rate of technological progress in
region i is given by g∗i = σλi (κ

∗
i )
φ and that the steady-state value for k̂∗i is defined by

the ˙̂
ki(t) = 0-isocline as21

k̂∗i =

(
sK,i

ni + σλi (κ∗i )
φ + δi

) 1
1−α

. (22)

This isocline is depicted as the downward-sloping curve (I) in (κi(t)− k̂i(t))-space in the
upper right hand in Figure 3. From setting κ̇i(t) = 0, it follows that the ˙̂

ki(t) = 0-isocline
is given by

1 = λi
(
κ∗i
)φ−1 π̃i(k̂

∗
i )li

r∗i + λi
(
κ∗i
)φ .

This relation is the upward-sloping schedule labeled (II) in Figure 3. Curve (I) is down-
ward sloping as in steady state an increase in R&D investment leads to an increase in the
growth rate g∗i . From Equation (22), it then follows that for equilibrium to be maintained
the capital-output ratio, k̂∗

ŷ∗
= (k̂∗)1−α, needs to fall. On the other hand, Curve (II) is

upward sloping, since when k̂∗i increases, the interest rate in steady state falls (compare
Equation (10)) and profits increase (see Equation (11)). Hence, in equilibrium R&D
expenditures need to rise.

Turning now to the remaining parts of Figure 3, the lower right one shows the Solow
diagram as, for example, in Barro and Sala-i-Martin (2004, 56). The main difference to
the standard version is that here the effective depreciation rate, ni + gi(t) + δi, through
its dependence on the rate of technological progress, gi(t), is endogenously determined
by investment in R&D and thus moves up until the steady state is reached (Ertur and
Koch, 2011, 224). This determination of gi(t) through κi(t) is depicted in the upper left
part of the figure, whereas the positive dependence of the effective depreciation rate on
technological progress is depicted in the lower left part of the figure. In steady state,
with gi(t) = g∗i , the effective depreciation rate is constant, which allows for determining
the level of physical capital per effective worker and the level of R&D investment via the
dotted lines.

21There seems to be a typo in the corresponding Equation (22) in Ertur and Koch (2011), where the
left-hand side should read (k̂∗i )1−α instead of (k̂∗i )α.
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gi(t)

κi(t)

gi(t) = σλi(t)κi(t)
φ

κ∗i

g∗i

g∗i
k̂i(t)

κi(t)

(II)

κ̇i(t) = 0

˙̂
ki(t) = 0

(I)

k̂∗i

κ∗i

k̂∗i

gi(t)

ni + gi(t) + δi

ni + g∗i + δi

k̂i(t)

ni + gi(t) + δi

sK,ik̂i(t)
α−1

ni + g∗i + δi

Figure 3: Illustration of the Steady State (Adapted from Ertur and Koch (2011)).

3 Multi-Region Schumpeterian Growth Model

with Technological Interdependence

This section introduces the analytical setup in which diffusion of knowledge depends on
a region’s gap to its own technological frontier. In addition, the steady-state equation on
which the estimation will be based, is derived.

3.1 Research Productivity, Knowledge Spillovers, and Technol-

ogy Gap

Turning now to the case of multiple regions, the assumption that all regions develop
independently from each other is abandoned. Interdependence enters the model via the
assumption that the productivity in the research sector, λi, in region i depends on its
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own level of technology relative to the level of other regions as well as on the way the
connection between regions is modeled. In formal terms, the region-specific research
productivity is given by

λi = λ

N∏
j=1

(
Aj(t)

Ai(t)

)γivij
. (23)

Note that the technology frontier is specific to each region due to the presence of the
parameters vij. Concerning these, it is assumed that they are non-negative, finite and non-
stochastic. Moreover,

∑N
j=1 vij = 1 is assumed. In general, not all regions necessarily are

equally able to increase their research productivity due to a given increase in knowledge
in the regions it is connected to. In this regard, the absorptive capacity of a region plays
an important role.22 This notion is picked up by Ertur and Koch (2011) in the parameter
γi, as it is assumed that the absorption capacity depends on the human capital stock,
Hi, in region i in the following way: γi = γHi, where γ < 1 is a measure of the amount
of knowledge spilling over from other regions. At this point, the derivation in Appendix
B.7, which demonstrates that the growth rates of the leading-edge productivity parameter
and the average productivity parameter are identical, becomes helpful. Substituting the
expression for λi into Equation (20), and using that gi(t) ≡ Ȧi(t)

max

Ai(t)max
= Ȧi(t)

Ai(t)
leads to

gi(t) ≡ σλκi(t)
φ

N∏
j=1

(
Aj(t)

Ai(t)

)γivij
.

The last term in this equation represents the distance to the technological frontier for
region i. This implies that the further away a region is from its own technology frontier,
i.e. the larger is the average technological level in the regions it is connected to or the
lower is its own level of technology, the higher is its productivity in the research sector.
The intuition is that there exists a large pool of knowledge in the region’s environment
into which it has not yet tapped into. Spillovers from other regions or equivalently
spatial externalities are comparatively large in this case.23 Conversely, a region close
to its technological frontier cannot benefit from spillovers or technology diffusion from
connected regions in the same extent as the pool of knowledge has been largely tapped out
and copying “foreign” technology becomes more difficult (Ertur and Koch, 2011, 226).24

Since in steady state k̂i and κi grow at constant rates in each region, it follows that a
22This corresponds to ideas developed in Nelson and Phelps (1966), although the specific word “ab-

sorptive capacity” is not mentioned by them.
23As Ertur and Koch (2011, 217-218) point out, this is the concept of the “advantage of backwardness”

by Gerschenkron (1962).
24These effects are similar to the effects of “standing on the shoulders of giants” (compare Caballero

and Jaffe, 1993) and “fishing out” (see Jones, 1995a, 765) mentioned in the literature on endogenous
growth models with respect to the research productivity in a single country.
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region’s distance to its own technological frontier remains constant. However, for steady
state to occur this requires that all regions grow at identical rates or, expressed differently,
converge to parallel growth paths in the long run. This steady state growth rate for regions
i = 1, . . . , N is given by

gw ≡ σλκφi

N∏
j=1

(
Aj
Ai

)γivij
(24)

where time dependence t as well as the asterisks indicating steady-state values have been
dropped to enhance readability. Regions converge to the same growth rate in the long
run due to the inverse relation between how many resources are invested in the research
sector and this sector’s productivity in steady state. Investing a comparatively large
amount of resources in the research sector so that κi is relatively high, implies that the
level of technology will in turn also be relatively high. From Equation (23) it then follows
that the ratio of the average level of technology to the own level of technology will be
comparatively low, i.e. a region is close to its own technology frontier, which implies that
research productivity λi in turn will be relatively low, too. A region with comparatively
low R&D expenditures has a relatively high research productivity due to the large distance
to its own technology frontier and as Ertur and Koch (2011, 226) note, due to technology
diffusion and its impact on research productivity, convergence to the steady state growth
rate occurs.

In order to test the model empirically in the following section, Equation (24) will be
rewritten. As an intermediate step note that the productivity-adjusted sector-specific
expenditures into R&D are given by κi(t) =

SA,i(t)

Qi(t)Ai(t)max
. Multiplying and dividing this

expression by Yi
Li

and using Ai(t)max = (1 + σ)Ai(t) from Appendix B.7 leads to κi =
SA,i
Yi

Yi
Li

Li
Qi

1
(1+σ)Ai

. With the result from Equation (13), this can be equivalently expressed as

κi = sA,iyi
ni
ξ

1

(1 + σ)Ai
. (25)

Here, the definition sA,i ≡ SA,i
Yi

for the investment rate in the research sector has been
applied. The global technology growth rate can then be shown to be given by the ex-
pression25

gw =
σλ

[(1 + σ)ξ]φ
sφA,iy

φ
i n

φ
i A
−φ−1
i

N∏
j 6=i

A
γivij
j . (26)

25The derivation might not be immediately obvious and is therefore given in Appendix B.8.
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Applying the natural logarithm to this equation and then solving for lnAi yields

lnAi =
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
+

φ

1 + φ
(ln sA,i + lnni + ln yi) +

γHi

1 + φ

N∑
j 6=i

vij lnAj.

Stacking the equations for regions i = 1, . . . , N , the level of technology is given by
lnA1t

...
lnANt


︸ ︷︷ ︸

=A
(N×1)

=
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
ι+

φ

1 + φ


ln sA,1 + lnn1 + ln y1

...
ln sA,N + lnnN + ln yN


︸ ︷︷ ︸

=sA+n+y
(N×1)

+
γ

1 + φ


H1 0 · · · 0

0 H2 · · · 0
...

... . . . ...
0 · · · 0 HN


︸ ︷︷ ︸

=H= diag(Hi)
(N×N)


v11 · · · v1N

... . . . ...
vN1 · · · vNN


︸ ︷︷ ︸

=V
(N×N)


lnA1

...
lnAN


︸ ︷︷ ︸

=A
(N×1)

Defining W ≡H ·V with entries vii = 0 if i = j in V , the equivalent matrix expression
for the level of technology is

A =
1

1 + φ
ln

σλ

gw[(1 + σ)ξ]φ
ι+

φ

1 + φ
(sA + n+ y) +

γ

1 + φ
WA. (27)

Given that the matrix
(
I − γ

1+φ
W
)
is non singular and thus has an inverse,26 Equation

(27) can be solved for A to yield a matrix equation for the level of technology

A =
1

1 + φ

(
I − γ

1 + φ
W

)−1(
ln

σλ

gw[(1 + σ)ξ]φ
ι

)
+

φ

1 + φ

(
I − γ

1 + φ
W

)−1

(sA + n+ y).

(28)

3.2 Income per Worker in Steady State

In this section an expression that determines the income per worker in steady state will
be derived. From Equation (4) it follows that the production function per worker in
steady state for region i is given by y∗i = A(k̂∗i )

α. Substituting for the steady-state level
26An application of Gerschgorin’s Theorem (see Gerschgorin, 1931) ensures that. See Appendix B.9

for a similar case.
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of capital in efficiency units leads to

y∗i = A

(
sK,i

ni + σλi (κ∗i )
φ

+ δi

) 1
1−α

.

After taking the natural logarithm and stacking the expressions for regions i = 1, . . . , N ,
the steady-state incomes in per worker terms can be expressed in the following matrix
equation: y = A + α

1−αsK in which the matrix sK is an N × 1 matrix with the terms
sK,i

ni+gw+δi
for the respective regions. Inserting the result for A from Equation (28) into the

expression above, yields

y =

(
ln

σλ

gw[(1 + σ)ξ]φ

)
ι+ φ(sA + n) +

α(1 + φ)

1− α
sK −

αγ

1− α
WsK + γWy. (29)

Writing this equation for an individual region i clarifies the determinants of the level of
per worker income in steady state

ln yi = ln
σλ

gw[(1 + σ)ξ]φ
+ φ(ln sA,i + lnni) +

α(1 + φ)

1− α
ln

sK,i
ni + gw + δi

− αγHi

1− α

N∑
j 6=i

vij ln
sK,j

nj + gw + δj
+ γHi

N∑
j 6=i

vij ln yj.

(30)

It is important to note here that a change in the independent variables in region i affects
the steady-state levels in the regions to which it is connected, and the steady-state levels in
neighboring regions in turn have an influence on the respective level in region i. Therefore,
studying the effect of, for example, a change in the investment rate in physical capital
requires an analysis of the complete interdependent system in Equation (29). In general,
the impact of a change in one of the independent variables can be divided into two parts.
The first one represents the impact on the income per worker in steady state in region i
due to a change in the independent variable in this region, and the second one details
the effect of an identical change in the same variable in all regions j = 1, . . . , N with
j 6= i that region i is connected to. For example, the N ×N matrix of income per worker
elasticities with respect to the R&D investment rate sA, is given by

ηsA ≡ ∂y

∂sA
= φ(I − γW )−1 = φI + φ

∞∑
r=1

γrW r. (31)

19



This result is obtained by solving Equation (29) for y and then differentiating the result
with respect to sA.27 Concerning the last equality, it follows as the inverse (I − γW )−1

is given by the Neumann series
∑∞

r=0 γ
rW r (see, for instance, Meyer (2000, 126 and 618)

for this result) so that

(I − γW )−1 = I + γW + γ2W 2 + · · ·+ γrW r + · · · =
∞∑
r=0

γrW r. (32)

This series is also called the spatial multiplier.28 With respect to the elasticity in Equation
(31), it highlights that changes in R&D investment in a given region i will have an impact
on income per worker in all other locations. Hence, the total effect can be decomposed
into the two impacts described above.

The first effect is given by29

η
sA,i
i = φ+ φ

∞∑
r=1

γri v
(r)
ii > 0 (33)

where v(r)
ii denotes the element i in row i and column i of the matrix V taken to the

power of r. The second effect, the impact on region i of a change in R&D expenditures
in the regions it is connected to, is

η
sA,j
i = φ

∞∑
r=1

γri v
(r)
ij > 0. (34)

In a similar manner, the aggregate effect of changes in the physical capital investment
rate can be derived to yield

ηsK ≡ ∂y

∂sK
=

α

1− α
I +

αφ

1− α
(I − γW )−1 =

α(1 + φ)

1− α
I +

αφ

1− α

∞∑
r=1

γrW r (35)

27Naturally, this derivation is only valid given that the inverse (I − γW )−1 exists. Appendix B.9
provides the conditions under which this inverse exists.

28See e.g. Ertur and Koch (2011, 232), Elhorst (2010, 21-22), or LeSage and Pace (2014) on this
expression.

