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Abstract

How can we assess the diversity of a group of decision makers? Identifying deci-
sion makers with their preferences, we address this question by applying the
multi-attribute approach developed by Nehring and Puppe (2002) to sets of pref-
erences. Specifically, we provide a repertoire of alternative models to measure the
diversity of sets of preferences. The proposed models are purely ordinal and are
characterized in terms of the different properties that a preference order need to
satisfy in order to contribute to the diversity of a given set of preference orderings.

Keywords: Diversity, Committees, Sets of Preferences.

1 Introduction

An obviously relevant and important characteristic of groups of agents is their diver-
sity. Frequently, diversity is considered to be desirable by itself, but even setting the
potential intrinsic value of diversity aside, it is widely acknowledged that a group’s
diversity has important implications on its quality and performance. Presumably, this
holds for groups of experts under incomplete information, but it certainly is true if a
group needs to serve, among others, purposes of fair representation.

But how to assess, or measure, the diversity of a group of agents? The present paper
aims to provide solutions to this problem in the case of groups of decision makers, or
committees, characterized by their preferences over a fixed set of alternatives. We thus
follow standard approaches to the modeling of economic agents as being characterized
by their preferences.1 Groups of decision makers are thus characterized by the set
of preferences held by their members, and the problem of measuring their diversity

1In general equilibrium theory, individual endowments would also be part of the description of agents’
characteristics. Differential individual endowments can be integrated in the analysis, but for simplicity we
do not include them in our present approach.
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transforms into the problem of measuring the diversity of a set of preferences. To
address this problem, we employ the general multi-attribute approach to measuring
the diversity of a set of objects developed by Nehring and Puppe (2002).

According to the multi-attribute model, the diversity of a set of objects is given by
the number and the weight of the different attributes realized by the set. For instance,
potentially relevant attributes of preferences are: ‘having alternative x as top element’,
‘having the set {x1, ..., xk} as the set of k top alternatives’, ‘ranking alternative x above
y’, ‘ranking alternative x at least h positions above alternative y’ etc. Accordingly,
the diversity of a set of preferences, i.e. a group of agents, will depend on whether
or not there is an agent who has x as her top alternative, ranks x above y, etc. The
main purpose of the present paper is to offer a repertoire of different sub-models of
the multi-attribute approach to diversity using these and related attributes, and to
provide a ‘roadmap’ clarifying the logical interrelations between them, thus helping
the modeler to choose among them.

Importantly, we do not use the full power of the multi-attribute approach and con-
fine ourselves here to a simple class of ordinal comparisons. Specifically, we only ask
under which circumstances the addition of a given preference ordering (i.e. the inclu-
sion of an additional agent) enhances the diversity of a given set of preferences (i.e. the
diversity of a group of agents), and we characterize families of relevant attributes
in terms of these ordinal comparisons. Naturally, we can thus only qualitatively dis-
tinguish different sub-models by their ordinal properties and not by their cardinal
implications.

The two basic sub-models are the plurality model on the one hand, and the Con-
dorcet model on the other. The plurality model only looks at the top alternatives and
asks how many of them occur in a given group of agents. By contrast, the Condorcet
model looks at binary comparisons of alternatives and asks how many different binary
comparisons are realized in a given group of agents. We then study various extensions
and combinations of these two models. The plurality model is naturally extended by
asking which sets of alternatives occur at the top of the preference orderings in a
group, and the Condorcet model is extended in a natural way by distinguishing the
rank difference of two alternatives in the preference orderings occurring in a group.
In total, we consider and characterize 8 different models and investigate their logical
interrelations.

An important limitation of our approach is that we do not address the potential
multiplicity of preference orderings occurring in a group of agents. In this respect, we
follow the analysis of Nehring and Puppe (2002), and focus on the existence value of
a certain attribute and neglect the frequency of its occurrence. This is justified either
if the group of agents is small in comparison to the underlying population that it
is supposed to represent, or by assuming that preferences are approximately equally
distributed in the population. But clearly, the neglect of attribute and/or preference
frequency, respectively, represents a major limitation of our approach. First steps
towards the inclusion of frequency information in the multi-attribute approach have
been taken by Nehring and Puppe (2009), and we intend to incorporate the relevant
considerations in the context of preference diversity in future work.
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Related Literature

As noted, our general approach is based on the multi-attribute model of Nehring
and Puppe (2002), see also Nehring and Puppe (2003, 2009) for extensions and
applications.

The problem of preference diversity has been addressed in the literature mainly
in the context of preference profiles, see Gehrlein et al (2013), Hashemi and Endriss
(2014), Karpov (2017) and the references therein. In this context, the potential multi-
plicity of preference orderings is an essential characteristic of the problem by design,
and cannot be abstracted from as in the present approach. Our hope is that even
though our analysis has no immediate implications on the problem of assessing the
diversity of preference profiles, our results will help to understand, and illuminate, the
various conditions and results derived in the existing literature.

More distantly related is the literature on ‘preference cohesiveness’, initiated by
Bosch (2006) and further built upon by Alcalde-Unzu and Vorsatz (2013, 2016);
Alcantud et al (2015). This literature addresses the polar opposite problem to the
measurement of preference diversity, namely measuring ‘agreement,’ or ‘similarity’
of preferences of the members of a group, see also Xue et al (2020) for a recent
contribution.

Overview of Paper

The remaining paper is organized as follows. The next section reviews the basic multi-
attribute framework of Nehring and Puppe (2002) and sets the stage for the later
analysis. Section 3 develops of our main models and results. Section 4 clarifies the
logical interrelations between the different models. Section 5 addresses the problem
of finding maximally diverse committees. Section 6 demonstrates that our modeling
strategy, while quite general in principle, does impose non-trivial limitations on the
admissible diversity measures. Concretely, we show that a prima facie plausible cri-
terion, the number of Pareto optimal alternatives, does not represent an admissible
diversity measure. Section 7 concludes.

