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Abstract In many professional activities humans are getting better generation by gener-

ation. This is supposed to be the case, for instance, in sports and in science. Is it true in

the arts? In this paper, we consider violinists from the time period in which audio and video

recordings became possible. Based on the number of YouTube views, and by employing different

aggregation methods, we find that listening to violinists from the mid of the previous century

does not seem to be significantly less attractive to audiences than listening to contemporary vi-

olinists. Methodologically, our analysis contributes to the growing literature on the aggregation

of incomplete lists. In particular, we introduce a generalization of the Nash collective utility

function for incomplete lists.
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1 Introduction

The original motivation for this paper stems from a communication between an anonymous

mathematician and an anonymous violinist in which one of the authors served as an interme-

diary. The statement by the mathematician was that contemporary violinists must be better

than older violinists – as it supposedly the case for tennis players, chess players, and many

others, – because of the development of practicing and preparation methods, the availability

of better material as well as technical and non-technical progress. The professional violinist

strongly disagreed and claimed that the great virtuosos’ performances of the last century were

still the yard stick by which every contemporary artist would have to be judged, and that only

little improvement, if at all, can be observed in the performing arts. In this paper, we try

to resolve these conflicting standpoints from the viewpoint of the audience by comparing the

number of views of different violinists on YouTube. On deliberation, this turns out to be a

non-trivial task. In particular, since the character, popularity and difficulty of music pieces

differ greatly, merely considering the total number of views of violinists is not an appropriate

approach. Instead, we investigate 46 different music pieces of central importance to the classical

repertoire and consider the number of views of altogether 128 violinists piece by piece.

This approach still poses the methodological problem of how to aggregate the findings for

each piece. Employing notions from social choice theory, one can view the 128 violinists as the

alternatives or candidates to be ranked, and the 46 pieces as the criteria or judges or voters. The

‘voters’ can assign either cardinal values to the candidates (e.g. the number of views) or ordinal

ranks (obtained from the ordering of candidates by their popularity). We apply techniques

from preference and utility aggregation (Blackorby et al., 2002), as well as pairwise comparison

matrices (Saaty, 1980) in order to obtain a ranking of violinists. One fundamental difficulty

is that in our context not all candidates are ranked by all voters, i.e. not all violinists have

recorded all pieces. Thus, we have to aggregate based on incomplete lists.

Our proposal of how to deal with this missing information contributes to the recent theo-

retical literature, mainly developed in computer science, on the aggregation of incomplete lists

with a wide range of applications such as search engines and spam filters, see, e.g. Dwork et

al. (2002). In social choice theory, the problem of aggregating incomplete orders has been

addressed by a great number of scholars, see e.g. Pini et al. (2009) for a comprehensive treat-

ment of three central results (Arrow’s theorem, the Gibbard-Satterthwaite theorem and the

Muller-Satterthwaite theorem) with incomplete preferences. Our goal is to arrive at a ranking

of classical violinists in terms of their popularity. For this purpose, the theorem by Arrow

provides the relevant background.1 Pini et al. (2009) prove various generalizations of Arrow’s

1The issue of possible individual manipulation of aggregation procedures as considered by the Gibbard-
Satterthwaite theorem may clearly also play a role in classical music competitions, see for instance Kontek and
Kenner (2023). This issue is not addressed here.
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impossibility theorem if individual and/or collective rankings are incomplete. In this paper,

we want to derive a complete ranking of candidates (violinists) based on a particular kind of

incomplete rankings, which we call ‘lists’. A list is a strict partial order that is complete on a

subset of alternatives. We note here that a variant of Arrow’s theorem in this setting follows

from the results of Pini et al. (2009).

The generalization of Arrow’s impossibility theorem to the present context implies that

there is no ‘ideal’ method of ranking alternatives based on incomplete lists. Our solution to

this general problem is to consider various reasonable (but necessarily ‘non-ideal’) aggregation

methods and to compare the respective results with each other. We thus examine adaptations

to the present framework of a number of different ordinal ranking methods that have been

proposed in the literature in the light of Arrow’s impossibility theorem. Specifically, we consider

appropriate adaptations of the Borda count and of the Copeland method. Moreover, we look

at the network-based extensions through Markov chains of the Borda count and the Copeland

method as proposed by Dwork et al. (2002).

The data in our application in fact provide more than just ordinal information. Indeed,

the number of views of a piece performed by a violinist is a cardinal value. Therefore, iden-

tifying these views with cardinal ‘utilities’ we can also employ the theory of the aggregation

of individual utility functions into a social welfare ordering, or a collective utility function; see

d’Aspremont and Gevers (2002) for a survey of this theory. Specifically, we adapt and generalize

the Nash collective utility function, which multiplies (positive) individual utilities, to our frame-

work with incomplete lists. On the set of complete lists, the Nash collective utility function is

the only collective utility function that satisfies a natural condition of scale independence. We

prove that on the set of all possibly incomplete lists there does not exist a continuous collective

utility function satisfying scale independence, and we argue that our extension of the Nash

collective utility function thus seems to be the best compromise if one wants to keep the scale

independence property at least on the subdomain of all complete lists. Alternative approaches

involve the utilitarian and relative utilitarian collective utility functions, respectively, and we

consider both of them as well.