29Note that even though the entries vii in the matrix V might be zero, this is not necessarily the case
for entries in the corresponding matrix raised to a higher order as the following counterexample shows:

V V =


0 1/3 1/3 1/3

1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0

 ·


0 1/3 1/3 1/3
1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0

 =


4/9 1/9 3/9 1/9
1/6 1/3 1/6 1/3
1/3 1/9 4/9 1/9
1/6 1/3 1/6 1/3

 = V 2

Therefore, the matrix V is not idempotent. Economically, this effect can be understood as knowledge
spilling over from region i to region j from where a spillover originates back to region i. In other words,
feedback effects exist in this model.
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which is positive, as knowledge diffuses across regions. For the employment growth rate,
the corresponding elasticity is given by

ηn ≡ ∂y

∂n
= − α

1− α
diag

(
n

n+ g + δ

)
+

αφ

1− α
diag

(
g + δ

n+ g + δ

)
+

αφ

1− α

∞∑
r=1

γrW rdiag
(

g + δ

n+ g + δ

)
.

(36)

This elasticity captures that on the one hand, per worker income is positively influenced by
increases in the employment growth rate, as this leads to a larger number of horizontally
differentiated products on which R&D can be conducted, and it captures that on the
other hand, a negative impact exists, which results from the dilution of physical capital
(Ertur and Koch, 2011, 250).30

4 Empirical Specification and Estimation Method

This section describes the empirical specification of the model and details the econometric
estimation method. In particular, the derivation of the log-likelihood function and its
concentrated version will be discussed in detail.

4.1 Empirical Specification

From the expression for the steady-state level of income per worker in Equation (30), the
following empirical counterpart in reduced form can be derived31

ln yi = β0 + β1 ln
sK,i

ni + gw + δi
+ β2 ln sA,i + β3 lnni

+ θHi

N∑
j 6=i

vij ln
sK,j

nj + gw + δj
+ γHi

N∑
j 6=i

vij ln yj + εi.
(37)

In this equation, the parameters are given by the following expressions β0 ≡ ln σλ
gw[(1+σ)ξ]φ

>

0, β1 = α(1+φ)
1−α > 0, β2 = β3 = φ > 0, and θ = − αγ

1−α < 0. The error term or region-
specific shock, εi, is assumed to be identically and independently distributed (iid) for
i = 1, . . . , N . Accounting for the interdependence between regions, the equation above

30The two different diagonal matrices in Equation (36) are both of dimension N×N , and their general
terms are given by ni

ni+gw+δi
and gw+δi

ni+gw+δi
, respectively, with i = 1, . . . , N (Ertur and Koch, 2011, 250).

31For simplicity, the time index has been set to t = 0 and is omitted.
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can be rewritten in matrix form as

y = ιβ0 +Xβ + θWZ + γWy + ε. (38)

This specification is a Spatial Durbin Model (SDM) as it includes spatial lags of the
exogenous as well as endogenous variables (LeSage and Pace, 2009).32 The list below
provides an overview of variable definitions in this specification:

y is an N × 1 vector of the natural logarithm of real income per worker,

ι is an N × 1 vector of ones,

β0 is a scalar,

X is an N × 3 matrix of the explanatory variables (the investment rate in physical
capital, sK,i, divided by the effective depreciation rate, ni+gw + δi, the growth rate
of the number of workers, ni, and the investment rate in R&D, sA,i – all in logs),

β is a 3× 1 vector [β = (β1, β2, β3)′] of the regression parameters for the explanatory
variables,

θ is a scalar,

W is the N ×N interaction matrix (or spatial weight matrix) in non row-normalized
form,

Z is the N×1 vector of the investment rate in physical capital divided by the effective
depreciation rate,

WZ is the N × 1 vector of the spatial lag of the investment rate in physical capital
divided by the effective depreciation rate,

γ is the spatial autoregressive coefficient,

Wy is an N × 1 vector denoting the spatial lag of the endogenous variable,

ε is an N×1 vector of errors with mean zero and variance σ2I so that ε ∼ N (0, σ2I)

holds.

32To be more precise, Equation (38) is a constrained version of the standard Spatial Durbin Model,
since in this case only a subset of the potential spatial lags of the exogenous variables is included.
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The model specified in Equation (38) nests a series of growth models as special cases of
the multi-region Schumpeterian growth model. For instance, the familiar Solow model
(see, for example, the original contributions by Solow (1956) and Swan (1956)) is a special
case of Equation (37). It results when no interaction (or technological interdependence)
between regions exists and consequently γ = 0 (compare Equation (23)). Furthermore,
in the standard Solow model, R&D expenditures are not present, which implies φ = 0.33

With these conditions, it follows from Equation (37) that in this case steady-state income
per worker is given by

ln yi = βS0 + βS1 ln
sK,i

ni + gw + δi
+ εSi . (39)

Written in matrix form, this is equivalent to y = β0ι + βS1X
S + εS with XS an N × 1

vector of the investment rate in physical capital divided by the effective depreciation rate,
βS1 the corresponding regression parameter, and εS an iid vector for the error terms.

Next, the Schumpeterian model by Howitt (2000) and Aghion and Howitt (1998) is also
a special case of the multi-region Schumpeterian model as these authors abstain from
modeling spillovers due to investment in physical capital (implying θ = 0) and assume
that the amount of knowledge that diffuses to other regions is identical for all regions
(Howitt, 2000, 838). Hence, if the amount of knowledge diffusion is independent of the
specific region, the term γHi

∑N
j 6=i vij ln yj in Equation (37) can be subsumed into the

constant of the empirical specification. The result then is

ln yi = βH0 + βH1 ln
sK,i

ni + gw + δi
+ βH2 ln sA,i + βH3 lnni + εHi (40)

which in matrix form reads y = βH0 ι + XHβH + εH with XH an N × 3 matrix of
the regressors specified in the equation above and βH the 3× 1 vector of corresponding
coefficients. The error in this specifications is also iid.

Finally, given that R&D investment has no impact on the Poisson arrival rate and thus
φ = 0, it follows that β2 = 0 = β3 in Equation (37), and the resulting model is the
spatially augmented Solow model developed in Ertur and Koch (2007).34 Formally, this

33There exist extensions of the model, which include this variable. See, for example, Nonneman and
Vanhoudt (1996) or Keller and Poutvaara (2005). Additional augmentations of the standard Solow model
have been developed, too. These include extending the model by human capital (Mankiw et al., 1992), by
health (Knowles and Owen, 1995), by IQ and longevity Ram (2007), or by history (Dalgaard and Strulik,
2013). These models are, however, not nested in the multi-region Schumpeterian model discussed here
and hence not estimated.

34The model presented in Equation (41) differs from from the one in Ertur and Koch (2007) with
respect to the interaction matrixW , as in their contribution the matrix of the human capital stock, H,
is absent.
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specification is given by

ln yi = βEK0 + βEK1 ln
sK,i

ni + gw + δi
+ θEKHi

N∑
j 6=i

vij ln
sK,j

nj + gw + δj

+ γEKHi

N∑
j 6=i

vij ln yj + εEKi .

(41)

which is a Spatial Durbin Model. In matrix notation, it is given as y = βEK0 ι+βEKXEK+

θEKWXEK +γEKWy+εEK withXEK an N×1 vector of the values for the investment
rate in physical capital divided by the effective depreciation rate, WXEK the spatial
lag of this variable, Wy the spatial lag of the dependent variable, and εEK the iid error
term.

4.2 Estimation Strategy

As LeSage and Pace (2009) point out, a Spatial Durbin Model can be equivalently ex-
pressed as a Spatial Autoregressive Model (SAR). Rewriting Equation (38) accordingly,
leads to

y = γWy + X̃δ + ε (42)

with X̃ = [ιXWZ] an N × 5 matrix and δ = [β0 β θ]
′ a 5× 1 vector. In reduced form,

this model is therefore given by35

y = (I − γW )−1X̃δ + (I − γW )−1ε.

Note that this reduced-form specification implies that the spatial lag of the endogenous
variable is correlated with the error term, i.e.

Cov[(Wy), ε] = E[(Wy)ε′]− E[Wy] = W (I − γW )−1σ2.

Hence, ordinary least squares (OLS) estimators will not be consistent.

An alternative to using OLS to estimate the model is provided by Maximum Likeli-
hood (ML) estimation (compare e.g. Lee, 2004). This requires making a distributional
assumption for the error terms. Above, it was assumed that the error terms follow a

35On the existence of the inverse, see Appendix B.9.
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normal distribution, and in this case the log-likelihood function reads

lnL(y; δ, γ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − γW |

− 1

2σ2

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
.

(43)

In particular, the presence of the determinant ln |I − γW | in this expression might not
be immediately obvious. The following derivation of the function above therefore sheds
some light on this term.

4.2.1 Derivation of the Log-likelihood Function

Given the distributional assumption made above for the error (or disturbance) terms, εi,
in a given region, these have the following probability density function

f(εi; 0, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
ε2
i

)
so that the joint density function of the error terms reads

f(ε1, . . . , εN ;0, σ2I) =
N∏
i=1

f(εi; 0, σ2)

=

(
1√

2πσ2

)N N∏
i=1

exp

(
− 1

2σ2
ε2
i

)
f(ε;0, σ2I) =

(
1√

2πσ2

)N
exp

(
− 1

2σ2
ε′ε

)
where the last line follows from

∑N
i=1 ε

2
i = ε′ε. However, the disturbance terms cannot be

observed, and therefore the likelihood function needs to be based on y, which is observable
(Anselin, 1988b, 62). Hence, the vector of random variables ε needs to be transformed
into the vector of random variables y. This works with the help of a general result on the
transformation of variables. It holds that the joint density function g(·) for y is given by
(Davidson and MacKinnon, 2004, 430-431)

g(y) = f(ε) ·
∣∣∣∣∂ε∂y

∣∣∣∣ .
Due to this result, the determinant will enter the likelihood function. This determinant
is also called the Jacobian (determinant) of the transformation (see, for example, Greene,
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2003, 844-45). From Equation (42) it follows that the vector of disturbances is given by

ε = (I − γW )y − X̃δ. (44)

Therefore, the Jacobian determinant for this case reads
∣∣∣ ∂ε∂y ∣∣∣ = |I − γW |. Accordingly,

the joint density function for y is

g(y; δ, γ, σ2) =

(
1√

2πσ2

)N
· exp

(
− 1

2σ2
ε′ε

)
· |I − γW | .

As the likelihood function coincides with the joint density function (Verbeek, 2004, 164),
it can be expressed as

L(y; δ, γ, σ2) = (2πσ2)−
N
2 · exp

(
− 1

2σ2
ε′ε

)
· |I − γW | .

Inserting for ε from Equation (44), and taking the natural logarithm of this expression
results in

lnL(y; δ, γ, σ2) =− N

2
ln(2π)− N

2
ln(σ2) + ln |I − γW |

− 1

2σ2

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
which is identical to Equation (43) above.36

Finding the ML estimator, requires maximizing the log-likelihood function with respect
to the parameters δ, γ, and σ2, i.e. setting the 5×1 score vector equal to the correspond-
ing zero vector (Verbeek, 2004, 166-167). This multivariate optimization problem can
be transformed into a univariate one by concentrating the log-likelihood function with
respect to δ and σ2. The approach (see Pace and Barry, 1997, 235-236) is to substitute
closed-form solutions for the estimators, δ̂(γ) and σ̂2(γ), that depend only on the data
and the unknown parameter γ, into Equation (43). These solutions can be derived from
the first-order conditions for δ and σ2 (LeSage and Pace, 2009, 47). The resulting con-
centrated log-likelihood function can then be maximized with respect to the parameter γ
to obtain an estimate, γ̂, for this parameter. This estimate can in turn be used to back
out estimates for the other parameters from the expressions for δ̂(γ̂) and σ̂2(γ̂) (LeSage
and Pace, 2009, 47).

36The log-likelihood function in the standard regression model might be more familiar, but no de-
terminant occurs in that expression. The reason for the difference is that in the standard case where
ε = y −Xβ the Jacobian is equal to 1. In general, the presence of the determinant in the formula for
the transformation ensures that after the transformation the volume under the joint probability density
function is still equal to unity (LeSage and Pace, 2009, 80).
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4.2.2 Derivation of the Concentrated Log-likelihood Function

Following the approach outlined above, the derivative of the log-likelihood function with
respect to σ2 yields37

∂ lnL(·)
∂σ2

= − N

2σ2
+

1

2σ4

[
(I − γW )y − X̃δ

]′ [
(I − γW )y − X̃δ

]
. (45)

Setting this derivative equal to zero, leads to the maximum likelihood estimator for σ2,
i.e.

σ̂2(γ) =
1

N

[
(I − γW )y − X̃δ̂

]′ [
(I − γW )y − X̃δ̂

]
. (46)

Taking the derivative of Equation (43) with respect to δ and solving for the maximum
likelihood estimator δ̂ is a little more involved so that at this point only the result is
presented, while the detailed derivation is delegated to Appendix C.1. The estimator is
given by

δ̂ =
(
X̃
′
X̃
)−1

X̃
′
(I − γW )y. (47)

Defining δ̂O ≡
(
X̃
′
X̃
)−1

X̃
′
y and δ̂L ≡

(
X̃
′
X̃
)−1

X̃
′
Wy, the estimator can be equiva-

lently expressed as38

δ̂ = δ̂O − γδ̂L.

Defining furthermore the estimated residuals of a regression of y on X̃ as êO ≡ y− X̃δ̂O
and the estimated residuals of a regression of Wy on X̃ as39 êL ≡ Wy − X̃δ̂L, the
maximum likelihood estimator σ̂2 can be expressed as

σ̂2(γ) =

[
(êO − γêL)′ (êO − γêL)

N

]
.