2 Background: The Multi-Attribute Approach

Let Z be a finite set of objects. We want to measure the diversity of any subset of
objects S ⊆ Z. The idea behind the multi-attribute approach of Nehring and Puppe
(2002) is to base the diversity value v(S) on the number and the weight of the different
attributes realized by the objects in S. Specifically, let A be any attribute that can
be possessed by the objects in Z. It is convenient to identify an attribute simply with
its extension, i.e. with the set of objects that possess it. Thus, any subset A ⊆ Z can
be viewed as an ‘attribute,’ namely the (extensionally unique) attribute possessed by
exactly the objects in A. Every attribute A ⊆ Z is assigned a weight λA ≥ 0, and the
diversity of a set S ⊆ Z is computed according to

v(S) =
∑

A:A∩S 6=∅

λA. (1)
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A function that can be represented as in (1) with a non-negative weighting function
λ will be referred to as a diversity function. An immediate implication of the non-
negativity of the attribute weights λA in formula (1) is that diversity is monotone in
the sense that

S ⊆ T =⇒ v(S) ≤ v(T ). (2)

The following lemma provides a fundamental connection between set functions and
their attribute weighting functions (see Nehring and Puppe, 2002, Facts 2.1 and 2.2).

Lemma 1 For any function v : 2Z −→ R with v(∅) = 0 there exists a unique function
λ : 2Z −→ R, the conjugate Moebius inverse, such that λ∅ = 0 and, for all S ⊆ Z,
v(S) =

∑
A:A∩S 6=∅ λA. The conjugate Moebius inverse is given as follows; for all

non-empty A ⊆ Z,

λA =
∑

S:S⊆A

(−1)#(A\S)+1v(Z \ S). (3)

Furthermore, we have λA ≥ 0 for all A ⊆ Z if and only if the diversity function v is
monotone and totally submodular (cf. Nehring and Puppe, 2002, p.1165).

The most basic instance of the ‘total submodularity’ condition in this result is the
following (simple) submodularity condition. For all S, T ⊆ Z, and all z ∈ Z,

S ⊆ T =⇒ v(S ∪ {z})− v(S) ≥ v(T ∪ {z})− v(T ). (4)

Submodularity requires that the marginal contribution of an additional object
decreases as the set to which it is added increases. This appears to make much sense in
the context of diversity, since it reflects the intuition that it is the harder for an object
to contribute to the diversity of a set the more diverse that set already is. In any case,
the submodularity condition (4) is a direct consequence of the non-negativity of the
conjugate Moebius inverse of every diversity function. This follows from noting that
by (1)

v(S ∪ {z})− v(S) =
∑
{λA | z ∈ A and A ∩ S = ∅},

which is clearly decreasing in S.
An important distinction is between the attributes that, for a given diversity func-

tion v, receive zero weight as opposed to those that receive strictly positive weight.
We refer to the latter as the set of relevant attributes and we denote them by

Λv := {A ⊆ Z | λA > 0},

where the function λ is derived from v as in (3) above.

Definition 1 For any set of relevant attributes Λ ⊆ 2Z , the family of all diversity
functions v : 2Z −→ R with Λv = Λ will be referred to as the model associated with
Λ. For simplicity, and since no confusion can arise, we will often identify a model with
Λ itself, i.e. with the set of its relevant attributes.

If Λ′ ⊆ Λ we say that the model Λ′ is coarser than the model Λ, and that Λ is
finer than Λ′.
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The qualitative properties of suitable models crucially depend on the application
and the context. For instance, in the case of biodiversity the ‘hierarchical model’ and
its generalizations have been shown to be useful (Nehring and Puppe, 2002, 2003);
on the other hand, in the case of sociological diversity multi-dimensional models seem
to be natural (see Nehring and Puppe, 2002). The application to preference diversity
requires still different models to which we turn now.

3 Diversity of Preference Sets

We now apply the multi-attribute to the case in which Z is given by the set of all linear
orderings over a finite set X = {x1, . . . , xm} of m alternatives; throughout, we assume
m ≥ 3. A generic linear ordering over X is denoted by �, and the set of all linear
orderings over X by L(X). In the following, subsets of preferences are denoted by
S ⊆ L(X). Depending on the context, a preference set may be identified with the set
of admissible preferences of a society, or with the actual preferences of a representative
committee of decision makers, or the preferences of a group of consultants, etc.

3.1 The Plurality Model

For all x ∈ X, denote by Ax ⊂ L(X) the set of all orderings that have x as their top
alternative. The model

PM := {Ax | x ∈ X}
is referred to as the plurality model. Thus, the only relevant attributes in the plu-
rality model are of the form ‘having x as top alternative’ for each alternative x ∈ X,
and consequently the only relevant issue in the assessment of the diversity of a prefer-
ence set is whether or not it contains an ordering with a given top alternative. Every
diversity function in the plurality model evidently satisfies the following monotonicity
condition. For all S ⊆ L(X) and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐=

{
the top alternative of � is different
from the top alternatives of all orders in S.

(5)

The following condition strengthens the implication in (5) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds a new top alternative to it. Every diversity function in the plurality model
evidently satisfies this monotonicity equivalence condition as well. For all S ⊆ L(X)
and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐⇒
{

the top alternative of � is different
from the top alternatives of all orders in S.

(6)

Our first result shows that the plurality model is in fact the coarsest model that
satisfies the monotonicity equivalence (6).