Saaty (1980) developed a general method for multi-criteria decision making which can be

used for ranking alternatives. Central to his method are pairwise comparison matrices (PCM).

In our context, PCMs can be regarded as a refinement of the pairwise comparisons carried out

by the Copeland method, or as a coarsening of the available cardinal values (i.e. views) used by

the collective utility approach. More specifically, we employ the so-called eigenvector method

(EM) here to arrive at a ranking of the alternatives.2

Our two main results are: (i) the ranking of violinists is quite robust against the particular

2There are other methods known in the literature, but Bozóki, Csató and Temesi (2016) found only minor
differences in the results of the most common alternative methods to EM.
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ranking method employed, with Hilary Hahn followed by Itzhak Perlman as the two most

popular classical violinists, and (ii) among the top violinists there is a significant number of

older artists from the previous century; for instance, Jascha Heifetz and David Oistrakh, two of

the greatest violinists of all times, appear safely in the top 10 no matter which specific ranking

method is employed. Therefore, we arrive at the conclusion that violinists from earlier decades

are almost as attractive to audiences based on YouTube views as today’s active violinists. This

is in stark contrast to popular music, where no music video prior to the launch of YouTube

in 2005 appears in the list of 30 most watched videos (see https://en.wikipedia.org/wiki/

List_of_most-viewed_YouTube_videos).

Further Related Literature

Applications of social choice and multi-criteria decision theory abound. Many problems require

the aggregation of rankings of objects based on inputs from multiple sources like in automated

decision making, machine learning (see, e.g. Volkovs and Zemel, 2014), database middleware

(see, e.g. Masthoff, 2004), or in the determination of the results in sport competitions (see,

e.g. Csató, 2023, and Ausloos, 2024). The problem also arises in coding theory since the alter-

natives can be regarded as letters and the rankings as strings (see, e.g. Bortolussi et al., 2012).

The issue of aggregating rankings also emerges in the link analysis in networks and web search

algorithms (see, e.g. Borodin et al., 2005). Applications dealing with the aggregation of in-

complete preferences range from student paper competitions (Hochbaum and Moreno-Centeno,

2021), the ranking of cities as destination for tourists (Dopazo and Martnez-Céspedes, 2015)

to the ranking of teams in sports competition (Ausloos, 2024). For the ranking of individual

tennis players of different decades, see e.g. Bozóki et al. (2016) and Temesi et al., 2024).

There is a large literature on the assessment of great artists in music. For instance, Campbell

(2011) discusses great violinists from the early stages on from the point of view of a musician

in an informal way, and an in-depth analysis of the art of Jascha Heifetz is carried out by Sarlo

(2010).

The structure of the paper is as follows. In the next section (Section 2) we describe the

collection of data. Section 3 provides the theoretical background of our inquiry. Specifically, we

review results on the aggregation of ordinal and cardinal preference information and provide

generalizations of these results to the aggregation of incomplete lists. Our main theoretical

contribution is the generalization of the well-known Nash collective utility functions to the case

of incomplete lists (see Section 3.2.2). Section 4 describes the (ordinal and cardinal) methods

used to arrive at the different rankings of violinists. Section 5 contains the results and the

statistical analysis, and Section 6 concludes. An appendix demonstrates the robustness of our

main result with respect to the specific choice of parameters.
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2 Collection of Data

First, we had to select the set of violinists for comparison and the set of pieces, which we employ

as judges. We chose 46 violin pieces 29 of which are violin concertos, 9 are pieces originally

composed for violin and either orchestra or piano, and 8 are among the most difficult solo violin

pieces (cf. Tables 1-3). The list comes very close to the list of graded violin pieces by Chen

(2023). Clearly, one could have added further pieces, but we believe that the most significant

ones are included in our list and are sufficiently representative in order to address our initial

question and to rank violinists based on the respective views.

There are many sources containing the list of greatest classical violinist of all time. We

started with those listed as the top 25 violinist of all time on Classic FM (2022) and are

sufficiently viewable on YouTube. Namely, Joshua Bell, Nicola Benedetti, Midori Goto, Hilary

Hahn, Jascha Heifetz, Janine Jansen, Fritz Kreisler, Gidon Kremer, Yehudi Menuhin, Viktoria

Mullova, Anne-Sophie Mutter, Ginette Neveu, David Oistrakh, Itzhak Perlman, Gil Saham,

Isaac Stern and Maxim Vengerov in alphabetical ordering. We added those not appearing

in the previous list of violinists, but appearing on Nicolas’ (2024) list of 20 all time greatest

violinists, who are James Ehnes, Kyung-Wa Chung, Nathan Milstein and Ruggiero Ricci. There

is also a page on which visitors can vote on the greatest violinist of all time (ranker.com,

2024) from which we added those not mentioned so far, but appearing in the latter top 30.

These are Leonidas Kavakos, Pinchas Zuckerman, Julia Fischer, Arthur Grumiaux, Henryk

Szeryng, Leonid Kogan, Ray Chen and Michael Rabin. We added to the list Renaud Capucon,

Sarah Chang, Mischa Elman, Christian Ferras, Zino Francescati, Ivry Gitlis, Ida Haendel, Nigel

Kennedy and Shlomo Mintz. So far we arrived at a list of 38 violinists. Clearly, nobody would

object that we have listed already great violinists, but any listing is arbitrary. Since we wanted

to keep our list open, we added every violinist who is among the six most viewed ones for at

least one of the 46 pieces and achieves at least 50 thousand views in that piece, either in April

2024 or October 2024. In this way we arrived to 128 violinists. Their names can be found in

Tables 1-3.