Substituting this estimator into the log-likelihood function in Equation (43), yields

lnL(y; γ) = − N

2
ln(2π)− N

2
ln

[
(êO − γêL)′ (êO − γêL)

N

]
+ ln |I − γW |

− 1

2 1
N

· (êO − γêL)′ (êO − γêL)

(êO − γêL)′ (êO − γêL)

= − N

2
[ln(2π) + 1] + ln |I − γW | − N

2
ln

[
(êO − γêL)′ (êO − γêL)

N

]
(48)

37Alternatively, taking σ as the parameter in the log-likelihood function instead of σ2 would lead to
identical results in the end.

38This is an unbiased estimate. See Keilbach (2000, 153) for the proof.
39In Ertur and Koch (2011, 233) there is a slight mistake as they state (converted to the notation

used here) that êL = y − X̃δ̂L, whereas the expression given in the main text above is the correct one.
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which now only depends on the parameter γ. Computation of the maximum likelihood
estimator γ̂ is facilitated by taking recourse to a result by Ord (1975, 121). This result
states that the determinant |I−γW | can be expressed in a simpler way via the eigenvalues
λi, . . . , λN of the interaction matrix. In particular, it holds that |I−γW | = ΠN

i=1(1−γλi)
or, after taking the natural logarithm: ln |I−γW | =

∑N
i=1 ln(1−γλi). This latter result

is substituted into the log-likelihood in Equation (48). The advantage of employing this
expression is that in the numerical optimization procedure for the determination of γ̂,
the eigenvalues need only be determined once (Ertur and Koch, 2011, 233). Having
determined γ̂ numerically, the value can be substituted into the closed-form solutions for
σ̂2 and δ̂ in Equations (46) and (47) to obtain the estimates for these parameters.

5 Data, Estimation Results, and Interpretation of

Model Parameters

This section first provides a detailed overview of the data and the construction of the
variables for the empirical analysis. Afterwards estimation results of the models specified
in Section 4.1 will be presented and discussed. Estimates for the direct, indirect and total
impacts of the variables in the spatial models will also be presented.

5.1 Data

The empirical analysis focusses on the US federal states. As is common practice in
studies analyzing US economic development on a state level, Alaska, Hawaii, and (by
definition) Washington, D.C. are dropped from the sample so that only the 48 contiguous
(or continental) states are included.40 In addition, following the approach by Bode et al.
(2012, 27), Delaware is also excluded so that the baseline sample consists of 47 states.
The state of Delaware is home to a large financial industry, and it might be the case that
this characteristic influences the estimation results. Also, as Hanushek et al. (2015, 16)
note, gross state product (GSP) in Delaware might not be well described by a standard
production function, as more than 35% of its GSP in 2007 is accounted for by finance
and industry, whereas the remaining states only reach less than half this value.41

40Compare, for instance, Holtz-Eakin (1993), Barro and Sala-i-Martin (1992) or, more recently, Ya-
marik (2011) for this composition of the sample.

41Hanushek et al. (2015, 16) quote figures from an article in The Economist (2013) stating that
Delaware is a tax haven where companies outnumber people (945,000 vs. 917,092).
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The sample period in the empirical analysis below covers the 11 years from 1997-2007.
This period is rather short, but still in line with the studies (on different units of obser-
vation) by, for instance, Ertur and Koch (2011, 235), who analyze a period of 14 years
or Fischer (2011, 430) and Fischer et al. (2010, 592), who have data for 10 years.42 For
the present analysis, data for more recent years is available in the case of a subset of the
variables used in the analysis. The reason 2007 is chosen as the final year is twofold: On
the one hand, it is chosen to avoid the financial crisis starting in 2008 influencing the re-
sults, and, on the other hand, data for the investment in physical capital is only available
up to 2007. For years prior to 1997 data is available for many variables pertaining to
the analysis. However, 1997 is chosen as a cutoff, since the time series for the dependent
variable has a structural break in that year.43

Output, yi, is measured as real chained-weighted gross state product generated in the
private sector measured in 2000 dollars, and the data stems from the Bureau of Economic
Analysis’ (BEA) regional accounts data (BEA, 2015b). The variable is constructed by
dividing nominal gross state product generated in the private sector by the implicit price
deflators for the gross domestic product (GDP), which is taken from the national accounts
data of the BEA (2015a).44 In more detail, the following approach is employed (compare
Peri, 2012, 350): The time series for the GDP deflator is from the BEA (2015a) and has
2009 as its reference year. Therefore, the reference year for this series is first changed
to the year 2000 before using these values to convert GSP in nominal dollars to GSP in
2000 real dollars.45

Labor is measured as total employment on private payrolls, as in, for example, Yamarik
(2013). This data is reported by the Bureau of Labor Statistics (2015) in its Current
Employment Statistics, and ni is the average annual growth rate of total employment.46

42As Fischer (2011, 429) notes with reference to Durlauf and Quah (1999) and Islam (1995), steady-
state regressions are valid for relatively short time periods.

43The break occurs as the US shifted from the Standard Industrial Classification (SIC) to the North
American Industry Classification System (NAICS) and the Bureau of Economic Analysis on their website
strongly “cautions against appending the two data series” (compare http://www.bea.gov/regional/
docs/product/ (accessed: 11 August, 2015)).

44This is similar to, for instance, Yamarik (2006) and Barro and Sala-i-Martin (2004), who use the
national consumer price index to deflate nominal personal income.

45As Barro and Sala-i-Martin (2004, 497) note: “As long as the same index is used at each date for
each state, the particular index chosen does not affect the relative levels and growth rates across states”.

46The values for this variable pose a slight problem for the estimation in the next section. The
model is specified in logs, but, as the summary statistics in Table 1 show, the minimum value for the
employment growth rate is −0.5%, for which the logarithmic transformation is not defined. Besides this
value for Michigan, also Ohio has a negative employment growth rate over the period (−0.01%). Several
approaches exist to deal with this issue. The one preferred here for its simplicity, follows Sarel (1996,
203), who encounters this problem in the context of inflation rates. He sets the negative values equal
to the smallest positive observed value in the sample. For the present analysis, the respective value
is 0.23% (for Mississippi). Alternatively, for comparable situations, it is suggested to add a constant
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Values for the state-level real investment rate, sK,i, are not available from official US
agencies. However, Yamarik (2013), updating a previous contribution by Garofalo and
Yamarik (2002), provides values for state-level real investment in 2000 dollars. Dividing
those by the real GSP values then leads to the values for the state-level real investment
rate. Furthermore, in Yamarik (2013), annual values for state-specific depreciation rates
of physical capital, δi, are also provided so that here, in contrast to other studies, it is
possible to deviate from the assumption of identical depreciation rates across all units of
observation and use the average state-specific annual depreciation rate of physical capital
in the empirical study instead.47 The growth rate, gw, is set to 0.02, which is in line with
the value chosen by Howitt (2000, 841) and also is similar to the approach by Yamarik
(2006) considering that he obtains a mean value of 9% for ni + gw + δi where the sample
covers the time period 1950-2000.48 Investment in R&D, sA,i, is measured as the average
real research and development expenditure as a percentage of real gross state product.
Data for this variable is provided by the Organisation for Economic Co-operation and
Development’s (OECD) Regional Database (OECD, 2015). Total R&D expenditures are
given by summing up expenditures in the business, government, higher education, and
private non-profit sectors (OECD, 2015). Concerning the human capital stock, Hi, this
variable is measured by the average share of individuals above the age of 24 with four
or more years of college (more specifically, a Bachelor’s degree or higher). This is in
accordance with the measure used by, for example, Bode et al. (2012) or Yamarik (2006).
The data is supplied by the Current Population Survey of the United States Census
Bureau (2015). For this variable, no state-level data is available for 2007 so that this year
is omitted in calculating the average values.49

With respect to the interaction matrix W , it is important to highlight that the weights
should be exogenous to the variables in the model (Ertur and Koch, 2007, 1042). This
restricts the choice of variables that might be considered to model connectivity between
states considerably. In general, studies have relied on geographic distance to specify the
weights in the interaction (or spatial weight) matrix. This measure allowed researchers to

to the variable before applying the logarithmic transformation to ensure that all values are positive
(see, for example, Dowdy et al. (2004, 329) or Wooldridge (2013, 193)). Adding, for instance, 0.006 to
all employment growth rates before taking logs ensures that the growth rate for Michigan is positive
but small (0.1%). Thirdly, the observations for Michigan and Ohio could be dropped from the sample.
All three methods of handling this problem lead to only minor quantitative changes in the estimated
parameters. Note that the adjustment is only necessary for the employment growth rate variable, but
not for the effective depreciation rate, ni + gw + δi, which is positive for all observations.

47The data for sK,i and δi is available on Steven Yamarik’s website under: https://web.csulb.edu/
~syamarik/ (accessed: 11 August, 2015).

48Assuming gw = 0.02, the average value of ni + gw + δi in the present sample is approximately 8%
(see Table 1).

49See the user note at the following link: http://www.census.gov/hhes/socdemo/education/data/
cps/2007/usernote.html (accessed: 11 August, 2015).
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capture that effects between units of observations diminish with geographic distance (see,
for example, Eaton and Kortum (1996) or Keller (2002)).50 The distance-decay effect can
be formalized in a variety of ways. Here, three different interaction matrices of the form
W = HV with general weights given by wij = Hivij will be considered to assess the
robustness of the empirical results. As will be clear from the functional forms specified in
Equations (49), (50), and (51) below, the matrices V1,V2 and V3 are row standardized,
whereas the matrices W1,W2 and W3 are not, as they are multiplied by the matrix H .

The first interaction matrix, W1, is based on a binary first-order contiguity matrix as in
Fischer (2011, 430) or Rey and Montouri (1999, 146). States are considered contiguous
(or, more simply, neighbors), if they share a common border (i.e. Montana and North
Dakota) and the modifier “first-order” refers to the fact that only direct neighbors are
relevant51 so that Minnesota is a first-order neighbor of North Dakota, but a second-order
neighbor of Montana (see the map in Figure 1).52 In formal terms, the weights in matrix
W1 are therefore described by wij(1) = Hivij(1), with

vij(1) =

0 if i = j

1∑N
j 6=i vij(1)

if i and j are neighbors.
(49)

A second possibility to model the distance-decay effect abstracts from the binary option
adopted above and connects all states directly with each other. The weights in matrix
W2 are given by wij(2) = Hivij(2), and, as, for example, in Ertur and Koch (2011), the
following continuous functional form is assumed for these weights

vij(2) =

0 if i = j

e−dij∑N
j 6=i e

−dij otherwise.
(50)

Here, dij is the great circle distance – the shortest path between two points on the
surface of a sphere – between the geographic centroids of the US states. These centroids

50Measures based on geographic distance are, however, not the only possibility. Another exogenous
measure is genetic distance between units of observation. In the present analysis, it is unfortunately not
possible to use this alternative measure, since the necessary bilateral distance measures are not available
on the level of US states (see Spolaore and Wacziarg (2009) for the relevant country-level data). A
similar issue arises for another potential candidate measure, linguistic distance, that has been used in
studies applying spatial econometric methods (compare, for example, Isphording and Otten (2013) or
Melitz and Toubal (2014)).

51One might wonder about the quadripoint where the borders of Colorado, New Mexico, Arizona and
Utah meet (see Figure 1). In the present analysis, the pairs Arizona/Colorado and Utah/New Mexico
are considered neighbors.

52Note that this specification does not rule out spillovers from Minnesota to Montana, as all states
are connected via the spatial multiplier (compare Equation (32)).
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are illustrated by the black dots in Figure 4.
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Figure 4: Geographic Centroids of US States.

The third interaction matrix, W3, has weights wij(3) = Hivij(3) and has a similar form
to the matrix in, for example, Bode et al. (2012) and Basile (2014). It adopts the negative
exponential form of matrixW2, but scales it with a factor τ . In addition, a distance cutoff
is introduced. If the distance between the centroids of the two states is larger than this
threshold, the corresponding matrix entry is set to zero, implying that direct spillovers
between these states are non-existent. Formally, the matrix entries are calculated by

vij(3) =

0 if i = j or if dij > 512km
e−τdij∑N
j 6=i e

−τdij if dij < 512km.
(51)

As in Bode et al. (2012), τ is set to 0.02, and the distance cutoff is chosen following Basile
(2014, 12) as the minimum distance ensuring that all states have at least one neighbor.
For the present sample, this distance is slightly below 512km (the distance between the
centroids of Arizona and New Mexico). Concerning τ , Bode et al. (2012) supply a helpful
illustration: They argue that the weights in the interaction matrices can be understood
similar to iceberg transportation costs53 where the parameter τ indicates the percentage
of knowledge diffusion that is lost per kilometer. For τ = 0.02 this implies that after 50

53These are familiar from new economic geography (see, e.g. Krugman, 1991, 489). Samuelson de-
scribed the general concept in the following way: “To carry [a] good across the ocean you must pay some
of the good itself” and illustrated it more specifically by continuing that “only a fraction of ice exported
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kilometers 1 − e−0.02∗50km ≈ 63.2% of the iceberg “has melted away” and approximately
86.5% after 100 kilometers.

Before presenting the estimation results in the following section, Table 1 provides sum-
mary statistics for the variables used in the empirical analyses.

Table 1: Summary Statistics – Baseline Sample.

