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Abstract

We apply the well-known CUSUM, the Girshick-Rubin, the Graversen-Peskir-

Shiryaev and an improved alteration of the Brodsky-Darkovsky algorithm as trad-

ing strategies involving only mutually exclusive long positions in cash and the

DAX at Xetra intraday auction prices. We select optimal pairs of fixed thresholds

for up- and downmovements from a pre-defined two-dimensional grid, hence, ad-

mitting asymmetric intervals. We show that under three different scenarios for

transaction costs, the improved Brodsky-Darkovsky technique not only outper-

forms the passive investment in the DAX but also the other three presented algo-

rithms.
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1. Introduction

One of the most critical questions in asset management and investing is the de-

tection of changes in the current regime. The theoretical terminology refers to this

as change-point detection or break-point analysis. In an economic context, mod-

els often involve a multitude of parameters, the stability of which over time has

been put into question at least since Isaac and Griffin (1989). Many others such

as, for example, Balding et al. (2008), Hamilton and Susmel (1994), Schaller and

Van Norden (1997), Bai and Perron (1998), Hansen (2000), Dias and Embrechts

(2002), Western and Kleykamp (2004) followed suit. These approaches detect

change points by looking into the rearview mirror, that is, they analyze histori-

cal time series and determine the most probable scenario concerning a change in

value, or multiple changes of a particular parameter of a more or less complex

model, in the past. This, however, is of limited to no value to an investor or trader

who has to receive signals immediately if a change appears likely.

Interestingly, a suitable approach has been provided by some technique de-

veloped for quality control in manufacturing, i.e. control chart techniques first

developed such as Shewhart (1932). The general idea is to observe some time

series until a predefined threshold is trespassed. Page (1954a) and Page (1954b)

coined the term CUSUM as short for cumulative-sum where the actual value of

a process, for example, a random walk is compared to some prior extreme value

such as an all-time low or high, respectively. If the difference between actual

and reference value is greater than the threshold, a signal is delivered. The initial

approach was augmented by the moving average control chart by Roberts (2000).

The CUSUM is equivalent to the filter trading rule introduced by Alexander

(1961). Initial results of this rule are given, for example, by Alexander (1961),
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Fama and Blume (1966), or Dryden (1969) who showed that, after consideration

of trading costs, the filter method cannot outperform the traditional buy-and-hold

strategy. Moreover, a shortcoming of the original rule was detected in that, under

certain circumstances, the trading rule could result in unbounded losses.

In financial applications, methods of quickest detection of a change-point are

of interest that are "free" of a distribution of a random sequence, i.e. nonpara-

metric methods.1 The biggest problem with control techniques is the proper de-

termination of the threshold which my actually vary over time. Solutions in that

context are provided by, for example, Verdier et al. (2008). It was shown that

when the change-point is a random variable with known distribution, then the op-

timal method is to observe an à posteriori probability of a change-point until it

reaches some threshold value which may be analytically calculated. This method,

however, cannot be applied to problems arising in practice since it is almost al-

ways impossible to obtain any à priori information on the distribution of the time

of occurrence of a change-point itself as well as on the distribution of a random

sequence before and after the change. This, for example, makes the approach by

Luo et al. (2009) who suggest variable sampling intervals under known distribu-

tions inapplicable, in our context. The most flexible approach so far has been

suggested by Jeske et al. (2009) with, however, the still slightly unrealistic as-

sumption of independent observations. A good overview of the topic is given by

Wald (2013) and Shiryaev (2007).

1It turns out that it is possible to give "nonparametric" versions to some popular parametric

methods.
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2. Algorithms

Hereafter, the scheme of observations we deal with is as follows. Let (Ω,F , P)

be a probability space on which there is defined a random sequence x = (xi)i≥0

with

xi = a + ξi I(i < i∗) + (c + ηi) I(i ≥ i∗)

where ξ = (ξi)i≥0 and η = (ηi)i≥0 are random sequences such that E(ξi) = E(ηi) = 0

and a and c are constants with a(a + c) < 0. The index value i∗ indicates a change-

point.