Theorem 1 The plurality model PM is the coarsest model that satisfies the mono-
tonicity equivalence condition (6).
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Proof We have already noted that every diversity function in the plurality model
satisfies (6). Now suppose that v satisfies (6). Consider any set Ax. We will show that
Ax must belong to the coarsest model (i.e. must have positive weight). Consider the
set S = L(X) \ Ax. For any � ∈ Ax, we have v(S ∪ {�}) > v(S) by (6), since each
�∈ Ax has x as their top alternative and any order in S has not; this means that
every �∈ Ax possesses at least one relevant attribute A that is not yet realized in
S, i.e. �∈ A ⊆ Ax. We show that no attribute A0 ( Ax can be relevant. Indeed, if
A0 6= Ax, there exists �′ ∈ Ax \A0. By (6), we have v(S ∪ {�′}) > v(S) (since �′ has
top x and no order in S has that top). We also have v(S ∪ {�′} ∪ {�}) > v(S ∪ {�′})
(since by assumption � possesses the relevant attribute A0 that �′ does not possess).
But this contradicts (6) because � does not add a new top to S ∪ {�′}. This shows
that, for all x ∈ X, Ax must be relevant, and no proper subset of Ax can be relevant
under the monotonicity equivalence (6). This completes the proof. �

The argument in the proof of Theorem 1 shows that any diversity function satis-
fying (6) must give strictly positive weight to all attributes of the form Ax. On the
other hand, it could also give strictly positive weight to supersets of these attributes
without violating the monotonicity equivalence (6). Therefore, the restriction of being
the coarsest model is necessary to characterize the plurality model.

Counting the number of top alternatives appears to be a good starting point for
measuring diversity, but it is arguably not completely satisfactory in examples like the
following:

S ∪ {�} =

a a cb c a
c b b

c
b
a

 . (7)

Here, v(S) = v(S ∪ {�}) seems counter intuitive. While the order � does not add a
new top to the set S, it does add the binary comparison b � a to the preference set
(all orders in S place a above b). In order to capture the intuition that this should
increase the diversity, let us introduce the following ‘Condorcet model.’

3.2 The Condorcet Model

For all x, y ∈ X, denote by Axy ⊂ L(X) the set of all orderings that rank alternative
x above y. The model

CM := {Axy | x, y ∈ X,x 6= y}.

is referred to as the Condorcet model. Thus, the only relevant attributes in the
Condorcet model are of the form ‘ranking alternative x above y’ for each pair of
alternatives x, y ∈ X, and consequently the only relevant issue in the assessment of
the diversity of a preference set is whether or not it contains an ordering with a given
binary comparison. Every diversity function in the Condorcet model evidently satisfies
the following monotonicity condition. For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐= ∃x, y ∈ X with x � y, and y �′ x for all �′ ∈ S. (8)
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The following condition strengthens the implication in (8) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds a new binary relation to it. Every diversity function in the Condorcet model
evidently satisfies this monotonicity equivalence condition as well. For all S and all
� ∈ L(X),

v(S ∪ {�}) > v(S) ⇐⇒ ∃x, y ∈ X with x � y and y �′ x for all �′ ∈ S. (9)

Our second result shows that the Condorcet model is in fact the coarsest model
that satisfies the monotonicity equivalence (9).

Theorem 2 The Condorcet model CM is the coarsest model that satisfies the
monotonicity equivalence condition (9).

Proof We have already noted that every diversity function in the Condorcet model
satisfies (9). Now suppose that v satisfies (9). Consider any set Axy. We will show that
Axy must belong to the coarsest model (i.e. must have positive weight). Consider the
set S = L(X) \Axy, and observe that S realizes every binary comparison except that
there is no order in S that places x above y. For any �∈ Axy, we have v(S ∪ {�}) >
v(S) by (9), since each �∈ Axy realizes the relation x � y which is not yet realized
in S; this means that every �∈ Axy possesses at least one relevant attribute A that
is not yet realized in S, i.e. �∈ A ⊆ Axy. We show that no attribute A0 ( Axy can
receive positive weight. By contradiction, if such an attribute A0 would be relevant,
choose �∈ A0 and �′ ∈ Axy \ A0. By (9), we have v(S ∪ {�′}) > v(S). Since �
possesses a relevant attribute that the set S ∪ {�′} does not yet realize, we also have
v(S ∪ {�′} ∪ {�}) > v(S ∪ {�′}). But the latter inequality contradicts (9), because
� does not add any new binary comparison to the set S ∪ {�′}. Consequently, Axy
must belong to the coarsest model satisfying (9); moreover, the argument also shows
that no attribute A ( Axy can receive positive weight. �

As appealing as the intuitive notion of counting binary relations may seem, the
Condorcet model appears to be too coarse as a complete model for measuring diversity.
For instance, the Condorcet model implies that a set of any two completely reversed
orderings is already maximally diverse independently of the number of alternatives m.
Therefore, in the following sections, we extend and combine the two basic notions of
the plurality and the Condorcet model in order to define more refined models. First, we
extend the plurality model to the ‘rising rank’ and the ‘rank’ models; then extend the
Condorcet model to the ‘increasing rank difference’ and the ‘rank difference’ models.
Finally, we consider the ‘top alternatives’ model, and conclude this section with the
‘cardinality’ model.

3.3 The Rising Rank Model

For all x ∈ X, denote by A−kx ⊂ L(X) the set of all orderings that have x as one of
their top k alternatives. The model

RRM := {A−kx | k = 1, ...,m− 1, x ∈ X}

7



is referred to as the rising rank model (note that we exclude the trivial attribute
A−mx = L(X)). Thus, the only relevant attributes in the rising rank model are of
the form ‘having x as one of the k top alternatives’ for each alternative x ∈ X, and
consequently the only relevant issue in the assessment of the diversity of a preference
set is whether or not it contains, for any x ∈ X, an order with alternative x as one
of its k top alternatives. Every diversity function in the rising rank model evidently
satisfies the following monotonicity condition. For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐= ∃x ∈ X with rank(�, x) < rank(�′, x) for all �′ ∈ S. (10)

The following condition strengthens the implication in (10) by requiring that the
diversity of a preference set should increase strictly only if the added preference order
adds an alternative the rank of which rises in comparison to all orders in the set.
Evidently, every diversity function in the rising rank model satisfies this monotonicity
equivalence condition as well. For all S and all � ∈ L(X),

v(S∪{�}) > v(S) ⇐⇒ ∃x ∈ X with rank(�, x) < rank(�′, x) for all �′ ∈ S. (11)

Our next result shows that the rising rank model is in fact the coarsest model that
satisfies the monotonicity equivalence (11).