Variable Mean Median
Standard
deviation

Minimum Maximum

yi 85,012.07 80,896.36 13,921.60 66,616.49 123,281.63

sK,i 0.085 0.081 0.017 0.063 0.139

ni 0.012 0.011 0.008 −0.005 0.037

δi 0.048 0.048 0.002 0.044 0.051

ni + gw + δi 0.080 0.079 0.008 0.062 0.101

sA,i 0.022 0.019 0.015 0.005 0.075

Hi 0.255 0.244 0.046 0.158 0.351
sK,i

ni+gw+δi
1.064 1.034 0.172 0.862 1.706

W1sK 0.264 0.261 0.051 0.159 0.416

W2sK 0.274 0.262 0.070 0.162 0.494

W3sK 0.271 0.260 0.061 0.159 0.438

W1y 21,073.61 20,214.21 4,628.53 12,977.69 32,609.39

W2y 21,302.32 20,192.91 5,446.95 12,398.25 42,844.25

W3y 21,616.61 19,961.00 5,454.27 13,399.71 38,037.59

Note: The given values are the original values (i.e. not in logs) for the benchmark sample of 47
states and the period 1997-2007 with yi the income per worker in 2007.

5.2 Estimation Results

Table 2 shows the estimation results54 for the series of models described in Section 4.1. In
Column 1, the standard Solow model from Equation (39) is estimated by ordinary least
squares (OLS), and the results show that, in line with the predictions of this model, the
investment rate in physical capital divided by the effective depreciation rate has a positive
and significant impact on steady-state income per worker (p-value = 0.033). As the model

reaches its destination as unmelted ice” (Samuelson, 1954, 268). However, the general idea goes back
almost two centuries to von Thünen, who noted with respect to the transport of grain by horse-drawn
carriage that if the distance between farm and city (and back to the farm) is large enough (50 miles
in the specific example he describes), then “ist also der Transport des Korns auf 50 Meilen unmöglich,
weil die ganze Ladung oder deren Werth auf der Hin- und Zurückreise von den Pferden und den dabei
angestellten Menschen verzehrt wird” (von Thünen, 1826, 9).

54All estimations have been conducted in Matlab with the Spatial Econometrics Toolbox provided by
LeSage. The toolbox is available under: http://www.spatial-econometrics.com/ (accessed: 11 August,
2015).
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is specified in logs, the estimated coefficient points to an increase of approximately 3.3%

due to a 10% increase in the investment rate in physical capital.

Table 2: Estimation Results for Three Different Models for the Baseline Sample of 47 States and
Interaction Matrices W1, W2, and W3 for the Period 1997-2007.

Model Solow
(1956)

Howitt
(2000) Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.322 11.690 11.019 10.966 10.965 11.253 10.977 10.977
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.326 0.362 0.310 0.325 0.282 0.329 0.321 0.278
(0.033) (0.017) (0.023) (0.023) (0.053) (0.018) (0.029) (0.064)

ln sA,i — 0.065 — — — 0.023 −0.006 −0.005
(0.041) (0.494) (0.868) (0.906)

lnni — 0.023 — — — 0.018 0.010 0.008
(0.467) (0.523) (0.717) (0.769)

W [ln sK,j − ln(nj + 0.02 + δj)] — — −1.728 −0.567 −0.237 −1.641 −0.606 −0.268
(0.096) (0.263) (0.719) (0.118) (0.239) (0.687)

γ — — 0.117 0.126 0.126 0.096 0.131 0.129
(0.004) (0.000) (0.001) (0.048) (0.009) (0.011)

AIC −3.794 −3.813 −3.896 −3.965 −3.942 −3.829 −3.885 −3.860
BIC −3.715 −3.655 −3.738 −3.807 −3.785 −3.593 −3.648 −3.624
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.

Column 2 shows the estimation results from the Howitt model, specified in Equation (40).
The coefficient for the investment rate over the effective depreciation rate has increased
slightly, quantitatively as well as in significance, compared to the estimation of the Solow
model. The newly added variable, investment in R&D, is estimated to have a positive
and significant effect (p-value = 0.041) on per worker income in steady state. However,
the effect is smaller than for investments in physical capital, as a 10% increase in R&D
investment would result in a 0.65% increase in per worker income in steady state. Re-
garding the remaining variable, the employment growth rate, its effect is not significant
with a p-value of 0.467.55

The next 3 columns estimate the spatially-augmented Solow model from Equation (41) by
maximum likelihood as described in Section 4.2. Here, the approach differs slightly from
Ertur and Koch (2011), as the approach from Basile (2014) is followed to estimate the
Spatial Durbin Model instead of the Spatial Error Model (SEM) to obtain estimates for
the coefficient of the spatial lag of the investment variable as well.56 For all three interac-
tion matrices the effect of the investment variable accords with implications derived from

55The non-significance of this variable in the Howitt specification is also found by Ertur and Koch
(2011) in their cross-country sample.

56In contrast to the SDM model, the SEM model contains spatial autocorrelation only in the error
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the theoretic model, and, with the exception of the matrix W3, is also significant at the
5%-level. The estimated coefficients for the spatial lag of the investment variable are not
significant in either case. Note, however, that the estimate for the spatial autoregressive
coefficient is highly significant (at the 1%-level) for all three matrices.

As this model, by definition, contains interaction between regions, and an interdependent
system is estimated, a direct interpretation of the estimated parameters as in the case of
the models estimated by OLS is not feasible and might lead to invalid conclusions. The
next section presents a method developed by LeSage and Pace (2009) to disentangle the
direct and indirect impacts in spatial models.

In the remaining three columns, the multi-region Schumpeterian growth model from
Equation (37) is estimated. Similar to the case of the spatially-augmented Solow model,
the impact of the investment rate in physical capital is positive for all three interaction
matrices and significant at the 5%-level for matrices W1 and W2. Also, the spatial lag
of this variable is significant in neither case at standard significance levels. Concerning
the newly added variables, the investment rate in R&D and the employment growth rate,
the estimated coefficients are not significant in either case. However, again the estimate
for the spatial autoregressive coefficient, γ, is estimated to be positive and significant
for all three matrices W1, W2, and W3, implying that the states cannot be treated as
independent observations.

These estimation results do not provide a clear picture, as, for example, the impact of
the R&D investment rate, seems to affect income per worker in steady state in the non-
spatial model, but not in the spatial model, although the information criteria point to
the latter one.57 Nonetheless, due to the estimates for the parameter γ, it emerges from
these results that interaction effects between observations seem to be relevant.58

term, but not in the regressors. See Ertur and Koch (2011, 234 and 240-241) for the specific model
addressed here and, for instance, LeSage and Pace (2009) on the spatial error model in general.

57Akaike’s Information Criterion (AIC) and the Schwarz or Bayesian Information Criterion (BIC) are
calculated according to the formulae (see, for example, Greene (2003, 160)):

AIC = log

(
ε̂′ε̂

N

)
+ 2

K

N
and BIC = log

(
ε̂′ε̂

N

)
+
K

N
logN,

where ε̂ denotes the residuals of the estimation and K signifies the number of parameters (for the original
contributions regarding these information criteria, see Akaike (1973) and Schwarz (1978)). It should be
kept in mind here that only nested models can be compared according to these criteria. Accordingly,
comparisons are possible across model with the same interaction matrix, but not between, for example,
the models in the last two columns.

58The goal here is to test empirically the four different types of models that are contained in a
“completely integrated theoretical and empirical framework” (Ertur and Koch, 2011, 216). Hence, the
subject of model comparison as traditionally understood, is assigned a reduced role here. In the context
of comparison of (spatial) econometric models, the two ends of the spectrum are the specific-to-general
approach and the general-to-specific approach (see, for example, Le Gallo (2014, 1528-1529) on these

35



In Section 5.1 it has been mentioned that the state of Delaware has been excluded from the
baseline sample due to the presence of a large financial and insurance sector. Appendix
D.1 presents the estimation results when Delaware is included in the sample (see Table
D.1). As it turns out, including the state in the sample, results in the coefficient on
the physical investment rate over the effective depreciation rate losing its significance,
thereby lending credence to the conjecture that this state might not be well described by
the model considered here.59

5.3 Interpretation of the Model Parameters

Due to the interaction effects contained in the spatial models via the inclusion of the
spatial lags, the coefficient estimates in Table 2 cannot be interpreted directly. At this
point, it is helpful to refer back to the elasticities calculated in Equations (31), (35), and
(36). These N ×N matrices describe the effects of changes in the explanatory variables
on the dependent variables. The individual entries in these matrices denote, for instance,
the effect of an increase in the investment rate in R&D in Maine on the per worker income
in steady state in North Dakota. It becomes clear that the effects will differ depending
on the pairs of states chosen and thus reporting all individual effects is rather unwieldy.
LeSage and Pace (2009) helpfully provide a method to summarize in a clear manner the
estimation results on the direct and indirect effects (or spillovers).60 The direct effects
are the partial derivatives measuring the change in the dependent variable in region i due
to a change in the explanatory variable in region i. These effects are measured on the
diagonal of the matrix of elasticities (compare Equation (33)). LeSage and Pace (2009)
suggest to summarize the direct impact with the average value of the diagonal matrix
elements.

A change in the explanatory variable in region i also affects the dependent variable in
the other regions, and these indirect impacts are captured by the off-diagonal entries in
the matrix (compare Equation (34)). With regard to this effect, the proposed summary
measure is the average of the row sum of these off-diagonal matrix entries. This row

approaches). The former strategy has been found to outperform the latter strategy in a specific context
not including the SDM as a possible specification (Florax et al., 2003). On the other hand, LeSage and
Pace (2009) suggest to start with the SDM model, whereas an approach outlined by Elhorst can be seen
as a combination of the two search strategies that chooses as a starting point, however, the specific model.
A further reason these approaches have not been adhered to strictly here is that they rely on tests which
have been specified for row-standardized interaction matrices (compare, for example, Anselin (1988a)
and Anselin et al. (1996)). It is not clear, if these can be applied in the given context in a straightforward
manner for models in which the interaction matrix is not described by this characteristic.

59Also, Washington D.C. has been omitted from the sample. Including it does not lead to qualitative
changes in the results compared to the baseline estimates. Detailed estimation results are omitted though.

60A very lucid exposition of their approach can be found in Section 6 of Elhorst (2010).
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sum measures the effect on the dependent variable in region i due to a change in the
explanatory variables in the remaining regions. Straightforwardly, the average of these
row sums is then chosen as the summary measure for the indirect effects.61 Summing up
the direct and indirect effects (i.e. all the elements in a row) gives then a measure for
the total impact. The average of these sums is chosen as the corresponding summary
measure.

Table 3: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region Schum-
peterian Model for the Baseline Sample of 47 States and Interaction MatricesW1,W2, andW3 for
the Period 1997-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.330 0.321 0.278
(0.022) (0.034) (0.070)

ln sA,i 0.023 −0.006 −0.005
(0.497) (0.867) (0.905)

lnni 0.018 0.010 0.008
(0.525) (0.718) (0.772)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.034 0.047 0.039
(0.149) (0.105) (0.150)

W ln sA,j 0.001 −0.003 −0.002
(0.724) (0.699) (0.724)

W lnnj 0.002 0.001 0.001
(0.623) (0.797) (0.851)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.364 0.368 0.318

(0.020) (0.031) (0.066)
ln sA,i +W ln sA,j 0.025 −0.009 −0.007

(0.509) (0.837) (0.875)
lnni +W lnnj 0.020 0.012 0.009

(0.528) (0.726) (0.780)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.

Table 3 presents the estimates for the direct, indirect, and total impacts for the multi-
region Schumpeterian model calculated in the way just described. The results show that

61As LeSage and Pace (2009, 37) demonstrate, an identical value for the indirect effect is obtained
by summing up the off-diagonal column elements and calculating the average of these sums. The in-
terpretation is however different, as, for instance, the latter measure captures the impact of a change
in the exogenous variable in region i on the dependent variable in all other regions. In the context, of
the present model this measure reports, for example, the impact of an increase in R&D investment in
Massachusetts on the per worker income in the remaining US states, whereas the sum of the off-diagonal
row elements would report the change in, for example, the per worker income in Massachusetts due to a
change in the R&D investment rate by an identical amount in the remaining states.
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the indirect effects are not significant for any of the variables included in the regression,
independently of the specific interaction matrix.62 Concerning the estimates for the
direct and total impacts, these are positive and significant for the investment rate over
the effective depreciation rate in the case of interaction matrices W1 and W2, but not
if matrix W3 that contains a distance cutoff is included. Quantitatively, the significant
estimates point to an increase of approximately 3.6% in per worker income due to a 10%

increase in investment in physical capital.63

Regarding the sample that includes Delaware, estimates for the impacts are given in
Table D.2 in Appendix D.1. They show that, in contrast to the baseline sample, the
direct and total impacts are not significant no matter the interaction matrix included.

Summarizing the empirical results with respect to the multi-region Schumpeterian growth
model, it needs to be stated that even though the model’s implications are borne out for
a particular sample in a cross-country analysis in Ertur and Koch (2011), these results
are not readily transferable to the sample of US states analyzed here. Whereas R&D
investments have a positive impact on income per worker in the Howitt model, in which
the amount of knowledge that diffuses between regions is identical (see Ertur and Koch
(2011, 238)), this is not the case in its version with more complex spatial interactions.
It might be that the inclusion of the spatial lags in the SDM model is not warranted.
As Greene (2003, 151) notes, in such a situation the estimates become less precise and
therefore are less likely to be significant. Indeed, the results from testing for the presence
of spatial autocorrelation in the residuals of the Howitt model with Moran’s I test64 do
not point to estimating a spatial version of the model. However, as the results in Table 2
show, the estimate for the spatial autoregressive coefficient is highly significant.65 The es-
timation of this model therefore provides new information; in particular, when compared
to the results by Basile (2014) for 248 European NUTS 2 regions. He estimates a growth

62Inference on the statistical significance of the parameters is based on p-values which have been
obtained from simulating the distribution of the respective effects with the help of the variance-covariance
matrix derived in Appendix C.2.