The objective is to minimize the average delay until the detection of a true

change-point while, at the same time, keeping the number of false alarms down.

Among the algorithms we will present, there is no universal one for the quickest

detection of a change-point in a variety of settings. Each one outperforms in its

“domain”.

Let

• initial value of time interval: T0

• final value of time interval: T1

• tick times of the asset price: (τ j)N
j=0

• best bid price of the asset at tick: (S bid
τ j

)N
j=0

• best ask price of the asset at tick: (S ask
τ j

)N
j=0

• parameter of partition of time interval: Λ

• interval for smoothing: M
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• coefficient of smoothing: α, 0 < α < 1

• threshold value of the algorithm: h

Let L = [(T1 − T0)/Λ].2 We define values of best bid and best ask asset prices

at the points of (equidistant) partition tk = kΛ, (0 ≤ k ≤ L) of the time interval

[T0,T1] as values S bid
τm

and S ask
τm

, respectively, at the tick times:

τm = max
0≤ j≤N

{τ j : τ j ≤ tk}.

In the following, by S k := S bid
k − S ask

k , we will denote the mid-day auction prices

with zero spread and the assumption of unlimited liquidity, instead. Also, we

define

ξ j = ln S j − ln S j−1, 1 ≤ j ≤ L.

2.1. CUSUM

Let k0 be the last point in time that the signal (of a true change-point) was detected(k0 =

T0, at the beginning). Then, define recurrently

R(1)
k0

= R(2)
k0

= 0

R(1)
k = (R(1)

k−1 + ξk)+

R(2)
k = (−R(2)

k−1 + ξk)−, k0 < k ≤ L

where we have used the convention (a)+ = max{a, 0} and (a)− = −min{a, 0}. If

R(1) ≥ h, for the first time since the last signal and for some pre-defined threshold

h > 0, then, the algorithm indicates that the random sequence under observation

shows an up-trend and, thus, sends a “buy” signal. If, on the other hand, R(2) ≥ h,

then the random sequence shows a down-trend and the algorithm sends a “sell”

signal.

2Here, [a] stands for an integer part of a.

5



2.2. Girshick-Rubin

Let k0 be the last point in time that a signal was detected. Define

R(1)
k0

= R(2)
k0

= 0

R(1)
k = 1/(k + 1) exp(ξk)(1 + kR(1)

k−1)

R(2)
k = 1/(k + 1) exp(−ξk)(1 + kR(2)

k−1), k0 < k ≤ L

If R(1) ≥ h, for some pre-defined threshold h > 0, then, there is a signal to buy

the asset. On the other hand, if R(2) ≥ h, then there is a signal to sell the asset.

2.3. Graversen-Peskir-Shiryaev

Let k0 be the last point in time that a signal was detected. Define

R(1)
k = S k − max

k0≤i≤k−1
S i

R(2)
k = max

k0≤i≤k−1
S i − S k, k0 < k ≤ L

The algorithm indicates an up-trend if R(1) ≥ h for some pre-defined threshold

h > 0. In this case there is a signal to buy the asset. However, there is a signal to

sell the asset if R(2)
k ≥ h, which indicates a down-trend.

2.4. Brodsky-Darkovsky

First we need to introduce some additional parameters:

• K: parameter of time frame

• (βk)k=1,2: parameter of truncation (0 < β1 < β2 < 1)

Let k0 be the last point in time that a signal was detected. Here we assume that

k0 > K. Define

Y(m, l) = 1
m

l−K+m∑
k=l−K+1

ξk −
1

K−m

l∑
k=l−K+m+1

ξk, l = k0, k0 + 1, . . . .
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If min
[β1K]≤m≤[β2K]

Y(m, l) ≤ −h for some pre-defined threshold h > 0, then there is a

signal to buy the asset. If max
[β1K]≤m≤[β2K]

Y(m, l) ≥ h, then there is a signal to sell the

asset.