Theorem 3 The rising rank model RRM is the coarsest model that satisfies the
monotonicity equivalence condition (11).

Proof We have already noted that every diversity function in the rising rank model
satisfies (11). Now suppose that v satisfies (11). Consider any set A−kx . We will show by
induction over k that A−kx must belong to the coarsest model (i.e. must have positive
weight), and that no other attributes that are proper subsets of some set A−kx can
receive positive weight. For k = 1, the argument is exactly the same as for the model
PM. In particular, no attribute A0 ( A−1

x can have positive weight. Now consider
k ≥ 2, and suppose that the claim is shown for all k′ ≤ k − 1. Consider the set

S = L(X)\A−kx . For any �∈ A−kx \A
−(k−1)
x , we have v(S∪{�}) > v(S) by (11). This

means that every �∈ A−kx \A
−(k−1)
x possesses at least one relevant attribute A that is

not yet realized in S. We show that no attribute A0 such that A
−(k−1)
x ( A0 ( A−kx can

receive positive weight. By contradiction, if such an attribute A0 would be relevant,
choose �∈ A0 and �′ ∈ A−kx \ A0. By (11), we have v(S ∪ {�′}) > v(S). Since �
possesses a relevant attribute that the set S ∪ {�′} does not yet realize, we also have
v(S∪{�′}∪{�}) > v(S∪{�′}). But the latter inequality contradicts (11), because �
does not add any new attribute of the required form to the set S∪{�′}. By induction,
all attributes of the form A−kx must receive positive weight, and thus belong to the
coarsest model satisfying (11). �
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3.4 The Rank Model

For all x ∈ X, denote by Akx ⊂ L(X) the set of all orderings that have x (exactly) as
their k-th ranked alternative. The model

RM := {Akx | k = 1, ...,m, x ∈ X}

is referred to as the rank model. Thus, the only relevant attributes in the rank
model are of the form ‘having x as k-th ranked alternative’ for each alternative x ∈
X, and consequently the only relevant issue in the assessment of the diversity of a
preference set is whether or not it contains an ordering with a given alternative on the
k-th rank. Every diversity function in the rank model evidently satisfies the following
monotonicity condition. For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐= ∃x ∈ X with rank(�, x) 6= rank(�′, x) for all �′ ∈ S. (12)

The following condition strengthens the implication in (12) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds any alternative on a new rank to it. Every diversity function in the rank
model evidently satisfies this monotonicity equivalence condition as well. For all S and
all � ∈ L(X),

v(S∪{�}) > v(S) ⇐⇒ ∃x ∈ X with rank(�, x) 6= rank(�′, x) for all �′ ∈ S. (13)

Our next result shows that the rank model is in fact the coarsest model that
satisfies the monotonicity equivalence (13).

Theorem 4 The rank model RM is the coarsest model that satisfies the monotonicity
equivalence condition (13).

Proof We have already noted that every diversity function in the rank model satisfies
(13). Now suppose that v satisfies (13). Consider the set S = L(X) \Akx, and observe
that S realizes every attribute in RM except the attribute Akx. For any �∈ Akx, we
have v(S ∪ {�}) > v(S) by (13); this means that every �∈ Akx possesses at least
one relevant attribute A that is not yet realized in S, i.e. �∈ A ⊆ Akx. We show
that no attribute A0 ( Akx can receive positive weight. By contradiction, if such an
attribute A0 would be relevant, choose �∈ A0 and �′ ∈ Akx \ A0. By (13), we have
v(S ∪ {�′}) > v(S). Since � possesses a relevant attribute that the set S ∪ {�′}
does not yet realize, we also have v(S ∪ {�′} ∪ {�}) > v(S ∪ {�′}). But the latter
inequality contradicts (13), because � does not add any new attribute of the form A`y
to the set S ∪ {�′}. Consequently, Akx must belong to the coarsest model satisfying
(13); moreover, the argument also shows that no attribute A ( Akx can receive positive
weight. �
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3.5 The Increasing Rank Difference Model

For all x, y ∈ X, denote by A+k
xy ⊂ L(X) the set of all orderings that have alternative

x at least k ranks above y. The model

IRDM := {A+k
xy | k = 1, ...,m− 1, x, y ∈ X}

is referred to as the increasing rank difference model. Thus, the only relevant
attributes in the increasing rank difference model are of the form ‘ranking x at least k
positions above alternative y’ for each pair of alternatives x, y ∈ X, and consequently
the only relevant issue in the assessment of the diversity of a preference set is whether
or not it contains an ordering with a sufficiently large rank difference between two
alternatives. Every diversity function in the increasing rank difference model evidently
satisfies the following monotonicity condition. For all S and all � ∈ L(X),

v(S∪{�}) > v(S) ⇐=

 for some x, y ∈ X, x � y and
rank(�, y)− rank(�, x) > rank(�′, y)− rank(�′, x)
for all �′ ∈ S.

(14)

The following condition strengthens the implication in (14) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds a greater rank difference between two alternatives to it. Every diversity
function in the increasing rank difference model evidently satisfies this monotonicity
equivalence condition as well. For all S and all � ∈ L(X),

v(S∪{�}) > v(S) ⇐⇒

 for some x, y ∈ X, x � y and
rank(�, y)− rank(�, x) > rank(�′, y)− rank(�′, x)
for all �′ ∈ S.

(15)

Our next result shows that the increasing rank difference model is in fact the
coarsest model that satisfies the monotonicity equivalence (15) for m > 3.