63For the spatial Solow model, i.e. the SDM model in Columns 3-5 in Table 2, the respective impacts
are not significant in any case and detailed results are omitted here.

64The test statistic is given by

I =
N

S0

(
ε̂′Wε̂

ε̂′ε̂

)
where ε̂ are the residuals from the OLS regression and S0 is a standardization factor, that equals 1 in
the case of a row-standardized interaction matrix, as it is given by the sum of all the elements inW (see,
for example, Le Gallo (2014, 1524), who also provides the expressions for the expectation and variance
of I, derived by Cliff and Ord (1972) under the null hypothesis).

65Tentative evidence from more specific Lagrange Multiplier tests, which in contrast to Moran’s I
test, specify a particular alternative hypothesis also point to including a spatial lag in the Howitt model.
Results of these tests are omitted here though due to the possible issues regarding non-standardized
interaction matrices mentioned at the end of Footnote 58.
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version of the multi-region Schumpeterian model for these regions for the period 1991-
2011 and finds that the estimates have the signs implied by theory and are significant.66

For the US states, it might be that spatial interaction between states exists, which is,
however, only captured by the variable income per worker and not by, for instance, R&D
investments. The Moran scatterplot in Figure 2 only hinted at potential spillovers from
R&D investments, but the econometric analysis finds no support for these.

Before concluding, a final series of estimation results for the baseline sample of obser-
vations will be briefly discussed. Despite the warning against appending the two data
series for the GSP variable mentioned in Section 5.1, Appendix D.2 ignores this. The
results are qualitatively similar to the ones for the shorter sample. However, notable dif-
ferences in the significance of variables exist, for example, in the Howitt model where the
R&D investment rate no longer has a statistically significant impact. In the multi-region
Schumpeterian model when matrix W1 is used, the spatial autoregressive coefficient is
not significant (compare Table D.4 for these results). A further difference concerns the
direct and total impact estimates for the variable investment rate in physical capital over
the effective depreciation rate. These have increased in size to values larger than 0.5 and
are highly significant with p-values below 0.003 (see Table D.5).67

6 Conclusion

In this paper, the multi-region Schumpeterian growth model developed by Ertur and Koch
(2011) has been presented in detail. A characteristic feature of this model is that regions
are not considered to develop in isolation from each other, but rather interdependence
between regions via knowledge spillovers is explicitly included. Technological progress
in the model results from purposeful investments in R&D. It has been shown that how
much a region can benefit from a given amount of knowledge spillovers depends on the
way a region is connected to other regions and on the distance to its own technological
frontier.

Also, the econometric strategy to estimate the equation for the steady-state income per
worker that results from the theoretical model has been thoroughly outlined. In contrast
to the original contribution, the level of aggregation in the empirical analysis has been
reduced, and the model’s implications have been tested for a sample consisting of states
within a single country (the United States) instead of across countries.

66He also provides estimates for the direct, indirect, and total impacts, but no information on their
significance is given.

67Also, in the case of interaction matrix W2, the indirect effect is marginally significant now at the
5%-level.
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The estimation results presented here do not provide full support for all implications
derived from the theoretic model. For instance, the hypothesis of technological interde-
pendence between the regions receives support, as the parameter gauging this charac-
teristic is estimated to be positive and statistically significant for all three interaction
matrices considered. However, a statistically significant impact of, for example, R&D
investment on per worker income could not be detected in this model, even though it
was present in the model with a simplified interaction structure (i.e. the Howitt (2000)
model). Despite this result, the more nuanced way interaction is modeled in Ertur and
Koch (2011) may seem more plausible, as these authors assume that the net effect of the
knowledge spillovers depends on the absorptive capacity, i.e. the level of human capital in
the receiving region, which is in contrast to the more basic assumption that the amount
of knowledge diffused by each region to the other regions is identical.

This distinction may also point to an explanation for the differing estimation results.
As the OECD notes in its Science, Technology and Industry Outlook: “US firms are
at or near the forefront of technological advances in a number of areas” (OECD, 2010,
232), and the “United States has long been, and still is, at the forefront of cutting-edge
science, technology and innovation” (OECD, 2014, 444). Moreover, the various US states
are heterogeneous. Hence, it might be the case that potential knowledge spillovers from
investment in R&D and physical capital arise in the form of highly-specialized knowledge
in a given state, and this knowledge might only diffuse to a very low extent, as it cannot
be productively used in the states the originating state is connected to. The receiving
states might lack the absorptive capacity to benefit from inter-industry spillovers.

From a different perspective, the model does not differentiate between, for example, var-
ious types of workers and an identical level of human capital in two states might hide
a large diversity in the composition of human capital. If one assumes identical human
capital levels in two states that have different industry structures whose requirements
are mirrored in the diversity of the respective state’s human capital, then the model’s
mechanics would imply that spillovers originating in the state with a strong presence in
e.g. nanotechnology to the state with a large presence in, for example, car manufactur-
ing would necessarily be reflected in an increase in per worker income. However, the
knowledge generated in nanotechnology might not be readily applicable in the car man-
ufacturing sector, since human capital in this sector lacks the necessary complementarity
to benefit from the knowledge spillovers. The implied impact on per worker income might
then not show up in the data.

This paper has deliberately chosen to stay in a similar framework as Ertur and Koch
(2011), both theoretically as well as econometrically, to obtain results that are comparable
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to a certain extent. Naturally, other estimation approaches exist, and future research
will focus on estimating, for instance, a spatial panel model for this sample. Also, the
specific choice of the interaction matrix is an interesting topic for further study. In the
present analysis, even though the estimation results for the three interaction matrices
were similar, they were not identical. The method of Bayesian Model Averaging may be
a fruitful avenue for finding a matrix that fits the data more closely. Furthermore, as
knowledge spillovers decrease with distance, conducting the analysis at e.g. the level of the
county or metropolitan area might lead to additional insights. However, data availability
is the restricting factor in this case.
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Appendix

A Poisson Processes

In the literature on Schumpeterian growth models it is standard to model the occurrence
of an innovation via a Poisson arrival rate or to read about Poisson processes (compare,
for instance, Aghion and Howitt (1992) and Aghion et al. (2014)).68 A detailed exposition
of these notions is however seldom provided so that these concepts from statistical theory
may pose some difficulties at first glance. This appendix therefore serves as a brief review
of the general concepts concerning Poisson processes.

An important step towards understanding Poisson processes concerns the exponential
distribution. If a continuous random variable X is exponentially distributed, then its
probability density function (PDF) is given by

f(x) =

λe−λx if x ≥ 0

0 if x < 0.
(A.1)

Here, λ is a parameter for which λ > 0, and x is a particular value of the random variable.
This function is illustrated for two different values of λ in Figure A.1.

The cumulative distribution function, which gives the probability that X ≤ x, with x ≥ 0

is then given by

P{X ≤ x} = F (x) =

∫ x

0

f(τ) dτ =

∫ x

0

λe−λτdτ =
∣∣∣x
0
− e−λτ = 1− e−λx. (A.2)

The exponential distribution has the property of being memoryless (Ross, 2010, 294).
This property can formally be stated as

P{X > s+ t|X > t} = P{X > s} ∀ s, t ≥ 0.

Interpreting the random variable X, for instance, as the lifetime of a certain machine,
instrument, or device like a traffic light, the equation above states that the probability
that a traffic light functions s + t units of time (i.e. days), given that it already has
worked for t days is the same as the unconditional probability that it works for s days.
Put differently, the traffic light “does not remember” it has already worked for t days. A
concept, known as the hazard rate or failure rate, helps to illustrate this property. For

68Poisson processes also play an important role in other areas of economics like labor or monetary
economics. Wälde (2011, 261) provides a brief list of applications in economics.
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Figure A.1: Probability Density Functions (PDF) of an Exponentially Distributed Random Vari-
able X with Parameter λ = 1.3 and λ = 0.4, respectively.

Note: The underlying data was generated in Mathematica.

the given example, it is defined as the conditional probability that a traffic light, having
survived t days, will fail. Formally, the failure rate, r(t), is thus given by (Ross, 2010,
299)

r(t) =
f(t)

1− F (t)
.

Inserting from Equations (A.1) and (A.2), one immediately sees that the failure rate is
constant in the case of an exponentially distributed random variable69

r(t) =
λe−λt

e−λt
= λ.

The notion of failure rates will be picked up again after the following exposition on Poisson
processes. These are a specific form of a counting process. Generally speaking, a counting
process {N(t), t ≥ 0} is a stochastic process, which counts the number of events, N(t),
that have happened up until time t (like, for example, the number of cyclists who have
crossed a certain bridge until noon). For a Poisson process, the following definition holds
(Ross, 2010, 313): A Poisson process is a counting process with rate λ > 0, if (i) N(0) = 0,
(ii) the process has independent increments, and (iii) the number of events in any interval

69In fact, as Ross (2010, 299-300) demonstrates, the property of memorylessness exists only for random
variables that are exponentially distributed.
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of length t has a Poisson distribution with mean λt, i.e. ∀ s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
, n = 0, 1, . . .

In the context of the model in the main text, for an individual about to engage in
research and calculating the value of an innovation, information on the absolute number
of innovations in a given sector is of minor interest compared to the time span over
which she will be able to earn monopoly profits. Hence, information on the time between
innovations is of central interest. Denoting the point of time of the first innovation as T1

and defining Tn as the time span or interarrival time between event (or innovation) n− 1

and n, implies that if, for example, innovation number 5 occurred at time 33, innovation 6
at time 34, and the next innovation at time 38, then one would have T6 = 34−33 = 1 and
T7 = 38− 34 = 4 as the values for the interarrival times. Information on the distribution
of this sequence of random variables can now be derived by noting that the probability
that the first event or innovation occurs after time t is given by the expression (Ross,
2010, 317)

P{T1 > t} = P{N(t) = 0} = e−λt.

Hence, T1 is exponentially distributed. This result follows from using property (i) of the
Poisson process and by noting that during the interval [0, t] by definition no event occurs
so that the number of events in this particular interval is N(t + 0) = N(t) = 0.70 Next,
the probability of T2, i.e. the probability that the time between events 1 and 2 is larger
than t is the probability of T2 given that T1 already happened (which necessarily needs
to be the case given the definition of T2) and had an interarrival time of e.g. s. Then, it
holds that

P{T2 > t|T1 = s} = P{0 events in (s, s+ t]|T1 = s}

= P{0 events in (s, s+ t]}

= e−λt,

where the second line follows from the fact that the Poisson process has independent
increments (i.e. the number of events that occur in non-overlapping intervals are inde-
pendent from each other) so that the conditional and unconditional probabilities are
identical. The third line holds, as the process has stationary increments,71 implying that
the distribution for the number of events in (s, s + t) is identical for all s (Ross, 2010,

70In general, it holds that P{X > x} = 1 − P{x ≤ X}. Hence, with reference to the cumulative
distribution function in Equation (A.2), the claim that T1 has an exponential distribution is valid.

71This is implied by an alternative definition of a Poisson process to the one provided above. See Ross
(2010, 314) for the details concerning this definition.
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313).

Having demonstrated that the interarrival times are independently and identically dis-
tributed, the failure rate for the interarrival times is therefore given by the parameter or
intensity of the Poisson process, λ. Translated into the context of the model, a failure
is equivalent to a new innovation, and the probability that a new innovation comes into
existence during the interval dt is given by r(t)dt = λdt (Ross, 2010, 299).

Figures A.2 and A.3 illustrate important characteristics of Poisson processes and the
exponential distribution with different values for λ. One clearly sees from the length
of the horizontal lines in Figure A.2, that the time interval between innovations (or
“failures”) is not constant. Interpreting the units of time as years, it takes, for instance,
only approximately three months to go from quality level 7 to level 10 (or come up with
3 additional products in that time span), whereas making the three steps from 3 to 6
takes approximately 5 years. Also, the number of absolute innovations is higher for the
process with a higher value for λ (17 versus 4).
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Figure A.2: Illustration of Two Poisson Processes with Intensities λ = 1.3 and 0.4, respectively.

Note: The data underlying the Poisson processes was generated in Mathematica.

Additionally, Figure A.3 illustrates that a higher value for λ is equivalent to having a
larger probability mass at any value of the random variable. Therefore, the probability
that an innovation occurs within a certain period of time is indeed higher for higher values
of λ.
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Figure A.3: Cumulative Density Functions (CDF) of an Exponentially Distributed Random Vari-
able X with Parameter λ = 1.3 and λ = 0.4, respectively.

Note: The underlying data was generated in Mathematica.

B Additional Derivations – Model

This appendix gathers a variety of derivations of (intermediate) results that are merely
stated in the presentation of the model in Sections 2 and 3 in the main text.

B.1 Derivation of the Inverse Demand Schedule for Intermediate

Goods

Below, the inverse demand function for an intermediate good will be derived in detail.

The necessary condition for the maximization problem in Equation (2) is given by dΠi(v,t)
dxi(v,t)

=

0. Calculating the derivative in this equation, requires an application of the following
result for differentiating under the integral sign (see, for instance, Sydsæter et al., 2008,
159)

F (x) =

∫ d

c

f(x, t) dt =⇒ F ′(x) =

∫ d

c

∂f(x, t)

∂x
dt.