2.5. Modified Brodsky-Darkovsky

Let the set be the same as in the previous presented Brodsky-Darkovsky Al-

gorithm. Define

Y(m, l) = 1
m

l−K+m∑
i=l−K+1

ξi −
1

K−m

l∑
i=l−K+m+1

ξi, l = k0, k0 + 1, . . . .

Let us consider the following case analysis and introduce two other parameters:

• mmin for m that fullfills min
[β1K]≤m≤[β2K]

Y(m, l) ≤ −h

• mmax for m that fullfills max
[β1K]≤m≤[β2K]

Y(m, l) ≥ h

Define

D(m, l) = 1
K−m

l∑
i=l−K+m+1

ξi −
1

b K−m
2 c

l∑
i=l−K+m+b K−m

2 c+1
ξi

If D(m, l) > h, where m = mmin, than there is a signal to buy the asset.

If D(m, l) < h, where m = mmax, than there is a signal to sell the asset.

2.6. Concluding remarks

At this point, it ought to be mentioned that the threshold value of the algorithm

h as far as the other parameters Λ, a, and c should be determined by trial-and-

error methods or grid search. For simplicity, we only assume h to be variable and

keep the other parameters fixed (a = −1, c = +2, and Λ = 1).3 To provide for

3As of yet, we do not (!) have a preferred algorithm for the determination of these parameters.
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greater flexibility, we allow h for up-movements to be different from h for down-

movements. The modified Brodsky-Darkovsky algorithm is an advancement of

the simple Brodsky-Darkovsky and focuses on the analysis of only few most latest

input returns, what enables more precise results. However the empirical study of

the modified Brodsky-Darkovsky algorithm is not discussed in this paper.

3. Data

We obtained the daily Xetra one-minute intraday auction prices of the DAX

index (WKN 846900) from the Karlsruher "Kapitalmarktdatenbank". Our sample

covers the period from January 3, 2000 to December 30, 2013, yielding over 1.8

Million observations. Thus, it contains observations from two different crises: the

dot-com bubble in 2000 and the latest crisis beginning 2007. Figure 1 displays a

chart of the DAX level in that period. The currency is euros, implying a backward

conversion of the prices in Deutsche Mark prior to January 1, 2002. Starting at

a level of EUR 6976.12, the DAX gained EUR 2576.04 over the sample period

resulting in a level of EUR 9552.16 at the end of December, 2013.

—

Figure 1 here

—

In Figure 2, we display the log-returns of the DAX over the sample period. The

minimum is -0.0735 and the maximum 0.0533 with a mean of nearly zero. The

standard deviation is 0.0007 while skewness and kurtosis are -0.0612 and 375.4088,

respectively. This hints at a strongly leptocurtic and asymmetric distribution of
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the log-returns which is supported by the very high Jarque-Bera test statistic of

10449851687. The 0.05- and 0.95-quantiles are equal to -0.0008 and 0.0008, re-

spectively. A kernel density plot is given by Figure 3.

—

Figure 2 here

—

—

Figure 3 here

—

4. Set-up and Results

4.1. General Set-up

Our approach is as follows: we start with an initial cash position of 50,000

euros at the beginning, on January 3, 2000. At the end, on December 30, 2013, we

dissolve any investment at current value if a long position is taken; otherwise, we

simply consider the cash position. In between, we either invest the entire current

amount at the current price of the DAX (if a buy signal occurs) and hold it until

the next sell signal or sell everything and hold cash only (if a sell-signal occurs).

Thus, portfolio weights for cash and asset are mutually exclusively either zero or
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one. The positions are held, respectively, until the first signal of opposite sign is

observed. Hence, consecutive signals of same sign do not lead to any action.