Theorem 5 For m > 3, the increasing rank difference model IRDM is the coarsest
model that satisfies the monotonicity equivalence condition (15).

Proof We have already noted that every diversity function in the increasing rank
difference model satisfies (15). Now suppose that v satisfies (15). Consider any set
A+k
xy . We will show by induction that all attributes A+k

xy must belong to the coarsest
model (i.e. must have positive weight). Observe that, for all k, k′ = 1, ...,m − 1 with

k < k′, we have A
+(m−1)
xy ⊆ A+k′

xy ( A+k
xy ⊆ A+1

xy .

First, consider the set S = L(X) \A+(m−1)
xy , and note that the attribute A

+(m−1)
xy

consists of all orders that have x as the top alternative and y as the bottom alternative.

For any � ∈ A+(m−1)
xy , we have v(S∪{�}) > v(S) by (15), since for each � ∈ A+(m−1)

xy

we have x � y and rank difference between x and y greater than in all orders in S.

This implies that every �∈ A+(m−1)
xy possesses at least one relevant attribute A that is
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not yet realized in S, i.e. �∈ A ⊆ A+(m−1)
xy . Suppose that �∈ A0 and A0 ( A

+(m−1)
xy

receives positive weight; then choose �′ ∈ A+(m−1)
xy \A0. We have v(S ∪ {�′}) > v(S)

by (15). But by assumption, we also obtain v(S ∪ {�′} ∪ {�}) > v(S ∪ {�′}) since
� possesses the relevant attribute A0 not yet realized by the set S ∪ {�′}. But this
contradicts (15), since the set S ∪ {�′} contains, for any pair of alternatives w, z ∈ X
and all rank differences k an order that places w exactly k ranks above z. Note that

the argument also shows that no proper subset of A
+(m−1)
xy can receive positive weight.

Now suppose that it has been shown that, for all k′ > k, all attributes A+k′

xy

receive positive weight, and that no other proper subsets of these attributes can receive

positive weight. Consider any �∈ A+k
xy \ A

+(k+1)
xy , in other words, we have x � y and

rank difference between x and y in the order is exactly equal to k. Consider the set

S = L(X)\A+k
xy . By (15), we have v(S ∪{�}) > v(S). Thus, every �∈ A+k

xy \A
+(k+1)
xy

possesses at least one relevant attribute A that is not yet realized in S. Suppose that

�∈ A0 and A0 ( A+k
xy \A

+(k+1)
xy receives positive weight; then choose �′ ∈ A+k

xy \A0.
We have v(S∪{�′}) > v(S) by the monotonicity equivalence (15). But by assumption,
we also obtain v(S∪{�′}∪{�}) > v(S∪{�′}) since � possesses the relevant attribute
A0 not yet realized by the set S ∪ {�′}. But this contradicts (15), since one can show
that � does not add any order with a rank difference different from all orders already
contained in the set S ∪ {�′}. �

3.6 The Rank Difference Model

For all x, y ∈ X, denote by Akxy ⊂ L(X) the set of all orderings that have alternative
x exactly k ranks above y. The model

RDM := {Akxy | k = 1, ...,m− 1, x, y ∈ X,x 6= y}

is referred to as the rank difference model. Thus, the only relevant attributes in the
rank difference model are of the form ‘ranking alternative x exactly k positions above
y’ for each pair of alternatives x, y ∈ X, and consequently the only relevant issue in the
assessment of the diversity of a preference set is whether or not it contains an ordering
with a given rank difference between two alternatives. Every diversity function in the
rank difference model evidently satisfies the following monotonicity condition. For all
S and all � ∈ L(X),

v(S∪{�}) > v(S) ⇐=

 for some x, y ∈ X, x � y and
rank(�, y)− rank(�, x) 6= rank(�′, y)− rank(�′, x)
for all �′ ∈ S.

(16)

The following condition strengthens the implication in (16) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds a new rank difference between two alternatives to it. Every diversity function
in the rank difference model evidently satisfies this monotonicity equivalence condition
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as well. For all S and all � ∈ L(X),

v(S∪{�}) > v(S) ⇐⇒

 for some x, y ∈ X, x � y and
rank(�, y)− rank(�, x) 6= rank(�′, y)− rank(�′, x)
for all �′ ∈ S.

(17)

Our next result shows that the rank difference model is in fact the coarsest model
that satisfies the monotonicity equivalence (17) for m > 3.

Theorem 6 For m > 3, the rank difference model RDM is the coarsest model that
satisfies the monotonicity equivalence condition (17).

Proof We have already noted that every diversity function in the rank difference model
satisfies (17). Now suppose that v satisfies (17).

Consider any set Akxy. We will show that Akxy must belong to the coarsest model

(i.e. must have positive weight). Consider the set S = L(X)\Akxy, and observe that, if

m > 3, S realizes every attribute in RDM except the attribute Akxy.2 For any �∈ Akxy,

we have v(S ∪ {�}) > v(S) by (17), since for each �∈ Akxy we have x � y and the
rank difference between x and y is k, an attribute that is not yet realized in S; this
implies that every �∈ Akxy possesses at least one relevant attribute A that is not yet

realized in S, i.e. �∈ A ⊆ Akxy. We show that no attribute A0 ( Akxy can receive
positive weight. By contradiction, if such an attribute A0 would be relevant, choose
�∈ A0 and �′ ∈ Akxy \A0. By (17), we have v(S∪{�′}) > v(S). Since, by assumption,
� possesses the relevant attribute A0 that the set S ∪ {�′} does not yet realize, we
also have v(S ∪{�′}∪ {�}) > v(S ∪{�′}). But the latter inequality contradicts (17),
because � does not add any new relevant attribute to the set S ∪{�′}. Consequently,
Akxy must belong to the coarsest model satisfying (17); moreover, the argument also

shows that no attribute A ( Akxy can receive positive weight. �

3.7 The Top Alternatives Model

For all T ⊆ X, denote by AkT ⊆ L(X) the set of all orderings that have the set T (of
cardinality k) as the set of their top k alternatives. The model