For obvious reasons we had to restrict the list of investigated violinists to those ones being

active in the time period when recordings were possible. Even though recordings are available

already for all-time greats like Joseph Joachim,3 Eugene Ysaÿe4 or Pablo de Sarasate5 they

are of limited number, low-quality and short length. Therefore, it would not be appropriate to

include them into our analysis.

Tables 1-3 contain the six most viewed violinists for each of the 46 pieces ordered decreas-

3https://adp.library.ucsb.edu/index.php/mastertalent/detail/103104/Joachim_Joseph
4https://adp.library.ucsb.edu/index.php/mastertalent/detail/102401/Ysae_Eugne
5https://adp.library.ucsb.edu/index.php/mastertalent/detail/102893/Sarasate_Pablo_de?Matrix_

page=6
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1st 2nd 3rd 4th 5th 6th
Bach No. 1. 1041 Verhey Bell Fischer Hahn Grumiaux Oistrakh

29623756 2689471 2446233 1476595 1277655 982881
Bach No. 2, 1042 Verhey Hahn Bell Sato Siwoo Kim Jansen

29623756 4152924 1471997 1165480 421555 358166
Bach Double Concerto Oistrakh Menuhin Sato Hahn Yang Chen

5143111 5143111 3507137 2125309 2087080 2087080
Barber Shaham Hadelich Stern Meyers Hahn Schmidt

345117 229488 227390 220978 216199 209855
Bartok no. 2 Stern Hadelich Zimmermann Chung Mullova Markovici

257049 218792 196014 158662 114447 56045
Beethoven Hahn Perlman Vengerov Steinbacher Lozakovich Kang

11860196 9781215 3732355 2471720 2464426 1921866
Brahms Hahn Perlman Oistrakh Chung Bomsori Kim Fischer

8854891 2671456 1062274 993047 820617 547803
Brahms Double Concerto Mutter Oistrakh Stern Fischer Frang Perlman

1917173 489198 297386 175909 132152 129209
Bruch No. 1 Cointet Jansen Bell Duenas Himari Chang

3016491 1653826 1617465 1430086 1410426 899718
Dvorak A min Fischer Hahn Chung Oistrakh He Bell

741393 302525 277355 252785 223828 183361
Glazunov A min Hahn Markovici Gluzman Shumsky Fischer Benedetti

434398 97122 85484 83559 63408 60235
Korngold D maj Hahn Hagen Perlman Heifetz Benedetti Chen

659308 148297 135870 110545 101240 81938
Lalo Duenas Meyers Hadelich Pavalec Repin Markovici

822370 396502 357225 306439 279802 271881
Mendelssohn No. 2 Chen Hahn Jansen Perlman Chang Protsenko

5932856 5186249 3967639 3760314 3456272 2767365
Mozart No. 3 Suk Hahn Oistrakh Studer Baráti Yoon

4035501 2597865 2100391 1528766 731720 651568
Mozart No. 4 Suk Oistrakh Hahn Chua Ko Baráti

4035501 2100391 1832827 1351666 1155688 731720
Mozart No. 5 Suk Bomsori Kim Hahn Oistrakh Baráti Porter

4035501 3126151 2702941 2100391 731720 466510
Paganini No. 1 Lee Himari Hahn Duenas Chang Kang

15574190 5334114 3404328 2684316 1920252 1745144
Paganini No. 2 Mae Quint Takamatsu Garrett Milenkovich Kang

23815446 5056407 3756791 3434971 3315824 2635165
Prokofiev No. 1 Hahn Kavakos Fischer Perlman Batiashvili Oistrakh

1216499 259189 218170 204665 135288 126914
Prokofiev No. 2 Shoji Kavakos Jansen Josefowicz Fischer Oistrakh

245189 240618 204681 190623 182527 141387
Saint-Saens No. 3 Bell Kang In Mo Yang Vengerov Milstein Fischer

496491 420777 385269 207551 180709 165060
Shoshtakovich No. 1 Hahn Bomsori Kim Kogan Khachatryan Vengerov Oistrakh

785937 218696 159979 157646 126596 125791
Sibelius Hahn Vengerov Chang Chen Bell Oistrakh

8053011 6487626 6101546 2345744 997800 759590
Tchaikovsky Baeva Bell Fischer Midori Heifetz Shoji

6462644 5568233 4459984 4423596 4301034 3598208
Vieuxtemps No. 5 Chang Ko Josefowicz Hsu Donghyun Kim Heifetz

395343 218416 178623 89670 89451 86854
Vivaldi 4 seasons Banfalvi Agostini Freivogel Samuelson Mae Perlman

262357520 70908089 62001257 41595528 30498054 22612327
Wieniawski No. 1 Himari Chen Yoon Perlman Widjaja Midori

1318996 853260 352442 138636 126918 94500
Wieniawski No. 2 Bomsori Kim Mintz Rabin Tchumburidze Shaham Perlman