Further, we assume three scenarios. In the first scenario, there are no transac-

tion costs, so we can alter positions at zero expense. Under the second scenario,

transactions are assumed to cost EUR 5 for both sell and buy. The third scenario

has transaction fees of EUR 30 for both sell and buy. Thereby the transaction

costs are assumed as fixed and independent of trading volume.4.

In this paper, the transaction is executed on the subsequent auction price traded

on the term coming directly after the trading signal. The optimal solution for

the threshold parameter h is selected per grid search. To provide greater flex-

ibility we allow the bounds to be assymetrical, that is, the threshold h for up-

movements (which we denote as h1 here) can be different from the threshold for

down-movements (which we denote as h2 here).5 With respect to computer soft-

ware, we used Java and R.

4.2. CUSUM Results

To get an overview of the best area of the optimal threshold in the CUSUM

strategy, we use two different grids. The coarser one covers the domain G1 =

4We admit that this may be somewhat unrealistic especially for the earlier years of the sample

period. The approximate transaction costs of EUR 5 is provided by some online banks (Flatex,

2015) and EUR 30 can be observed at the most branch banks. Also, we assume unlimited liquidity

on both the sell and buy side to hold prices stable. We concede that this might leave room for

improvement. However, we do not think that this will impair the overall picture obtained from our

analysis.
5One should keep in mind that symmetrical bounds translate into asymmetrical bounds for

actual DAX level changes since we focus on log-returns.
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[0.01, 0.1] with step size 0.01. The other grid covers the domain G2 = [0.1, 1.5]

with step size 0.1. Since absolute changes within the grid G1 represents a larger

relative step than in grid G2, the step size in the first grid is smaller than in the

second grid.

First, we discuss the results on G1. The bounds within this grid are so small, that

trading signals are activated yet for small differences in the price development and

therefore more frequent compared to greater thresholds. Since the gap between

the buy and the sell price is small, the introduction of fees destroys small profits

and leads to a drastic reduction of the final pay-off. For the third scenario of EUR

30 fees the strategy almost completely destroys the trading capital.

In comparison to G1 the analysis of the second grid G2 ends in a greater final pay-

off. The results within G2 are more stable with respect to the introduction of fees,

since the number of trading signals is much smaller than for smaller thresholds.

Moreover the profits are greater due to bigger differences between the buy and sell

prices.

The refinement of the grid around the most promising location in G2 results into

the best parameter choice h1 = 0.278 and h2 = 0.196 with the optimal pay-off

of 172602.31 euros under the first scenario and 171801.24 euros under scenario

three. As can be seen in Figure 6 this outcome is stable around the location with

the highest payoff.

4.3. Girshick-Rubin Results

As in the CUSUM strategy we here use the same grids G1 and G2. How-

ever, in contrast to CUSUM this method is based on absolute returns, which are

greater than logarithmic returns. Therefore, less trading signals in the area of

small thresholds occur and the introduction of fees has a relatively small impact
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on the final pay-off.

Both highest pay-offs in the grids G1 and G2 are not stable and result under the

impact of random deviation (see Figure 9). Nevertheless the bounds h1 = 0.078

and h2 = 0.076 lead to the highest final pay-off of 174252.25 euros under scenario

one and 171229.66 euros under scenario three.

4.4. Graversen-Peskir-Shiryaev Results

Unlike the first two algorithms, this method evaluates absolute DAX values.

As already presented, this method yields a buy signal if S k− max
k0≤i≤k−1

S i ≥ h1. Hence,

the difference between the maximum and the current observed DAX value cannot

exceed the maximum increase in DAX points within one period. Therefore, we

set the highest possible h1 on the maximum increase in DAX points. However

the down-trend covers all possible differences between the DAX values. For this

reason we set h2 on the difference between the highest and lowest DAX value.