TAM := {AkT | k = 1, ...,m− 1, T ⊂ X, |T | = k}

is referred to as the top alternatives model (note that we again exclude the trivial
attribute AmX). Thus, the only relevant attributes in the top alternatives model are of
the form ‘having the set T as the set of k top alternatives’ for each subset T ⊂ X, and
consequently the only relevant issue in the assessment of the diversity of a preference
set is whether or not it contains an ordering with a given set of k top alternatives.
Every diversity function in the top alternatives model evidently satisfies the following

2If m = {a, b, c}, for instance, the set L(X) \ A1
ab does not realize the attribute A2

cb.
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monotonicity condition. For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐=

 for some k = 1, ...,m− 1,
the top k elements of � are different
from the top k elements of all orders in S.

(18)

The following condition strengthens the implication in (18) by requiring that the
diversity of a preference set should increase strictly only if the added preference order-
ing adds a new set of k top alternatives to it. Every diversity function in the top
alternatives model evidently satisfies this monotonicity equivalence condition as well.
For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐⇒

 for some k = 1, ...,m− 1,
the top k elements of � are different
from the top k elements of all orders in S.

(19)

Our next result shows that the top alternatives model is in fact the coarsest model
that satisfies the monotonicity equivalence (19).

Theorem 7 The top alternatives model TAM is the coarsest model that satisfies the
monotonicity equivalence condition (19).

Proof We have already noted that every diversity function in the top alternatives
model satisfies (19). Now suppose that v satisfies (19). Consider any set AkT where T
has cardinality k. We will show that AkT must belong to the coarsest model (i.e. must
have positive weight). Consider the set S = L(X) \ AkT . For any � ∈ AkT , we have
v(S ∪ {�}) > v(S); this means that every � ∈ AkT possesses a relevant attribute
A that is not yet realized in S, i.e. � ∈ A ⊆ AkT . By contradiction, suppose that
A 6= AkT ; then there exists �′∈ AkT \ A. Consider S′ := S ∪ {�′}. Since �′∈ AkT , we
have v(S′) > v(S), and by assumption we have v(S′ ∪ {�}) > v(S′). We will show
that the latter inequality contradicts (19). Indeed, for each ` there exists an order in
S′ that has the exactly the same top ` elements as the order �. For ` = k = |T |, this
is evident since �′ ∈ S′. Suppose next that ` < k (and hence k > 1), and let a be
the bottom alternative of �. Consider the order that results from � by putting a at
rank ` + 1 leaving all others ranks unchanged; that order must be an element of S,
hence also an element of S′, and has the same ` top elements as �. Finally, if ` > k
(and hence k < m − 1) then consider the order that results from � by swapping the
two neighbors at rank k and k + 1; that order must also be an element of S, and
hence of S′. Thus, summarizing then, it is not possible that � strictly increases the
diversity when added to S′, hence it cannot possess a relevant attribute that is not
also possessed by �′. Consequently, AkT must belong to the coarsest model. �
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3.8 The Cardinality Model

For all � ∈ L(X), denote by A� ⊂ L(X) the singleton set A� = {�}. The model

CdM := {A� | �∈ L(X)}

is referred to as the cardinality model. Thus, the only relevant attributes in the
cardinality model are of the form ‘being identical to the order �’ for each order
� ∈ L(X), and consequently the only relevant issue in the assessment of the diversity
of a preference set is, for every given order, whether or not it contains that order. If all
attributes of the form A� receive the same weight, the diversity of a set of preferences
is thus fully determined by its cardinality.

Every diversity function in the cardinality model evidently satisfies the following
monotonicity equivalence condition. For all S and all � ∈ L(X),

v(S ∪ {�}) > v(S) ⇐⇒ � /∈ S. (20)

Our next result shows that the cardinality model is in fact the coarsest model that
satisfies the monotonicity equivalence (20).

Theorem 8 The cardinality model CdM is the coarsest model that satisfies the
monotonicity equivalence condition (20).

Proof We have already noted that every diversity function in the cardinality model
satisfies (20). Now suppose that v satisfies (20). Consider any set A�. We will show
that A� must belong to the coarsest model (i.e. must have positive weight). Consider
the set S = L(X) \ A�. For the single order � ∈ A�, we have v(S ∪ {�}) > v(S) by
(20), hence the set A� = {�} must receive positive weight. Thus, any attribute of the
form A� must belong to the coarsest model satisfying (20). �

Clearly, a model satisfying (20) can have more relevant attributes than the sin-
gleton sets. For instance, any diversity function in the complete model Λ = 2L(X) \ ∅
satisfies (20).

4 Model Interrelations

The eight proposed models are interrelated by their monotonicity properties. Together
they span a model space, depicted in Figure 1, which is bounded by the cardinality
model on one side and by the weak monotonicity condition (2), labelled WM in Fig. 1,
on the other side. The cardinality model satisfies all potential monotonicity conditions
(but, of course not the corresponding monotonicity equivalences).3 On the other hand,
all models satisfy the monotonicity condition WM. In Fig. 1, a model W ‘entails’
another model V , indicated by an arrow from W to V if and only if model W satisfies
all monotonicity properties that model V satisfies, i.e. if and only if, for all S and �,

3In the case m = 3, the model CdM satisfies the same monotonicity equivalences as the models IRDM
and RDM; indeed, in that case CdM ( IRDM,RDM.
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WM TAM

RRM RM

CM

PM

RDMIRDM

CdM

Fig. 1 Model space by monotonicity. The model space is constrained by weak monotonicity (2) and
the cardinality model. In the model space, a model W entails another model V if and only if model
W satisfies all monotonicity properties of model V .

v(S ∪ {�}) > v(S) for all v in model V implies that v(S ∪ {�}) > v(S) holds for all
v in model W .