2122611 1263588 242969 233549 186669 143004

Table 1: Top 6 viewed violin concertos by violinists most viewed video

1st 2nd 3rd 4th 5th 6th
Beethoven: Kreutzer Sonata Shinohara Mutter Oistrakh Kopatchinskaya Bell Han

7951670 5677568 1609857 689927 551830 315123
Elgar: Salut d’amour Chang Abrami Petryshak Okumura Hope Midori

4349678 1260226 1145412 1106779 609798 402875
Kreisler: Liebesleid Kreisler Meyers Kang Perlman Ko-woon Yang Mae

1537109 1005724 577023 458317 441943 440297
Massenet: Thais Meditation Panfili Vengerov Kang Mutter Milstein Perlman

5297104 4242233 1931684 1405857 872557 801985
Ravel: Tzygane Fesneau Kopatchinskaya Midori Oistrakh Perlman Szeryng

946759 758394 662734 443908 331678 264694
Saint-Saens: Introduction & Shinohara Koelman Bomsori Kim Shin Chen Perlman
Rondo Capriccioso 6401985 4376795 2850293 1668463 1362397 1182580
Sarasate: Zigeunerweisen Himari Ko Perlman Panfili Han Takamatsu

8984959 8520908 5732722 3332187 2263194 1682064
Vaughn: The lark ascending Nolan Hahn Benedetti Park Hwang Liebeck

8340138 1655061 846592 332157 300426 299948
Vitali Chaconne Chang Grytsay Heifetz Francescati Chen Ko

1901251 1696677 1416701 1301300 907145 828832

Table 2: Top 6 viewed other violin with accompaniment pieces by violinists most viewed video

6



1st 2nd 3rd 4th 5th 6th
Bach Chaconne Perlman Hahn Chung Menuhin Shoji Grumiaux

2735409 2623754 2342688 1690601 1300495 1084813
Ernst: Grand Caprice Hahn Leong Barti Feng Frang Kang

2174049 323522 250785 225312 118878 71098
Ernst: Last rose of summer Midori Hahn Kang Vengerov Ricci Boulier

1205043 520561 298272 168450 89792 74681
Locateli: Harmonic Labyrinth Chua Oistrakh Gringolts Szeryng

305115 143822 56480 56084
Paganini: Caprices Markov Studer Garrett Heifetz Krylov Shin

12648045 11946608 8276323 7850046 6069111 4701666
Paganini: God save the king Roman Kim Kavakos Feng Gibboni Zimmermann

1049012 240458 109899 95983 68279
Paganini: Nel cor piu non mi sento Kogan Kavakos He Accardo

468768 314634 123078 80632
Ysaye: Sonatas Vengerov Chua Tompkins Hahn Chen Hadelich

998656 914411 482298 300207 272507 219952

Table 3: Top 6 viewed difficult violin solos by violinists most viewed video

ingly by views from left to right. Under the names we put the respective number of views of

their performance of that piece. Frequently, artists have recorded several performances of the

same piece; in most cases, looking at the most viewed performance contains sufficient infor-

mation since usually their second most viewed performance of the same piece received far less

views. However, there are some exceptions; therefore, we also gathered the three most viewed

performances of each piece and each violinist, and carried out all calculations based on the sum

of these views. The latter results can be found in the Appendix.

We also need to make explicit which uploaded videos we took into account since in many

cases performances are uploaded by movements or sometimes even by parts. In brief, we took

into account the most viewed movement of a performance. The reason for this is simply that we

cannot tell for how long one video was watched. So even if the full performance is gathered in

one video it is not clear how many movements have been watched by a viewer. In a few cases,

recordings of more than one piece are included in a video. If the whole recording just contains

recordings by the same performer we attribute the recording to each piece of that recording.

We emphasize that we had to apply this rule in a very few cases.

For further consideration in the derivation of our rankings below, we require that a violinist

has to pass the 50 thousand threshold of views in at least 10 of the 46 pieces. We impose this

restriction in order to avoid outlier effects. Altogether 32 among the 128 violinists occurring in

Tables 1-3 pass this minimum requirement.6

Our central question is now how we can rank violinists based on the data summarized

in Tables 1-3. Before we describe the concrete methods employed, we need to provide some

theoretical background from multi-criteria decision-making. This is dome in the next section.

6Evidently, the number 10 is somewhat arbitrary. From a technical point of view at least a minimum of 8
pieces are required if we employ pairwise comparison matrices and do not want to deal with incomplete such
matrices.
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3 Background: Aggregation of Incomplete Lists

3.1 Aggregating Strict Partial Orders into a Complete Social Ranking:

Arrow’s Theorem Generalized

Let A = {a1, . . . , am} be the set of alternatives (violinists) and N = {1, . . . , n} the set of voters

(pieces). Denote by I the set of all profiles of strict partial orders (asymmetric and transitive

binary relations on A), i.e. the set of possibly incomplete individual preferences, and by P ⊆ I
the subset of all linear orders (i.e. complete partial orders).

In our context, the partial orders to be aggregated have a particular structure. While they

may be incomplete (because not all violinists have recorded all pieces), they form complete

orders on a subset (because the number of views allows, for each piece, the comparison of all

violinists that have recorded that piece). We refer to such partial orders as ‘lists.’