Thus, we set up the grid on h1 = [1, 246] with step size 3.5 and h2 = [1, 7001]

with step size 100. As can be seen in Figure 10 there are two areas with higher

results. We are interested in the area with smaller thresholds since the area with

h2 around 4000 represents the Buy-and-Hold strategy. The refinement of the grid

around the most promising location achieves under scenario one the maximum

final pay-off of 156013.3 for h1 = 98 and h2 = 1985. Even though this profit does

not reduce much under scenario three and is 155620.30 euros, the results are not

stable and result in losses for the most part after the introduction of fees.

4.5. Brodsky-Darkovsky Results

Since the Brodsky-Darkovsky strategy contains more parameters than the first

three methods, it enables a deeper data analysis. As we are unaware of the optimal
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areas for parameter values, we first analyse a common coarse grid for all three

scenarios. Therefore we use for thresolds h1 and h2 the grid [0.0001, 0.1001] with

step size 0.02 and for the parameter K the grid [18, 61] with step size 7. As

presented in the section above, β1 and β2 determine how to split the last K data

points into two sections in order to calculate their respective means. To avoid a

distortion of results, we allow each section to contain at least four values. Thus we

use for β1 the grid [ 4
K , 0.5 + 5

K ] with step size 0.1 and for β2 the grid [0.6− 4
K ,

K−4
K ]

with step size 0.1. From the resulting optimal solution for the parameters we

can observe, that increasing fees lead to greater thresholds h1 and h2, greater K

and β2 and to smaller β1. According to these observations, we refine the grid

around the most promising locations for parameters and achieve an increase from

approximately 1.2 Mio euros to approximately 2.4 Mio euros under scenario one.

The resulting optimal choice for the parameters is h1 = h2 = 0.00005, β1 =

0.35, β2 = 0.45 and K = 19. Even under scenario three, this method leads to

higher final pay-offs than the other three strategies and results in final pay-off

of 321901.96 euros. The according optimal parameters are h1 = 0.0096, h2 =

0.0112, β1 = 0.08, β2 = 0.9 and K = 53.

5. Summary

We have presented four different trading algorithms, the well-known CUSUM

technique, as well as the Girshick-Rubin, the Graversen-Peskir-Shiryaev and the

Brodsky-Darkovsky method. All Algorithms were tested on minute-by-minute

DAX valuations over a long period of time and the optimal set of possibly asym-

metric parameters was selected from a multi-dimensional grid. While we admit

that we make some naïve assumptions concerning unlimited liquidity at the Xe-
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tra end-of-day auction ("Kassakurs”), we provide for some realistic constraints by

introducing several scenarios for trading fees.

While for the CUSUM algorithm we observe stable pay-offs for optimal thresh-

olds around 0.2, neither for Girshick-Rubin nor for Graversen-Peskir-Shiryaev,

stable areas with high pay-offs could be found. Moreover, in some of the realistic

scenarios (i.e. incorporating transaction costs), the last two algorithms led to ruin.

Overall, we observe that the Brodsky-Darkovsky algorithm yields superior results

over the other presented algorithms. This can be explained by the limitation of

input data to only K observations for the analysis of each return. By taking only

the K last log-returns into consideration we use data that have the higher effect on

the current observation. Additionaly, this limitation reduces the probability of the

distortion of results due to the long-term effect of outliers. This leads to greater

importance of each individual log-return and achieves higher final pay-offs. We

noticed that the higher the fees, the greater the optimal thresholds, the K and β2

value and the smaller is β1.
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Figure 1: DAX levels



Figure 2: DAX log-returns



Figure 3: kernel density estimation



(a)

(b)

(c)

Figure 4: Comparison of CUSUM strategies for different fees (h1, h2 ∈ {0.01, 0.02, . . . , 0.1}).



(a)

(b)

(c)

Figure 5: Comparison of CUSUM strategies for different fees (h1, h2 ∈ {0.1, 0.2, . . . , 1.5}).



(a)

(b)

(c)

Figure 6: Comparison of CUSUM strategies for different fees (h1 ∈ {0.26, 0.261, . . . , 0.3}, h2 ∈

{0.18, 0.181, . . . , 0.22}).