Theorem 9 A model W satisfies all monotonicity properties of a model V if and only
if for all AV ∈ ΛV and all � ∈ AV , there exists AW ∈ ΛW such that � ∈ AW ⊆ AV .

Proof Consider any case in which v(S∪{�}) > v(S) holds for model V . Then, � ∈ AV
for some AV ∈ ΛV not yet realized by S; by assumption, � ∈ AW ⊆ AV for some
AW ∈ ΛW . This implies v(S∪{�}) > v(S) if v is a member of model W . Consequently,
model W satisfies all monotonicity properties that model V satisfies.

Now suppose, conversely, that model W satisfies all monotonicity properties that
model V satisfies. Then, v(S∪{�}) > v(S) for v in model V implies v(S∪{�}) > v(S)
for v in model W . In particular, this implication holds for all S = L(X) \ AV and
� ∈ AV with AV ∈ ΛV . Since v(S ∪ {�}) > v(S) for v in model W , there must exist
an attribute AW ∈ ΛW such that �∈ AW and not yet realized by S = L(X) \ AV ;
hence, AW ⊆ AV . �

5 Designing Maximally Diverse Committees

In applications, a natural problem is to design committees of maximal diversity. In the
following, we derive some basic facts about this problem for our models. Concretely, we
focus on finding maximally diverse preference sets S for any fixed number of elements
n, given the number of alternatives m = #X, and a particular model Λ.

Clearly, in the absence of any further restrictions on the attribute weighting func-
tion (other than non-negativity) not much can be said about this problem. A natural
restriction that allows one to derive a number of basic facts about maximally diverse
sets is the following neutrality condition. Let π : X −→ X be a bijection; for each
order � on X, denote by �π the order defined by x �π y :⇔ π(x) � π(y), and for
each set S of orders, denote by π(S) := {�π | �∈ S}. A diversity function is said to
be neutral if, for all S and all bijections π,

v(π(S)) = v(S).

Note that a diversity function v is neutral if and only if its attribute weighting function
(i.e. the conjugate Moebius inverse) is neutral in the sense that, for all attributes
A ⊆ X and all bijections π, λA = λπ(A). Hence, every neutral diversity function
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induces a number K of equivalence classes of attributes Ak, k = 1, ...,K, such that,
for all k, A,A′ ∈ Ak if and only if A′ = π(A) for some bijection π. By neutrality, all
attributes in Ak must receive the same weight, denoted by λk.

In the following, we will consider neutral diversity functions belonging to one of the
models considered in the previous section. By neutrality, all single preference orders
�∈ L(X) receive the same diversity value v({�}). Consequently, the diversity of a set
of n different preferences is bounded above by v(S) ≤ n · v({�}). But due to the fact
that different preferences can share common attributes, this bound can be improved
upon. Specifically, we obtain the following inequality. For all k = 1, ...,K, denote by
ak := #Ak, and by `k the number of attributes which any single preference order
possesses in attribute class Ak; then, for all S,

v(S) ≤
K∑
k=1

bkλk with bk =

{
n`k if n`k ≤ ak
ak if n`k > ak

(21)

(note that bk = min{n`k, ak}). Our strategy to find maximally diverse sets of prefer-
ences is now simply to check if we can satisfy (21) with equality for some S; if yes, S
must be maximally diverse.

For each of the five models PM, CM, RRM, RM, and CdM, there exists for every
combination of n and number of alternatives m a set S of n preferences that satisfies
the equality of (21). Table 1 displays for m = 3 and each of the five models the smallest
set that satisfies all attributes of the respective model. Each set and all of their subsets
satisfy the equality of (21) for their respective model. Furthermore, all supersets of
these sets satisfy (21) with equality as well. In fact, the design of such maximally
diverse sets is quite straightforward and it is easily seen that, if a set does not satisfy
(21) with equality for one of these five models it cannot be maximally diverse. In
summary, the satisfaction of (21) with equality is a necessary and sufficient condition
of maximality of a set of preferences for all neutral diversity functions belonging to one
of the five models PM, CM, RRM, RM, and CdM. For PM, the smallest set satisfying

Table 1 Smallest set satisfying all attributes of one of the five models PM, CM,
RRM, RM, and CdM for m = 3 alternatives. The smallest sets are not necessarily
unique. The dots are placeholders for every possible combination of missing
alternatives.

PM :

a b c
· · ·
· · ·

 CM :

a c
b b
c a

 RRM/RM :

a b c
b c a
c a b

 CdM :

· · · · · ·
· · · · · ·
· · · · · ·


all attributes places each alternative exactly once on top. Therefore, the set has size
n = m and all ranks beside the top rank do not influence the diversity of the set. For
CM, the smallest set possessing all attributes consists of any two polarized preference
orders. Every preference order possesses exactly half of all attributes. Thus, inverting
all relations of a given preference order results in the realization of remaining half
of all attributes. For RRM and RM, the smallest set satisfying all attributes places
each alternative exactly once at each rank. For RM, this design is necessary, but for
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RRM there also exist other possibilities to design such a set. For CdM, the smallest
set satisfying all attributes obviously is L(X). CdM has the special property that no
pairs of preference orders share any attribute and therefore, any preference set S is
maximally diverse given its size n.

Remark: For combinations of the above five models the task of finding maximally
diverse sets is more complex. Consider, for instance, a neutral diversity function in
the model Λ = CM ∪ RM; then it might not be possible to satisfy (21) with equality.
For instance, let n = 2, and m = 3 and consider the sets

S =

a cb b
c a

 and S′ =

a b
b c
c a

 . (22)

The set S realizes all six attributes of CM but only five different attributes of RM
(because b is on second rank in both orders in S). On the other hand, S′ realizes six
attributes of RM but only five attributes of CM (because b is above c in both orders in
S′). It is easily verified that no set containing two orders can realize more attributes
from the model CM ∪ RM; in particular (21) cannot be satisfied with equality, and
the answer to the question if S or S′ is more diverse depends on the cardinal values
of the weights of the different attributes.