Definition 1. A list (on A) is a strict partial order �⊆ A × A such that � is complete on

some subset B ⊆ A with #B ≥ 2.

We denote by L the set of all (possibly incomplete) lists on A, and by Ln the domain of all

profiles of individual lists on A.

A social welfare function defined on the subdomain Ln ⊆ In assigns to each profile of

(possibly incomplete) lists a linear order, i.e. a complete social ranking of all alternatives in A.

Formally, we have the following definition.

Definition 2. A mapping F : Ln → P is called a social welfare function, henceforth, SWF on

the domain Ln.

In this way, we have extended the usual notion of a SWF as mapping from Pn to P to the

domain of all profiles of lists.

We turn to the appropriate generalizations of the well-known notions of Pareto property,

independence of irrelevant alternatives and dictatorship in our present context.

The first is the weak Pareto property stating that if all voters rank a above b, then so must

the social ranking.

Definition 3. A SWF F satisfies the weak Pareto property (or is weakly Paretian) (WP) if,

for all profiles Π = (�1, . . . ,�n) ∈ Ln and a, b ∈ A we have

(∀i ∈ N : a �i b) =⇒ a � b,

where �= F (�1, . . . ,�n).

Let us consider next the extension of the well-known IIA condition, which requires that,

for any pair of distinct alternatives, if in two profiles these two alternatives are ranked in the

8



same way voter by voter, then the SWF must rank these two alternatives in both profiles in the

same way. The following condition formalizes this general principle in our context of possibly

incomplete orders; it is exactly the version used in Pini ez al. (2009).

Definition 4. The SWF F satisfies independence of irrelevant alternatives (IIA) if, for all

distinct a, b ∈ A, and all profiles Π = (�1, . . . ,�n),Π′ = (�′1, . . . ,�′n) ∈ Ln we have

(
∀i ∈ N : a �i b⇔ a �′i b and b �i a⇔ b �′i a

)
=⇒

(
a � b⇔ a �′ b

)
, (3.1)

where �= F (�1, . . . ,�n) and �′= F (�′1, . . . ,�′n).

In our context, the natural notion of dictatorship is as follows.

Definition 5. A SWF F is dictatorial (or a dictatorship) if there exists a voter h such that,

for all (�1, . . . ,�n) ∈ Ln and all a, b ∈ A we have

a �h b =⇒ a � b,

where �= F (�1, . . . ,�n).

Observe that a dictator thus imposes the ordering of those alternatives on which she has an

opinion. Clearly, there can be at most one such voter. Also note that in our context it is not

possible to define a dictator as a voter who imposes exactly her (incomplete) preference as the

social ranking since we assume the social ranking always to be complete.7

The following version Arrow’s impossibility theorem follows from Pini et al. (2009, Th. 7).

Theorem 1. Suppose that m ≥ 3; then every SWF F : Ln → P that satisfies the weak Pareto

property (WP) and independence of irrelevant alternatives (IIA) is dictatorial.

Remark 1. One can define lexicographic dictatorships that satisfy all conditions of Theorem 1

as follows. First, if on some profile voter 1 has incomplete preferences one may let that voter

decide the ranking of those alternatives on which she has a opinion; then, voter 2 may decide

on the remaining alternatives on which voter 2 has an opinion, and so on. Evidently, while

formally possible such lexicographic dictatorships are not particularly attractive as aggregation

methods.

Remark 2. One may wonder if a result akin to Theorem 1 is true on all subdomains D of

profiles with Pn ⊆ D ⊆ In. Remarkably, the answer is, no. There are such subdomains D

on which there exist non-dictatorial SWFs satisfying IIA and WP; however, these SWFs are

not particularly attractive and violate a very mild monotonicity condition. A systematic and

detailed analysis of this issue is provided in Puppe and Tasnádi (2024).
7This is in contrast to Pini et al. (2009) who introduce different types of dictators, the ‘strong’ and ‘weak’

dictators.
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3.2 Incorporating Cardinal Information: Social Welfare Orderings and

Collective Utility Functions

It is well-known that Arrow’s impossibility can be overcome by giving up the IIA condition and

allowing for interpersonal (i.e. inter-criteria) comparisons. This approach lends itself naturally

to our context since we can use even cardinal information, namely the number of views per

piece, for such inter-criteria comparison.

In this section, we explore this route. The number of views of a piece can take on only non-

negative values, thus there is a common minimum value, the zero which is naturally identified

with the lack of any information stemming from that particular voter (i.e. piece). Although,

strictly speaking, the values are integers, it is natural to embed them into the non-negative

reals. Specifically, let R+ = [0,∞) and R++ = (0,∞); by U = Rn+ we denote the set of

all utility profiles, where we identify the number of views on piece i with the ‘utility’ that a

candidate (i.e. violinist) receives from that piece. Let D(U) stand for the set of pieces for which

a violinist has a strictly positive number of views given the utility profile U ∈ U . Summarizing,

a utility profile contains the number of views for each piece and a given violinist. Violinists are

then compared based on their respective utility profiles, i.e. a matrix V ∈ UA contains all data

necessary in order carry out these comparisons (in the tables above, pieces are represented as

rows of this matrix and violinists as columns).