(a)

(b)

(c)

Figure 7: Comparison of Girshick-Rubin strategies for different fees (h1, h2 ∈

{0.01, 0.02, . . . , 0.1}).



(a)

(b)

(c)

Figure 8: Comparison of GR strategies for different fees (h1, h2 ∈ {0.1, 0.2, . . . , 1.5}).



(a)

(b)

(c)

Figure 9: Comparison of Girshick-Rubin strategies for different fees (h1, h2 ∈

{0.06, 0.061, . . . , 0.08}).



(a)

(b)

(c)

Figure 10: Comparison of Peskir-Graversen strategies for different fees (h1 ∈ {1, 4.5 . . . , 246},

h2 ∈ {1, 101 . . . , 7001}).



(a)

(b)

(c)

Figure 11: Comparison of Peskir-Graversen strategies for different fees (h1 ∈ {80, 81, . . . , 120},

h2 ∈ {1950, 1952.5, . . . , 2050}).



(a)

(b)

(c)

Figure 12: Comparison of Brodsky-Darkovsky strategies for different fees depending on β1 and

β2 (β1 ∈ [0.2, 0.25, . . . , 0.6], β2 ∈ [0.4, 0.6, . . . , 0.8] for h1 = 0.00005, h2 = 0.00005, K = 19 (a),

β1 ∈ [0.2, 0.25, . . . , 0.6], β2 ∈ [0.4, 0.6, . . . , 0.8] for h1 = 0.0056, h2 = 0.0052, K = 24 (b) and

β1 ∈ [0.06, 0.08, . . . , 0.46], β2 ∈ [0.52, 0.54, . . . , 0.92] for h1 = 0.0096, h2 = 0.0112, K = 53 (c)).



(a)

(b)

(c)

Figure 13: Comparison of Brodsky-Darkovsky strategies for different fees depending on h1

and h2 (h1, h2 ∈ [0.00001, 0.000015, . . . , 0.0001] for β1 = 0.35, β2 = 0.45, K = 19 (a),

h1, h2 ∈ [0.001, 0.0015, . . . , 0.01] for β1 = 0.25, β2 = 0.6, K = 24 (b) and h1 ∈

[0.0035, 0.0045, . . . , 0.0135], h2 ∈ [0.0055, 0.0065, . . . , 0.0155] for K = 53, β1 = 0.08, β2 = 0.9

(c))



Figure 14: Comparison of Brodsky-Darkovsky strategies for different fees depending on K



Algorithm Fee Grid h1∗ h∗2 β∗1 β∗2 K∗ Pay-off

CUSUM

0 h1, h2 ∈ [0.1, 0.2, . . . , 2] 0.3 0.2 153296.64 e

5 h1, h2 ∈ [0.1, 0.2, . . . , 2] 0.3 0.2 153171.96 e

30 h1, h2 ∈ [0.1, 0.2, . . . , 2] 0.3 0.2 152548.52 e

Girshick-Rubin

0 h1, h2 ∈ [0.01, 0.02, . . . , 0.1] 0.07 0.07 113866.30 e

5 h1, h2 ∈ [0.01, 0.02, . . . , 0.1] 0.07 0.07 113206.30 e

30 h1, h2 ∈ [0.01, 0.02, . . . , 0.1] 0.07 0.07 109906.72 e

Graversen-Peskir-

Shiryaev

0 h1 ∈ [1, 4.5 . . . , 246],

h2 ∈ [1, 101, . . . , 7001]

99 2001 154317.56 e

5 h1 ∈ [1, 4.5 . . . , 246],

h2 ∈ [1, 101, . . . , 7001]

99 2001 154252.60 e

30 h1 ∈ [1, 4.5 . . . , 246],

h2 ∈ [1, 101, . . . , 7001]