Applying this general result to the problem in (2), leads to the necessary condition

Qα−1
i

∫ Qi(t)

0

αAi(v, t)Li(t)
1−αxi(v, t)

−(1−α) dv =

∫ Qi

0

pi(t) dv.
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Note that this expression is not identical to the solution given in Equation (3) in the main
text. The reason is that in the equation above the derivation has been taken with respect
to xi(v, t) in general (i.e. the whole continuum of varieties) and not with respect to a
specific intermediate good, like, for example, good j. For a specific good j, the correct
derivative to take is ∂Πi(v,t)

∂xi(j,t)
. This derivative can be stated, by rewriting the integrals in

the optimization problem (maybe slightly informally interpreting the integral as a sum
of discrete varieties), as

∂Πi(v, t)

∂xi(j, t)
= Qi(t)

α−1

[∫ Qi(t)

v 6=j
v=0

∂

∂xi(j, v)
Ai(v, t)xi(v, t)

αLi(t)
1−αdv

+
∂

∂xi(j, v)
Ai(j, t)xi(j, t)

αLi(t)
1−α
]

−

[∫ Qi(t)

v 6=j
v=0

pi(v, t)xi(v, t)dv +
∂

∂xi(j, v)
pi(j, t)xi(j, t)

]

− ∂

∂xi(j, v)
wi(t)Li(t).

Calculating the respective derivatives in this expression and setting the result equal to
zero, leads to (note that the terms with the integrals no longer depend on xi(j, t) and
thus their derivative with respect to this variable is equal to zero)

Qi(t)
α−1αAi(j, t)Li(t)

1−αxi(j, t)
−(1−α) = pi(j, t).

As good j is just one specific good out of the continuum v ∈ [0, Qi(t)], the (inverse)
demand from the producers of final goods for intermediate goods in Equation (3) in the
main text follows.

B.2 Deriving the Production Function in Intensive Form

In equilibrium, capital supply, Ki(t), equals capital demand,
∫ Qi(t)

0
Ki(v, t)dv, and hence,

substituting Ki(v, t) = Ai(v, t)xi(v, t) from the production function for intermediate
goods (see Equation 5) into this equality, leads to

Ki(t) =

∫ Qi(t)

0

Ai(v, t)xi(v, t) dv ⇐⇒ Ki(t) = xi(t)

∫ Qi(t)

0

Ai(v, t) dv (B.1)

where the second equation has used the property that the equilibrium in the interme-
diate goods sector is symmetric (see Equation (9)). Defining the average productivity
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parameter in the intermediate goods sector as

Ai(t) ≡
1

Qi(t)

∫ Qi(t)

0

Ai(v, t) dv ⇐⇒ Ai(t)Qi(t) =

∫ Qi(t)

0

Ai(v, t) dv (B.2)

and substituting from the second equation in the expression above into Equation (B.1)
results in xi(t) = k̂i(t)

Li(t)
Qi(t)

, where k̂i(t) is the capital stock per effective worker, i.e. k̂i(t) ≡
Ki(t)

Ai(t)Li(t)
. With the property of the symmetric equilibrium, the expression for xi(t) just

derived, and the second expression in Equation (B.2), the production function in intensive
form can be written as

ŷi(t) = k̂i(t)
α

where ŷi(t) ≡ Yi(t)
Ai(t)Li(t)

is the production per effective worker, and which is identical to
Equation (4).

In the main text in Section 2.1, it was stated that as the production function is multiplied
by the factor Qi(t)

α−1, technological progress in this model is due to increases in produc-
tivity and not increases in the number of varieties as in the model by Romer (1990). This
result will now be demonstrated mathematically. The production function in intensive
form above can be expressed in aggregate terms as Yi(t) = Ai(t)Li(t)

1−αKi(t)
αAi(t)

−α.
From the two expressions after the equivalence arrows in Equations (B.1) and (B.2), it
follows that Ki(t)

Ai(t)
= xi(t)Qi(t) so that

Yi(t) = Ai(t)Li(t)
1−α(xi(t)Qi(t)

)α (B.3)

which has constant returns to scale in the two input factors labor and aggregate amount
of intermediate inputs. As can be seen, technological progress in this specification is only
due to increases in productivity. On the other hand, without the factor Qi(t)

α−1 in the
original specification of the production function in Equation (1), the right-hand side in
Equation (B.3) would need to be multiplied by Qi(t)

1−α to obtain a corresponding result,
and increases in the number of varieties would lead to increases in productivity in this
case.

B.3 Convergence of the Number of Workers per Product to a

Constant

The result that the number of workers per intermediate good, Li(t)/Qi(t) = li(t) mono-
tonically converges to the constant ni/ξi in Equation (13) can be derived as follows:
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Taking the natural logarithm of li(t) and deriving the result with respect to time yields

l̇i(t)

li(t)
=
L̇i(t)

Li(t)
− Q̇i(t)

Qi(t)
.

Inserting ni for the population growth rate and substituting for Q̇i(t) from Equation (12)
leads to the differential equation

l̇i(t)

li(t)
= ni − ξli(t) ⇐⇒ l̇i(t)− nili(t) = −ξli(t)2. (B.4)

This equation has one steady state at l∗i = ni
ξ
, which results from setting l̇i(t) = 0 and

solving for li. Asymptotic convergence to the steady state follows as l̇i(t) < 0 for all
li(t) > l∗i and l̇i(t) > 0 for all li(t) < l∗i (see Part 3 of Corollary 2.2 in Acemoglu (2009)
for this approach to determine global asymptotic stability).72

B.4 Derivation of the Value of an Innovation

This section provides a derivation of the expression for the value of an innovation to a
monopolist stated in Equation (16). In particular, it will be shown how this value depends
on the Poisson arrival rate of new (quality) innovations.

A firm will reap monopoly profits from the time the innovation is brought to market
(e.g. t = 0) until it is replaced at some time T , with T ∈ (0,∞), by a new monopolist
producing a variety of a higher quality, and profits will fall to zero.73 Therefore, the value
for a firm at time 0 is given by74

Vd(0) =

∫ T

0

e−
∫ τ
0 r(s)dsπ(τ) dτ

72Note that Equation (B.4) is a Bernoulli equation (Sydsæter et al., 2008, 208), which can be trans-
formed into a standard linear differential equation by using the transformation z(t) = 1

li(t)
and then be

solved for the general solution

z(t) =

(
z(0)− ξ

ni

)
e−nit +

ξ

ni
.

Reversing the transformation, the general solution for li(t) is thus given by

li(t) =
1(

li(0)−1 − ξ
ni

)
e−nit + ξ

ni

,

which confirms that l∗i = ni
ξ is indeed a steady-state value for the differential equation.

73This follows from the Arrow replacement effect and the fact that the previous monopolist will be
driven out of the market via Bertrand competition, as the new innovator produces a higher quality good
at identical costs (Aghion et al., 2014, 518).

74The subscript d denotes “deterministic” in this instance.
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where r(s) is the interest rate at time s, and the exponential expression is the discount
factor applied to the monopolist’s profits. That the replacement will happen is certain,
but the point in time T in the future when it will happen can only be determined with
some probability. Hence, the expected value of an innovation is a random variable and
can be expressed as follows75

V (0) = E[Vd(0)] =

∫ ∞
0

f(T )

[∫ T

0

e−
∫ τ
0 r(s)dsπ(τ) dτ

]
dT

=

∫ ∞
0

∫ T

0

f(T )e−
∫ τ
0 r(s)dsπ(τ) dτ dT, (B.5)

where f(T ) is a general probability density function with f(T ) ≥ 0∀T and
∫∞

0
f(T ) dT =

1. The equality in Equation (B.5) follows as f(T ) does not depend on τ and can thus be
moved into the integral with respect to τ . However, this expression is still quite different
from Equation (16).

The next step is to change the order of integration, which requires adjusting the limits
of integration (this step is explained and illustrated in more detail at the end of this
section). This procedure yields

V (0) =

∫ ∞
0

[∫ ∞
τ

f(T ) dT

]
e−

∫ τ
0 r(s)dsπ(τ) dτ. (B.6)

Referring back to the discussion on Poisson processes in Appendix A, and making a
specific distributional assumption on the function f(T ) (compare Equation (A.1)), the
integral in brackets is just the probability that an innovation occurs after time τ , or,
equivalently, that the firm can still earn monopoly profits at time τ . Calculating the
complementary probability to the one stated (in general terms) in Equation (A.2), this
probability is e−φτ so that the value of an innovation is given by76

V (0) =

∫ ∞
0

e−φτ · e−
∫ τ
0 r(s)dsπ(τ) dτ

=

∫ ∞
0

e−
∫ τ
0 (r(s)+φ)dsπ(τ) dτ.

To be precise, this expression differs slightly from the more general one in the main
text, as it is assumed here that φ is constant, which only holds in steady state (also, an
identifier i for individual regions was dropped here).

75Note that this approach is basically the same as the one adopted by Yaari (1965, 142) in his model
of uncertain lifetime.

76The second equality follows, as e−
∫ τ
0
φ ds = e

−
∣∣τ
0
φs

= e−φτ .
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Proving the validity of the change in the order of integration above, requires demonstrat-
ing that the expressions in Equation (B.5) and (B.6) are equivalent. This basically works
by showing that the area of integration is identical in both cases. The following method
can, for instance, be found in Sydsæter et al. (2008, 166pp) or Thomas Jr. (2005, 1074-
75). In general, double integrals are evaluated by first working out the inner integral and
then the outer one. In illustrating the method graphically in Figure B.4, the upper limit
of integration in Equation (B.5) is changed from ∞ to an upper bound of T̄ to simplify
the graphical exposition. For the double integral in Equation (B.5), the relevant area
of integration is depicted in Panel (a) of Figure B.4 and the one for Equation (B.6) in
Panel (b).

T

τ

T = T̄

τ = T

0 τ = 0 T̄

τ = T

A

(a) Illustration of Evaluating the Integral in
Equation (B.5).

T

τ

T = T̄

T = T̄

τ = T

0 T̄

T = τ A

(b) Illustration of Evaluating the Integral in
Equation (B.6).

Figure B.4: Graphical Illustration of Changing the Order of Integration and Preserving the Area
of Integration.

In order to evaluate the integral in the first equation, the inner integral is evaluated along
the line τ = 0 to τ = T , and then the outer integral is evaluated by integrating along
all vertical lines from T = 0 to T = T̄ (indicated by the horizontal arrows) to obtain
the grey-shaded area of integration A (see Panel (a)). The same area is obtained by
changing the order of integration, then first integrating along the horizontal line from
T = τ to T = T̄ , and then the outer integral covers all horizontal lines from τ = 0 to
τ = T̄ (indicated by the vertical arrows) so that also in this case the grey-shaded area of
integration A is obtained (see Panel (b)).
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B.5 Derivation of the Research-Arbitrage Equation

The research-arbitrage equation results from deriving Equation (17) which is repeated
here for convenience

vi(t) =

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ

with respect to t. Taking this derivative requires applying Leibniz’s Formula (see, for
example Sydsæter et al., 2008, 160)

F (t) =

∫ v(t)

u(t)

f(t, τ) dτ

=⇒ F ′(t) = f
(
t, v(t)

)︸ ︷︷ ︸
1

v′(t)︸︷︷︸
2

− f
(
t, u(t)

)︸ ︷︷ ︸
3

u′(t)︸︷︷︸
4

+

∫ v(t)

u(t)

∂f(t, τ)

∂t︸ ︷︷ ︸
5

dτ.

In the case at hand, the function f(t, τ) in the formula above is therefore given by
f(t, τ) = e−

∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ), and the individually numbered terms above are

given by the following expressions, respectively

1 : f
(
t, v(t)

)
= e−

∫∞
t (ri(s)+φi(s)) ds limτ→∞ π̃i

(
k̂i(τ)

)
li(τ)

2 : v′(t) = d
dt

“∞” = 0

3 : f
(
t, u(t)

)
= e−

∫ t
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(t)

)
li(t) = e0π̃i

(
k̂i(t)

)
li(t) = π̃i

(
k̂i(t)

)
li(t)

4 : u′(t) = d
dt
t = 1

5 : ∂
∂t
e−

∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) = −[−ri(t) + φi(t)]e

−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ)

Using these intermediate results with the product 1 · 2 = 0 already inserted, it follows
that

∂

∂t
vi(t) = v̇i(t) = −π̃i

(
k̂i(t)

)
li(t) +

∫ ∞
t

[ri(t) + φi(t)]e
−

∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ

= −π̃i
(
k̂i(t)

)
li(t) + [ri(t) + φi(t)]

∫ ∞
t

e−
∫ τ
t (ri(s)+φi(s)) dsπ̃i

(
k̂i(τ)

)
li(τ) dτ︸ ︷︷ ︸

vi(t)

= −π̃i
(
k̂i(t)

)
li(t) + [ri(t) + φi(t)]vi(t)

and from the last expression, the research-arbitrage stated in the main text in Equa-
tion (17), is readily obtained.
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B.6 Convergence of Relative Productivities

In the following, it will be demonstrated that the relative productivity parameters ai(v, t) =
Ai(v,t)
Ai(t)max

converge to an invariant distribution. More specifically, it will be shown that the
distribution of the fraction of sectors for which Ai(v, t) ≤ Ai(t)

max is time independent
and given by a

1
σ
i . This result is based on the assumption that new and existing products

have identical distributions for the productivity parameters at any time t. The proof
follows along the lines of Aghion and Howitt (1998, 115).