Next, we review and adapt some well-known concepts that have been developed for ‘com-

plete’ utility profiles, i.e. for utility profiles U ∈ Rn++ for which D(U) = N . A social welfare

ordering compares violinists in terms of their associated utility profiles; formally, we have the

following definition.

Definition 6. A social welfare ordering (SWO) � on U is a preference ordering (complete and

transitive binary relation) on the set of all utility profiles.

The interpretation is that a utility profile is preferred by the social welfare ordering if and

if it corresponds to a higher aggregate value (‘social welfare’). In what follows, we assume that

SWOs satisfy:

• Anonymity: Only the voters’ utilities matter not their identities, and

• Monotonicity: A unilateral increase in one voter’s utility increases social welfare.

In our context, the anonymity condition says that all pieces contribute equally to the value of a

violinist, or in other words, that the identity of pieces does not matter. One might question this

assumption by arguing that some pieces are more central to the repertoire than others. This

can be addressed by weighing pieces differently. While this is possible in principle, it would

require a systematic musical inquiry to determine the weights that is beyond the scope of the

10



present paper. Moreover, we have tried to partly solve this problem by identifying the core of

those pieces that are commonly held by music experts to be central to the violin repertoire.

The monotonicity condition seems uncontroversial.

A collective utility function assigns a numerical value to any utility profile.

Definition 7. A collective utility function (CUF) assigns to each utility profile U ∈ U a real

value. A CUF W represents the SWO � if (U � U ′ ⇔W (U) ≥W (U ′)).

CUFs are sometimes considered to be simpler mathematical objects than SWOs, but note

that some important SWOs cannot be represented by a CUF, e.g. the lexicographic SWOs. On

the other hand, we know from Debreu’s famous representation theorem (Debreu, 1959) that

every continuous SWO can be represented by a continuous CUF.

3.2.1 The Utilitarian and Relative Utilitarian Collective Utility Functions

An obvious candidate in order to account for cardinal information is the well-known utilitarian

CUF which takes the arithmetic mean as a measure of social welfare (see, e.g., Moulin, 1988).

In our context, the utilitarian CUF simply maximizes the average number of views that a

violinist receives. We can obtain this solution by employing the following minimization of

squared distance approach. Specifically, consider for any profile U ∈ U , the problem

arg min
z∈R+

∑
i∈D(U)

(ui − z)2 . (3.2)

This has the solution

u∗ =
1

k

∑
i∈D(U)

ui,

where k = #D(U) is the number of pieces for which the candidate (violinist) at hand receives

a positive number of views. Let us denote the utilitarian CUF by

Wutil(U) :=
1

k

∑
i∈D(U)

ui.

The utilitarian CUF treats pieces differently in the sense that pieces with more total views

have a larger weight in the comparisons between violinists. One could address this by normal-

izing the number of views also from above and measure utility in terms of the fraction of views

that a violinist receives from a given piece. This approach gives rise to the so-called ‘relative

utilitarian’ CUF first axiomatized by Dhillon and Mertens (1999), see also Sprumont (2019) and

Peitler and Schlag (2024) for recent contributions. Formally, for each piece i, let ūi denote the

maximal number of views that any violinist achieves in that piece given the data summarized

11



in the matrix V ∈ UA. Then define

Wrel−util(U) :=
1

k

∑
i∈D(U)

ui/ūi.

3.2.2 Scale Independence and the Extended Nash Collective Utility Function

Both the utilitarian and the relative utilitarian CUFs involve a particular comparison between

the value of one view of any given piece and that of one view of another piece; indeed, in case of

the utilitarian CUF each single view has exactly the same value, and in the case of the relative

utilitarian CUF their normalized value is the same. But one can question if the values of views

across pieces are in fact commensurable. This is analogous to the case of utility theory in which

many researchers have rejected the idea that individual utilities are interpersonally comparable.

The following property of scale independence expresses exactly this idea that utilities (views)

are incomparable across voters (pieces).

Definition 8. A SWO � is scale independent (SI) if

∀U,U ′ ∈ U ∀Z ∈ Rn++ : U � U ′ ⇐⇒ U • Z � U ′ • Z, (3.3)

where U • Z = (u1z1, . . . , unzn).

In the case of complete utility profiles (i.e. with strictly positive utilities) the scale indepen-

dence condition characterizes the so-called Nash CUF.

Definition 9. WN (U) =
∏
i ui is the Nash CUF.

The following result is Theorem 2.3 in Moulin (1988), see also d’Aspremont and Gevers

(1977). The set of all complete utility profiles with D(U) = N is denoted by Uc = Rn++.

Theorem 2 (D’Aspremont and Gevers, 1977). The CUF WN satisfies SI on Uc. Conversely,

any continuous SWO on R++ that satisfies SI is represented by WN .

The next result shows that the characterization of the Nash CUF does not carry over to the

case of incomplete utility profiles.

Theorem 3. There does not exist a continuous SWO that satisfies SI on U .

Proof. By contradiction, suppose that there exists a continuous and SWO � that satisfies SI

on U . Then, by continuity it can be represented by a continuous CUF W , which on Uc equals

WN by Theorem 2. Take a proper incomplete utility profile U and a complete utility profile

U ′ such that U � U ′ and W (U ′) > 0. Note that one can choose such utility profiles U and

U ′ because the value of WN is arbitrarily close to zero, and by monotonicity there exists a U
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such that W (U) is positive. Then pick a sufficiently small ε > 0 and a sufficiently large λ > 0

such that for U ′′ ∈ RN++ defined by u′′i = ε if i ∈ D(U), and u′′i = λ if i /∈ D(U) we have

W (U ′ • U ′′) > W (U • U ′′), a contradiction.