99 2001 153927.73 e

Brodsky-Darkovsky

0 h1, h2 ∈ [0.0001, 0.0201 . . . , 0.1001],

β1 ∈ [ 4
K ,

4
K + 0.1, . . . , 0.5 + 4

K ],

β2 ∈ [0.6 − 4
K , 0.7 −

4
K , . . . ,

(K−4)
K ],

K ∈ [18, 25, . . . , 61]

0.0001 0.0001 0.32 0.38 18 1220291.14 e

5 h1, h2 ∈ [0.0001, 0.0201 . . . , 0.1001],

β1 ∈ [ 4
K ,

4
K + 0.1, . . . , 0.5 + 4

K ],

β2 ∈ [0.6 − 4
K , 0.7 −

4
K , . . . ,

(K−4)
K ],

K ∈ [18, 25, . . . , 61]

0.0051 0.0051 0.26 0.6 25 366435.42 e

30 h1, h2 ∈ [0.0001, 0.0051 . . . , 0.1001],

β1 ∈ [ 4
K ,

4
K + 0.1, . . . , 0.5 + 4

K ],

β2 ∈ [0.6 − 4
K , 0.7 −

4
K , . . . ,

(K−4)
K ],

K ∈ [18, 25, . . . , 61]

0.0101 0.0101 0.09 0.9 46 112350.43 e

Table 1: Final optimal pay-off per strategy and coarsely grid



Algorithm Fee Grid h1∗ h∗2 β∗1 β∗2 K∗ Pay-off

CUSUM

0 h1 ∈ [0.26, 0.261, . . . , 0.3],

h2 ∈ [0.18, 0.181, . . . , 0.22]

0.278 0.196 172602.31 e

5 h1 ∈ [0.26, 0.261, . . . , 0.3],

h2 ∈ [0.18, 0.181, . . . , 0.22]

0.278 0.196 172468.80 e

30 h1 ∈ [0.26, 0.261, . . . , 0.3],

h2 ∈ [0.18, 0.181, . . . , 0.22]

0.278 0.196 171801.24 e

Girshick-Rubin

0 h1, h2 ∈ [0.06, 0.061, . . . , 0.08] 0.078 0.076 174252.25 e

5 h1, h2 ∈ [0.06, 0.061, . . . , 0.08] 0.078 0.076 173748.48 e

30 h1, h2 ∈ [0.06, 0.061, . . . , 0.08] 0.078 0.076 171229.66 e

Graversen-Peskir-

Shiryaev

0 h1 ∈ [80, 81, . . . , 120],

h2 ∈ [1950, 1952.5, . . . , 2050]

98 1985 156013.35 e

5 h1 ∈ [80, 81, . . . , 120],

h2 ∈ [1950, 1952.5, . . . , 2050]

98 1985 155947.84 e

30 h1 ∈ [80, 81, . . . , 120],

h2 ∈ [1950, 1952.5, . . . , 2050]

98 1985 155620.30 e

Brodsky-Darkovsky

0 h1, h2 ∈ [0.00001, 0.00002 . . . , 0.00008],

β1 ∈ [0.2, 0.25, . . . , 0.4],

β2 ∈ [0.25, 0.3, . . . , 0.45,

K ∈ [18, 19, . . . , 22]

0.00005 0.00005 0.35 0.45 19 2446054.09 e

5 h1, h2 ∈ [0.0048, 0.0050 . . . , 0.006],

β1 ∈ [0.2, 0.25, 0.3],

β2 ∈ [0.55, 0.6, 0.65],

K ∈ [22, 23, . . . , 28]

0.0056 0.0052 0.25 0.6 24 468768.69 e

30 h1, h2 ∈ [0.008, 0.0088 . . . , 0.0112],

β1 ∈ [ 4
K ,

4
K + 0.05, . . . , 0.13],

β2 ∈ [0.8, 0.85, . . . , K−4
K ],

K ∈ [50, 51, . . . , 56]

0.0096 0.0112 0.08 0.9 53 321901.96 e

Table 2: Final optimal pay-off per strategy and fine grid
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