It is an open problem if (21) can be satisfied with equality for all n and m and all
neutral diversity functions in the models TAM and IRDM. For IRDM, the following
example illustrates the difficulty. Consider for m = 5 the two sets

S =


a e
b d
c c
d b
e a

 and S′ =


a d c
b e e
c b a
d a d
e c b

 ; (23)

both sets are maximally diverse given their respective size, but their general design
principle is not at all evident. In particular, it can be shown that the set S is not
contained in any maximally diverse set of cardinality n = 3.

For RDM, the bound (21) cannot always be satisfied with equality. For instance,
as is easily verified, for n = m = 3, there is no set that realizes all six attributes of the
first attribute class {A1

xy |x 6= y}, although every single preference order does realize
exactly two different attributes of this class. Consequently, the bound (21) cannot be
used in case of the model RDM to test for maximal diversity. Finding algorithms that
yield maximally diverse sets for various models is a worthwhile task, but this is left
for future research.
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6 On the Number of Pareto Optimal Alternatives
as a Measure of Diversity

A prima facie attractive proposal is to measure the diversity of a set of preferences
in terms of the number of Pareto optimal alternatives. In the present section, we
argue that this proposal does in fact not satisfy a fundamental tenet of diversity mea-
surement; indeed, the number of Pareto optimal alternatives may exhibit increasing
marginal contributions to the value of a set. The set function defined by the num-
ber of Pareto optimal alternatives thus nicely illustrates by negative example the
submodularity assumption satisfied by all our models.

Specifically, for each set S ⊆ L(X), denote by

vPO(S) := #{x ∈ X | for no y ∈ X, y � x for all �∈ S}
= #{x ∈ X | for all y ∈ X \ {x}, there exists �∈ S such that x � y},

in other words, vPO(S) simply counts the number of Pareto optimal alternatives given
the preferences in S. It is easily verified that the function vPO(·) is monotone in the
sense of (2), but it fails the submodularity condition (4). This can be seen as follows.
Let S consist of the single order a �′ b �′ c and let T ⊃ S contain in addition the
order b �′′ c �′′ a. Clearly, we have vPO(S) = 1 and vPO(T ) = 2. What happens if we
add the order a � c � b to S and to T , respectively? We have

S ∪ {�} =

ab
c

a
c
b

 and T ∪ {�} =

a b
b c
c a

a
c
b

 ,

hence vPO(S ∪ {�}) = 1 and vPO(T ∪ {�}) = 3. Therefore,

vPO(S ∪ {�})− vPO(S) = 0

vPO(T ∪ {�})− vPO(T ) = 1,

in violation of the submodularity condition (4).
The violation of submodularity of the function vPO(·) is reflected in its Moebius

inverse which displays negative values. Recall that, for all distinct x, y ∈ X, Axy ⊂
L(X) is the attribute ‘x � y’, i.e. the set of all orders that place x above y; moreover,
for all pairwise distinct triples x, y, z ∈ X, denote by Axy∨xz ⊂ L(X) the attribute
‘(x � y or x � z)’, i.e. the set of all orders that place x above y or x above z (or both).
Direct computation using formula (3) yields the following values for the conjugate
Moebius inverse λPO(·) of vPO(·) if #X = 3:

λPO(A) =

+1 if A = Axy for some x, y ∈ X
−1 if A = Axy∨xz for some x, y, z ∈ X

0 otherwise
(24)

In particular, the value of attributes of the form ‘(x � y or x � z)’ (which in the
case of three alternatives coincides with the attribute ‘x is not the last alternative’) is
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negative.4 Since in the multi-attribute model no attribute can diminish the diversity
value, the number of Pareto optimal alternatives does thus not qualify as a candidate
for the measurement of diversity.

7 Conclusion

In this paper, we have explored the possibility of measuring the diversity of sets of
preferences within the general framework of the multi-attribute approach of Nehring
and Puppe (2002). We have proposed a number of prima facie reasonable models of
preference diversity. Evidently, the present analysis provides only a first step into the
general problem of measuring the diversity of committees, or groups of individuals,
characterized by their preferences. Indeed, much is left for future work. We briefly
comment on directions that we deem worthwhile.

First, the eight models proposed here should be assessed with concrete application
in mind. It may well turn out that different applications call for different models. It
may also turn out that combinations of our models are sometimes more useful than
the pure version presented here. From the general perspective of the multi-attribute
model such combinations (i.e. unions of the underlying sets of relevant attributes) pose
no mathematical difficulty.

Secondly, while we view our purely ordinal approach conceptually appealing due to
its simplicity, complementing the analysis with cardinal information, i.e. the magnitude
of attribute weights, is certainly a worthwhile task. For instance, a model that we
plan to investigate in future work is a cardinal version of the Top Alternative Model
(TAM) in which the (positive) weights of the attributes AkT are decreasing in k. Such
a specification would reflect the intuition that the number of different top alternatives
has a large weight in the diversity assessment than the number of different second-best
alternatives, etc.

Finally, our analysis is in fact silent on the question of the diversity of profiles of
preferences. This is perhaps the most serious limitation of our approach. But we also
believe that the simple and special case in which every order occurs exactly once in
every set to be evaluated in terms of diversity must be well understood first, before
one can attack the more difficult setting in which orders may have copies of different
multiplicity. In any case, we hope that our approach will inspire solution to this more
difficult problem. Ultimately, it would be desirable to understand the complex relation
between the diversity of elections and their outcomes, a problem that has recently
received some attention (Faliszewski et al, 2019; Szufa et al, 2020; Boehmer et al,
2021).

4A formula similar to, but naturally more complex than (24) can be derived for general X.
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