For an arbitrary point in time t, denote the cumulative distribution of the absolute
productivity parameters by F (·, t). At some point in time, t0 ≥ 0, one particular sector
v ∈ [0, Qi(t)] with productivity parameter Ai(v, t) necessarily was the leading-edge sector.
Defining then the cumulative distribution function as Φi(t) = F

(
Ai(v, t), t

)
, it needs to

hold that
Φi(t0) = 1, (B.7)

i.e. the probability that the particular sector that was picked out has the highest pro-
ductivity across all sectors under consideration equals 1. At time t0 “many” sectors are
behind the one with the highest productivity. These sectors individually will innovate
with the Poisson arrival rate for vertical innovations and, hence, in aggregate, since there
are Φi(t) sectors, with the rate Φi(t)λiκi(t)

φ. This rate therefore equals the one with
which the mass of sectors behind the leading one will decrease. In formal terms,

Φ̇i(t) = −Φi(t)λiκi(t)
φ ∀ t ≥ t0. (B.8)

Equations (B.7) and (B.8) pose then an initial-value problem with solution

Φi(t) = e
−

∫ t
t0
λiκi(s)

φ ds ∀ t ≥ 0. (B.9)

Equation (20) implies the differential equation Ȧi(t)
max = σλiκi(t)

φAi(t)
max, and at

the start of this section it was assumed that Ai(v, t) = Ai(t0)max (compare also the
definition in Equation (15)). The solution to the differential equation for the leading-
edge productivity parameter is therefore

Ai(t)
max = Ai(v, t)e

σ
∫ t
t0
λiκi(s)ds ∀ t ≥ t0. (B.10)

From combining Equations (B.9) and (B.10), it thus follows that the distribution of the
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relative productivities in the long run converges to

Φi(t) =

(
Ai(v, t)

Ai(t)max

) 1
σ

= ai(t)
1
σ .

As Aghion and Howitt (1992, 116) point out, in the long run almost all values for ai in
the interval [0, 1] will exist.77

B.7 Growth Rate of the Average and Leading-Edge Productivity

Parameters

In the main text at the end of Section 2.3, an equation for the growth rate of the average
productivity, Ai(t), was given, which is repeated here for convenience

Ȧi(t) = λiκi(t)
φ
(
Ai(t)

max − Ai(t)
)
.

It will now be demonstrated that the leading-edge and average productivity parameters
will grow at identical rates. Defining the ratio between these two parameters as Γi ≡
Ai(t)

max

Ai(t)
and rewriting it in growth rates leads to

Γ̇i(t)

Γi(t)
=
Ȧi(t)

max

Ai(t)max
− Ȧi(t)

Ai(t)
. (B.11)

Substituting for the growth rate of the leading-edge parameter from Equation (20) and
noting that the growth rate of the average productivity parameter is given by

Ȧi(t)

Ai(t)
= λiκi(t)

φ

[
Ai(t)

max

Ai(t)
− Ai(t)

Ai(t)

]
= λiκi(t)

φ
(
Γi(t)− 1

)
,

it follows that the growth rate of the ratio of the productivity parameters is

Γ̇i(t)

Γi(t)
= σλiκi(t)

φ − λiκi(t)φ [Γi(t)− 1] .

This expression can be rewritten as78

Γ̇i(t) =
[
(1 + σ)λiκi(t)

φ − λiκi(t)φΓi(t)
]

Γi(t) (B.12)

77Additional remarks on the cross-section distribution, including a graphical analysis can be found in
Howitt (2000, 834). See also Howitt (1999, 721).

78As in the case for the differential equation for the number of workers, li(t), Equation (B.12) is also
a Bernoulli equation.
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which has a trivial steady state at zero and a second one at Γ∗i = 1 + σ. As long as
λiκi(t)

φ > 0, convergence to this value follows via applying the same approach as in
Appendix B.3. From the definition of Γi, it holds that Ai(t)max = (1 + σ)Ai(t), and both
productivity parameters will therefore grow at the rate gi(t) = σλiκ(t)φ.

B.8 Derivation of the Global Technology Growth Rate

This section derives the productivity growth rate given in Equation (26) in the main
text. Starting with inserting the expression for κi in Equation (25) into the one for gw in
Equation (24), yields

gw =
σλ

[(1 + σ)ξ]φ
sφA,iy

φ
i n

φ
i A
−φ
i

N∏
j=1

(
Aj
Ai

)γivij
. (B.13)

With the help of the properties of the product operator, the last factor can now be
rewritten in the following way

N∏
j=1

(
Aj
Ai

)γivij
=

N∏
j 6=i

A
γivij
j A

−γivij
i =

N∏
j 6=i

A
γivij
j

N∏
j 6=i

A
−γivij
i

=
N∏
j 6=i

A
γivij
j A

−γi
∑N
j 6=i vij

i

=
N∏
j 6=i

A
γivij
j A

−γi(1−vii)
i

= A
−γi 1

γi
i

N∏
j 6=i

A
γivij
j = A−1

i

N∏
j 6=i

A
γivij
j .

The step from the first to the second line uses the result
∑N

j=1 vij = 1 and the one from
the second-to-last to the last line takes advantage of the definition vii ≡ γi−1

γi
< 1 (see

Ertur and Koch (2011, 226-27) on these assumptions). Substituting the final result in
the derivation above into Equation (B.13), leads to Equation (26) in Section 3.1.

B.9 Existence of (I − γW )−1

In contrast to the case of a row-standardized interaction matrix, I−γW might be singular
also for values in the interval γ ∈ (−1, 1). The general condition for this matrix to be
singular is |I − γW | = 0, i.e. if 1

γ
is an eigenvalue of the interaction matrix. Consider
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now, for instance, the matrix

W 1 =

(
0 16

4 0

)
,

which is not row-standardized. Its characteristic equation is given by λ2 = 64 so that the
eigenvalues are λ1 = −8 and λ2 = 8. Then, for γ = 1

8
the matrix I−γW 1 will be singular.

However, by restricting the parameter space for γ to γ ∈
(
− 1
λ1
,− 1

λ2

)
, the inverse above

will be non-singular. An equivalent representation of the model under consideration can
thus be obtained if the interaction matrix is normalized by this factor, i.e.W ∗

1 = W 1

λ2
and

by denoting γ∗ = γλ2 with parameter space γ∗ ∈ (−1, 1). A similar procedure works in
more general cases (Kelejian and Prucha, 2010, 56), when the eigenvalues cannot be as
easily determined as in the matrix above. With the help of Gerschgorin’s Circle Theorem
(Gerschgorin, 1931), regions in the complex plane can be determined that contain the
eigenvalues of the matrix.79 With this information, it is possible to identify an interval
for the parameter space, in which the inverse exists (see also Ertur and Koch, 2011, 231).

79A more recent formal statement of this theorem can, for example, be found in Cheney and Kincaid
(2008).
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C Additional Derivations – Econometric Theory

This appendix derives results in detail that are important in the econometric estimation
of the model and for drawing inference. More specifically, a part of the score vector will
be derived, before the steps in the derivation of the variance-covariance matrix, which is
merely stated in Ertur and Koch (2011, 233), will be demonstrated.

C.1 Derivation of the Maximum Likelihood Estimator δ̂

Before taking the derivative of the likelihood function with respect to δ, it will first be
written in an expanded form. From Equation (43), it follows that

lnL(y; δ, γ, σ2) = −N
2

ln(2π)− N

2
ln(σ2) + ln |I − γW |︸ ︷︷ ︸
≡C

− 1

2σ2

y′(I − γW )′(I − γW )y − y′(I − γW )′X̃δ︸ ︷︷ ︸
1×1

− δ′X̃ ′(I − γW )y︸ ︷︷ ︸
1×1

+ δ′X̃
′
X̃δ


= C − 1

2σ2

[
y′(I − γW )′(I − γW )y − 2δ′X̃

′
(I − γW )y + δ′X̃

′
X̃δ
]

where the last line has used the fact that the terms with the underbraces are identical
scalars and that the matrix (I − γW ) is symmetric. Taking now the derivative80 with
respect to δ leads to

∂ lnL(·)
∂δ

= − 1

2σ2

[
−2X̃

′
(I − γW )y + 2X̃

′
X̃δ

]
.

Setting this expression equal to zero and solving for δ̂, yields the expression in Equa-
tion (47).

C.2 Derivation of the Variance-Covariance Matrix

The asymptotic variance-covariance matrix is given by the inverse of the information
matrix I(δ, γ, σ2), and this matrix is equal to the negative expected Hessian matrix, H ,

80For the rules on matrix derivation see, for example, Verbeek (2004, 394-95).
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for the log-likelihood function in Equation (43). In general terms, the information matrix
thus reads

I(δ, γ, σ2) = −E[H ] = −E


∂2 lnL(·)
∂δ∂δ′

∂2 lnL(·)
∂δ∂γ

∂2 lnL(·)
∂δ∂σ2

∂2 lnL(·)
∂γ∂δ′

∂2 lnL(·)
∂γ2

∂2 lnL(·)
∂γ∂σ2

∂2 lnL(·)
∂σ2∂δ′

∂2 lnL(·)
∂σ2∂γ

∂2 lnL(·)
∂σ2∂σ2

 . (C.1)

The individual entries for the first row in the Hessian matrix are calculated by taking the
respective partial derivatives of Equation (C.1):

∂2 lnL(·)
∂δ∂δ′

= − 1

σ2
X̃ ′X̃ (C.2)

∂2 lnL(·)
∂δ∂γ

= − 1

σ2
X̃ ′Wy (C.3)

∂2 lnL(·)
∂δ∂σ2

=
1

σ4

{
−X̃ ′

[
(I − γW )y − X̃δ

]}
= − 1

σ4
X̃ ′ε (C.4)

where the last equality has used the expression for ε in Equation (44).

In order to calculate the entries in the second row of the Hessian, the first derivative of
the log-likelihood function with respect to γ is needed. Note that the last term in the
log-likelihood function can be equivalently written as − 1

2σ2ε
′ε, and the derivative of this

term with respect to γ is given by (compare, for example, Anselin, 1988b, 75)

∂ε′ε

∂γ
= ε′

∂ε

∂γ
+
∂ε′

∂γ
ε = 2ε′

∂ε

∂γ
. (C.5)

Deriving the log determinant with respect to γ makes use of Jacobi’s formula (com-
pare, for instance, Absil et al., 2008, 196). This states that the derivative of the de-
terminant of a matrix X with respect to a can be expressed in the following way:
∂|X|
∂a

= tr
[
adj (X) ∂X

∂a

]
.81 Alternatively, provided that X is invertible, the expression for

the adjugate matrix, adj(X) = |X|(X)−1, can be inserted, implying that the derivative
of the determinant is given by |X|tr

[
(X)−1 ∂X

∂a

]
. In the following, a derivative of a log de-

terminant will be taken so that taking into account the rules for differentiating logarithmic
functions and the ones for determinants, Jacobi’s formula reads ∂ ln |X|

∂a
= tr

[
(X)−1 ∂X

∂a

]
in this case.

Applying these rules to the case at hand and noting that ∂ε
∂γ

= −Wy, the partial derivative
of the log-likelihood function with respect to γ is

∂ lnL(·)
∂γ

= −tr (I − γW )−1W +
1

σ2
ε′Wy.

81A proof of this result can be found, for instance, in Magnus and Neudecker (1999, 150).
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Before calculating the first entry in the second row of the Hessian matrix, note that the
expressions ε′Wy and (Wy)′ ε denote an identical scalar. As ε′Wy is a scalar, it is
possible to introduce the trace operator (see Anselin, 1988b, 77) so that

ε′Wy = tr [ε′ (Wy)] = tr
{

[ε′ (Wy)]
′}

= tr
[
(Wy)′ ε

]
= (Wy)′ ε′. (C.6)

The second equality holds, since a matrix and its transpose have the same trace, and
the third equality follows from the properties of transposed matrices. Substituting this
expression into the first derivative above, inserting for ε, and taking the partial derivative
with respect to δ′ yields the result

∂2 lnL(·)
∂γ∂δ′

= − 1

σ2

(
X̃ ′Wy

)′
(C.7)

which is just the transpose of Equation (C.3). Anselin (1988b, 75) provides a helpful
rule for taking the derivative of an inverse matrix, i.e. ∂(X)−1

∂a
= − (X)−1 ∂X

∂a
(X)−1 and

notes that the trace operator can be applied after differentiation as it is a linear operator.
Hence,

∂2 lnL(·)
∂γ2

= − tr
[
− (I − γW )−1 (−W ) (I − γW )−1W

]
− 1

σ2
(Wy)′Wy

= − tr
[
W (I − γW )−1W (I − γW )−1]− 1

σ2
(Wy)′Wy

= − tr (WAWA)− 1

σ2
(Wy)′Wy (C.8)

where the second equality has taken advantage of the property that the trace of a matrix
is invariant to cyclical permutations (see, e.g. Meyer, 2000, 110). Additionally, in the
expression in the last equality, the following definition from Ertur and Koch (2011, 233)
is employed WA ≡W (I − γW )−1. Turning to the last entry in the second row of the
Hessian, this is given by

∂2 lnL(·)
∂γ∂σ2

= − 1

σ4
ε′Wy. (C.9)

The derivatives in the third row of the Hessian matrix are the partial derivatives of the
expression in Equation (45). The first entry in this row is

∂2 lnL(·)
∂σ2∂δ′

=
1

2σ4

[
−2y′ (I − γW )′ X̃ + 2δ′X̃ ′X̃

]
= − 1

σ4

[
y′ (I − γW )′ − δ′X̃ ′

]
X̃ = − 1

σ4
ε′X̃ = − 1

σ4

(
X̃ ′ε

)′
(C.10)

where again Equation (44) has been used. Applying one more time the rule in Equation

59



(C.5) for differentiating the expression for the sum of squared errors, facilitates calculating
the partial derivative with respect to γ so that

∂2 lnL(·)
∂σ2∂γ

=
1

2σ4
2ε′ (−Wy) = − 1

σ4
ε′Wy. (C.11)

For the last entry in the third row, the partial derivative reads

∂2 lnL(·)
∂σ2∂σ2

=
N

2σ4
− 1

σ6
ε′ε. (C.12)

Gathering the results in Equations (C.2) – (C.4) and Equations (C.7) – (C.12) yields the
following Hessian matrix of dimension 7 × 7 (the first column has dimension 7 × 5 and
the remaining two columns each have dimension 7× 1)

H =


− 1
σ2X̃

′X̃ − 1
σ2X̃

′Wy − 1
σ4X̃ ′ε

− 1
σ2

(
X̃ ′Wy

)′
−tr (WAWA)− 1

σ2 (Wy)′Wy − 1
σ4ε

′Wy

− 1
σ4

(
X̃ ′ε

)′
− 1
σ4ε

′Wy N
2σ4 − 1

σ6ε
′ε

 .