By Theorem 3, there does not exist a CUF that satisfies SI on the larger domain of incom-

plete utility profiles. Nevertheless, we can try to extend the Nash CUF to the larger domain

so as to satisfy SI at least on Uc. As a starting point we take the logarithm of WN in order

to transform the product into a sum; we then minimize for any profile U ∈ U the sum of the

squared difference in views piece by piece. In other words, we solve the problem

arg min
z∈R+

∑
i∈D(U)

(log ui − log z)2 . (3.4)

Let k = #D(U). Since the quadratic deviations are minimized by the arithmetic mean, we

obtain for the solution u∗ of (3.4),

log u∗ =
1

k

∑
i∈D(U)

log ui

from which we get

u∗ = k

√ ∏
i∈D(U)

ui.

In particular, by minimizing the sum of the differences of the logarithms of the available (and

thus positive) views, we have to take the product of views and thereafter the k-th root of the

obtained product, where k is the number of pieces with positive views. We call this CUF on U
the extended Nash CUF. (Note that the extended Nash CUF as defined is indeed a monotone

transform of WN on Uc.) The extended Nash CUF represents an arguably optimal compromise

in view of the impossibilities uncovered by Theorems 1 and 3: it does not satisfy IIA but it

uses cardinal information in a way that does not involve inter-criteria comparisons on the class

of complete utility profiles.

Evidently, one can also here normalize the utilities and express them in terms of fractional

numbers of views, i.e. consider the following variant of the extended Nash CUF. For all U ∈ U ,

Wext−N (U) = k

√ ∏
i∈D(U)

(ui/ūi).

This is the form in which we will use the extended Nash CUF in our application below.

Remark 3. On complete utility profiles on the entire set of real numbers (including negative

reals) the utilitarian CUF can be characterized by a condition of ‘zero independence’ (see
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d’Aspremont and Gevers, 1977) in a way similar to the characterization of the Nash CUF in

terms of SI on the positive reals. As in the case of SI one can show that no continuous SWO

can satisfy zero independence on the class of incomplete utility profiles (appropriately defined).

4 Application to the Ranking of Violinists

What ranking of violinists do our data on the number of views on YouTube suggest? Theorem

1 above shows that any ranking will violate some desirable property. Therefore, our approach

to answer the question is to look at different ranking methods and to investigate the robustness

of the results with respect to the specific method employed.

A näıve first approach is to look at the violinst who receives the most first places. The clear

winner on this ‘plurality count’ criterion is Hilary Hahn who is the most viewed violinist in 7

of the 46 pieces, followed by Sarah Chang who is the most viewed violinist in 3 pieces. But

in view of the available information, looking only at the number of first places is evidently not

appropriate. Instead, we will use both ordinal and cardinal ranking methods that make use of

the available information. We describe these next.

Given a list �∈ L, we denote the domain of �, i.e. the set of comparable alternatives,

by D(�), and for all B ⊆ A, by �|B the restriction of � to B ∩ D(�), i.e. the preference

relation that is defined on B ∩ D(�) and maintains the ordering of these alternatives as in �.

In addition, we denote the set of complete linear orders on B by PB. The set of all incomplete

lists is thus given by L = ∪∅6=B⊆APB.

We derive a profile Π = (�1, ...,�n) ∈ Ln of incomplete lists from the data on views V by

aj �i ak :⇐⇒ V (i, aj) > V (i, ak) > 0

for any i ∈ N and any aj , ak ∈ A.8

4.1 Ordinal Methods

The list of possible SWFs on Pn is long and some of them have nontrivial and multiple extensions

to Ln. Therefore, in this paper we restrict ourselves to the most basic ones: the Borda count,

the Copeland method and the MedRank rule. To illustrate these SWFs in our context we use

the profile given in Table 4. In all what follows, we use the fixed tie-breaking rule aτbτcτdτe

to resolve ties in order to arrive to the linear ordering.

1. The Borda count, henceforth denoted by BC, orders the alternatives based on the sum

of their ranks. In particular, an alternative with a lower sum of ranks is preferred over

8It is worth mentioning that we simplify our analysis by considering only strict preferences without loss of
generality since the possibility of identical number of views by different violinists for a given piece is negligible.
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Rank �1 �2 �3 �4 �5 �6 �7

1 e d a e d c c
2 a a d b a e e
3 d b c d e d
4 b b b a
5 c c

Table 4: Illustrative incomplete profile

an alternative with a higher sum of ranks. As for any SWF, one possibility would to

put all unranked alternatives at the lowest rank, which is against our interpretation of

incomparable alternatives as missing information. We therefore consider the so-called

‘modified’ Borda count which better accounts for the missing information. Translating

ranks into scores, if � compares k ≤ n alternatives, then the highest ranked alternative

gets k points, the second highest ranked alternative k − 1, and so forth.