The next step in deriving the information matrix is taking the (negative) expected value
of the Hessian matrix above. Starting with the first column, its first entry contains no
random variables and hence −E

[
− 1
σ2X̃

′X̃
]

= 1
σ2X̃

′X̃. Moving on, the second entry
equals

−E
[
− 1

σ2

(
X̃ ′Wy

)′]
=

1

σ2

{
E
[
X̃ ′W (I − γW )−1X̃δ + (I − γW )−1ε

]}′
=

1

σ2

(
X̃ ′WAX̃δ

)′
(C.13)

where the last line follows as the expectation is a linear operator, the errors are assumed to
be independent of all explanatory variables, and since E[ε] = 0 due to the distributional
assumption from Section 4.1. These latter two results can also be applied to calculate

the last entry in the first column, implying that −E
[
− 1
σ4

(
X̃ ′ε

)′]
= 0.

In the second column of the information matrix, the first entry is simply the transpose of
the 1× 5 vector in Equation (C.13). However, the second entry on the diagonal requires
more computations. The negative of the expected value of the first term in this entry
is not a random variable and thus equals −E [−tr (WAWA)] = tr (WAWA), while the
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following holds for the second term

−E
[
− 1

σ2
(Wy)′Wy

]
=

1

σ2
E

{[
WAX̃δ +WAε

]′ [
WAX̃δ +WAε

]}
=

1

σ2

{
E

[(
WAX̃δ

)′
WAX̃δ

]
+ E

[(
WAX̃δ

)′
WAε

]
+E

[
(WAε)

′WAX̃δ
]

+ E
[
(WAε)

′WAε
]}
.

Following the same arguments as above, the first term in the previous equation is com-
pletely deterministic and the cross products have an expected value of 0. For the last
term, the rules from Equation (C.6) and the fact that cyclical permutations leave the
trace of a matrix unchanged can be applied to demonstrate that82

1

σ2
E
{
tr
[
W ′

AWAεε
′]} =

1

σ2
tr
[
W ′

AWA

]
E [εε′]︸ ︷︷ ︸
σ2I

= tr
[
W ′

AWA

]
. (C.14)

Combing these partial results leads to the corresponding entry in the information matrix

−E
[
−tr (WAWA)− 1

σ2
(Wy)′Wy

]
= tr [(WA +WA

′)WA]

+
1

σ2

(
WAX̃δ

)′
WAX̃δ.

Substituting for y in the in the last entry in the second column and transforming the
resulting expression in a similar manner as in Equation (C.14) leads to

−E
[
− 1

σ4
ε′Wy

]
=

1

σ4
E [tr (WAεε

′)] =
1

σ2
trWA.

This entry is also identical to the second one in the third column in the information
matrix, and the first entry in this column equals 0.83 Noting that E [ε′ε] = Nσ2, the
remaining entry on the diagonal reads

−E
[
N

2σ4
− 1

σ6
ε′ε

]
= − N

2σ4
+

1

σ6
Nσ2 =

N

2σ4
.

Collecting the results for the individual entries derived above, leads to the following

82See also Anselin (1988b, 77) for the second equality in this derivation.
83This follows as this value is simply the transpose of the third entry in the first column.
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information matrix

I(δ, γ, σ2) =


1
σ2X̃

′X̃ 1
σ2

(
X̃ ′WAX̃δ

)′
0

1
σ2X̃

′WAX̃δ tr [(WA +WA
′)WA] + 1

σ2

(
WAX̃δ

)′
WAX̃δ

1
σ2 trWA

0 1
σ2 trWA

N
2σ4

 .

Finally, the asymptotic variance-covariance matrix, V (δ, γ, σ2), on which the hypotheses
tests will be based, is then given by the inverse of the information matrix, i.e. V (δ, γ, σ2) =

I(δ, γ, σ2)−1.
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D Additional Estimation Results

This appendix provides estimation results from two additional analyses. The estimation
results in the first section demonstrate that the omission of the state of Delaware is
crucial for the results regarding the significance of the estimate of the investment rate in
physical capital divided by the effective depreciation rate. Next, in Section D.2, the time
horizon of the analysis is extended to cover the period 1990-2007, thereby ignoring the
warning by the Bureau of Economic Analysis mentioned in Footnote 43 of Section 5.1
about appending the data series for the dependent variable.

D.1 Results – Benchmark Sample not Omitting Delaware

Table D.1: Estimation Results for Three Different Models for the Baseline Sample plus the State
of Delaware and Interaction Matrices W1, W2, and W3 for the Period 1997-2007.

Model Solow
(1956)

Howitt
(2000) Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.337 11.755 10.931 10.969 10.949 10.933 11.041 11.011
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.179 0.231 0.169 0.148 0.117 0.155 0.150 0.119
(0.233) (0.119) (0.188) (0.288) (0.406) (0.242) (0.301) (0.419)

ln sA,i — 0.072 — — — −0.013 0.001 0.001
(0.033) (0.745) (0.979) (0.984)

lnni — 0.280 — — — 0.018 0.013 0.011
(0.406) (0.547) (0.680) (0.717)

W [ln sK,j − ln(nj + 0.02 + δj)] — — −1.589 −0.232 0.061 −1.716 −0.258 0.034
(0.101) (0.608) (0.920) (0.084) (0.572) (0.956)

γ — — 0.149 0.129 0.135 0.159 0.126 0.133
(0.000) (0.001) (0.001) (0.003) (0.021) (0.014)

AIC −3.661 −3.691 −3.869 −3.814 −3.807 −3.796 −3.736 −3.727
BIC −3.583 −3.535 −3.498 −3.659 −3.651 −3.562 −3.502 −3.493
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.
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Table D.2: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region
Schumpeterian Model for the Baseline Sample plus the State of Delaware and Interaction Matrices
W1, W2, and W3 for the Period 1997-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.155 0.150 0.119
(0.248) (0.306) (0.422)

ln sA,i −0.013 0.001 0.001
(0.745) (0.980) (0.983)

lnni 0.018 0.013 0.011
(0.551) (0.682) (0.717)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.027 0.019 0.015
(0.321) (0.421) (0.537)

W ln sA,j −0.005 −0.002 −0.002
(0.628) (0.797) (0.803)

W lnnj 0.003 0.001 0.001
(0.616) (0.782) (0.811)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.183 0.169 0.134

(0.248) (0.308) (0.428)
ln sA,i +W ln sA,j −0.017 −0.001 −0.001

(0.718) (0.987) (0.984)
lnni +W lnnj 0.021 0.014 0.012

(0.556) (0.691) (0.729)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.
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D.2 Data and Estimation Results – Baseline Sample (Extended

Time Horizon: 1990-2007)

This appendix provides a brief description on how the variables have been constructed
for the case when the sample period is extended to include the years 1990-1996 as well.
After providing summary statistics in Table D.3, the results from the estimation of the
nested models are shown in Table D.4. Estimates of the impacts are given in Table D.5.

Table D.3: Summary Statistics – Baseline Sample (Extended Time Horizon: 1990-2007).

Variable Mean Median
Standard
deviation

Minimum Maximum

yi 85,012.07 80,896.36 13,921.60 66,616.49 123,281.63

sK,i 0.079 0.075 0.014 0.061 0.127

ni 0.016 0.014 0.009 0.002 0.043

δi 0.048 0.047 0.001 0.048 0.051

ni + gw + δi 0.084 0.082 0.009 0.069 0.109

sA,i 0.021 0.019 0.015 0.004 0.075

Hi 0.237 0.228 0.043 0.144 0.328
sK,i

ni+gw+δi
0.947 0.917 0.126 0.776 1.398

W1sK 0.219 0.214 0.044 0.130 0.332

W2sK 0.226 0.220 0.054 0.130 0.390

W3sK 0.224 0.219 0.050 0.128 0.345

W1y 19,617.38 18,376.66 4,434.07 11,868.55 30,909.47

W2y 19,825.09 18,874.88 5,152.72 11,411.44 40,053.49

W3y 20,114.12 18,874.88 5,144.09 12,313.56 35,559.93

Note: The given values are the original values (i.e. not in logs) for the benchmark sample of 47
states and the period 1990-2007 with yi the income per worker in 2007.

Even though the dependent variable is still real per worker income in 2007, values for
the earlier years are needed to calculate the average real investment rate in physical
capital, as Yamarik (2013) only provides values for gross real investment in physical
capital. The data series on nominal gross state product for the years 1990-1996 from the
Bureau of Economic Analysis’ regional accounts data (BEA, 2015b) based on SIC, has
been transformed as described in Section 5.1 into real 2000 dollars and then appended to
the series for the years 1997-2007 based on NAICS.

Another complication arose in the construction of this data set, as the OECD only pro-
vides annual values for the R&D investment rate from 1997 onwards and additionally
for the years 1991, 1993, and 1995 (OECD, 2015). Hence, the values for the years 1992
and 1994 have been interpolated by taking the average of the previous and subsequent
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years’ value before calculating the average over the values from 1992 to 2007 to obtain
the variable sA,i.

As can be seen from Table D.3, no negative values for the employment growth rate
occurred in this sample so that the values for all observations can be transformed into
logs without any problems.

Finally, note that even though the dependent variable has not changed and the neigh-
borhood relations and geographic distances between states are identical to the ones for
the sample in the main text, this is not the case for the spatial lags, as these include a
measure for the human capital stock.

Table D.4: Estimation Results for Three Different Models for the Baseline Sample of 47 States
and Interaction Matrices W1, W2, and W3 for the Period 1990-2007.

Model Solow
(1956)

Howitt
(2000) Ertur and Koch (2007) Ertur and Koch (2011)

Interaction matrix W1 W2 W3 W1 W2 W3

Constant 11.379 11.374 11.119 11.050 11.052 11.093 10.863 10.869
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ln sK,i − ln(ni + 0.02 + δi) 0.643 0.637 0.544 0.543 0.509 0.566 0.527 0.504
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001)

ln sA,i — 0.044 — — — 0.020 −0.008 −0.007
(0.134) (0.505) (0.809) (0.826)

lnni — −0.042 — — — −0.042 −0.039 −0.040
(0.180) (0.153) (0.182) (0.161)

W [ln sK,j − ln(nj + 0.02 + δj)] — — 0.097 −0.489 −0.019 −0.041 −0.295 0.063
(0.937) (0.443) (0.982) (0.973) (0.648) (0.940)

γ — — 0.098 0.118 0.118 0.070 0.114 0.112
(0.014) (0.001) (0.001) (0.116) (0.017) (0.017)

AIC −4.003 −4.056 −4.035 −4.141 −4.130 −4.019 −4.086 −4.082
BIC −3.925 −3.898 −3.877 −3.983 −3.972 −3.783 −3.850 −3.846
Number of observations 47 47 47 47 47 47 47 47

Note: p-values are given in parentheses.
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Table D.5: Estimation Results for the Direct, Indirect and Total Impacts in the Multi-Region
Schumpeterian Model for the Baseline Sample of 47 States and Interaction Matrices W1, W2, and
W3 for the Period 1990-2007.

Interaction matrix W1 W2 W3

Direct impacts:

ln sK,i − ln(ni + 0.02 + δi) 0.565 0.527 0.504
(0.000) (0.001) (0.002)

ln sA,i 0.020 −0.008 −0.007
(0.508) (0.812) (0.824)

lnni −0.042 −0.039 −0.040
(0.160) (0.189) (0.168)

Indirect impacts:

W [ln sK,j − ln(nj + 0.02 + δj)] 0.042 0.066 0.062
(0.155) (0.049) (0.053)

W ln sA,j 0.001 −0.002 −0.002
(0.765) (0.667) (0.675)

W lnnj −0.003 −0.005 0.006
(0.358) (0.294) (0.957)

Total impacts:

ln sK,i
ln(ni+0.02+δi)

+W
ln sK,j

ln(nj+0.02+δj)
0.607 0.593 0.566

(0.000) (0.001) (0.002)
ln sA,i +W ln sA,j 0.021 −0.010 −0.001

(0.518) (0.788) (0.801)
lnni +W lnnj −0.045 −0.044 −0.045

(0.161) (0.189) (0.169)

Note: p-values are given in parentheses. These were constructed using a set of 500,000 random
draws from the estimation.
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E List of States Included in the Empirical Analyses

This appendix lists the states that are included in the different empirical analyses and
also provides a correspondence with the state abbreviations used in Figure 1.

Table E.6: Alphabetical List of the 48 US States plus the District of Columbia.

State Code State Code

Alabama AL Nebraska NE
Arizona AZ Nevada NV
Arkansas AR New Hampshire NH
California CA New Jersey NJ
Colorado CO New Mexico NM
Connecticut CT New York NY
Delaware DE North Carolina NC
District of Columbia DC North Dakota ND
Florida FL Ohio OH
Georgia GA Oklahoma OK
Idaho ID Oregon OR
Illinois IL Pennsylvania PA
Indiana IN Rhode Island RI
Iowa IA South Carolina SC
Kansas KS South Dakota SD
Kentucky KY Tennessee TN
Louisiana LA Texas TX
Maine ME Utah UT
Maryland MD Vermont VT
Massachusetts MA Virginia VA
Michigan MI Washington WA
Minnesota MN West Virginia WV
Mississippi MS Wisconsin WI
Missouri MO Wyoming WY
Montana MT
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