In case of the profile in Table 4 the sum of modified Borda scores of alternatives a, b, c,

d and e are 15, 8, 10, 17 and 15, respectively. Therefore, the social ordering determined

by BC is d � a � e � c � b. Formally, the SWF BCτ is the modified Borda count if for

all (�i)ni=1 ∈ Ln and all pairs of distinct alternatives a and b we have

aBCτ ((�i)ni=1) b :⇐⇒
n∑

a∈D(�i)

|D(�i)| − rk[a,�i] >
∑

b∈D(�i)

|D(�i)| − rk[b,�i] or

∑
a∈D(�i)

|D(�i)| − rk[a,�i] =
∑

b∈D(�i)

|D(�i)| − rk[b,�i] and aτb,

where rk[a,�i] stands for the position of a in �i.

2. The Copeland method is based on pairwise comparisons of alternatives. An alternative

beats another if it is ranked higher by more voters than vice versa; in this case, the

former alternative wins while the other looses. This procedure is carried out for any pair

of distinct alternatives. The Copeland method ranks alternatives based on the numbers

of their pairwise wins. This, in fact, is the usual way how round-robin tournaments are

organized. Of course, possible ties have to be broken by a tie-breaking rule. Again we

consider the profile given in Table 4 and employ the same tie-breaking rule as in case

of the previously introduced SWFs. We can see that a beats alternatives b and c, b

beats alternative c, c does not beat any other alternative, d beats alternatives a, b and

c, and finally e beats a, b and d. Therefore, the Copeland method arrives to the linear

ordering d � e � a � b � c. We shall denote by CM the Copeland method, which we

define now formally. For a given profile (�i)ni=1 ∈ L we say that alternative a ∈ A beats
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alternative x ∈ A if #{i ∈ N | a �i x} > #{i ∈ N | x �i a}, i.e. a wins over x by

pairwise comparison. We shall denote by l[a, (�i)ni=1] the number of alternatives beaten

by alternative a ∈ A for a given profile (�i)ni=1. Then, the SWF CMτ is the Copeland

method if for all (�i)ni=1 ∈ L and all pairs of distinct alternatives a and b we have

aCMτ ((�i)ni=1) b :⇐⇒ l[a, (�i)ni=1] > l[b, (�i)ni=1] or

l[a, (�i)ni=1] = l[b, (�i)ni=1] and aτb.

3. The MedRank rule determines for each alternative a ∈ A the highest rank ha such

that a appears more than #{i ∈ N | a ∈ D(�i)}/2 times in a given profile among the

alternatives that ranked at ha or higher; alternatives are then ranked according to their

ha value in descending order. Looking at Table 4, we see that no alternative receives a

majority (of 4 votes) when counting only the numbers of top ranked alternatives. Now

taking also the second ranked alternatives into consideration we see that both a and e

appear four times, hence ha = he = 2 with the tie-breaking rule τ giving priority to a.

Admitting also all third ranked alternatives, d appears 6 times in the first three rows

hence hd = 3. If we also take the fourth ranked alternatives into account c and b appear

6 and 4 times, respectively, hence hb = hc = 4. Thus, employing the tie breaking rule τ ,

the MedRank rule gives the ranking a � e � d � b � c.

In general, for each alternative a the rank ha is the median rank in all rankings of voters

who rank alternative a. We shall denote the MedRank rule by MR, and by MRτ the

variant employing the tie-breaking rule τ , i.e.,

aMRτ ((�i)ni=1) b :⇐⇒ ha < hb or (ha = hb and aτb) .

4. Dwork et al. (2002) proposed the Markov chain extension of the Borda count

for incomplete lists as follows. The alternatives are taken as the states of the Markov

chain. For a given preference profile Π and a given alternative a ∈ A pick each pref-

erence relation in which a is ranked with equal probability. Then, for the selected

preference relation �i choose each ranked alternative in D(�i) with equal probabil-

ity. If the selected alternative b is ranked higher than a, that is b �i a, then move

to state b; otherwise stay in state a. For the profile in Table 4 the derived transi-

tion matrix is show in Table 5. The stationary point of this Markov-process equals

[0.21239061, 0.04694411, 0.16922061, 0.25486873, 0.31657595], and ranking the alternatives

according to these probabilities we arrive at the social ranking e � d � a � c � b. In

general, the Markov chain extension of the Borda count ranks the alternatives according

to the probabilities of the stationary point of the Markov-process defined above; below,
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a b c d e

a 1
5

( 4
5

+ 2
3

+ 1 + 4
5

+ 1
4

) 0 1
5

1
4

1
5

( 1
3

+ 1
5

+ 1
4

) 1
5

( 1
5

+ 1
4

)

= 211
300

= 0 = 1
20

= 47
300

= 9
100

b 1
5

( 1
5

+ 1
3

+ 1
4

+ 1
5

) 1
5

( 2
5

+ 1
3

+ 1
4

+ 2
3

+ 2
5

) 1
5

1
4

1
5

( 1
5

+ 1
3

+ 1
4

1
5

) 1
5

( 1
5

+ 1
3

+ 1
5

)

= 59
300

= 123
300

= 1
20

= 59
300

= 11
75

c 1
5

( 1
5

+ 1
4

+ 1
5

) 1
5

( 1
5

+ 1
5

) 1
5

( 1
5

+ 2
4

+ 1
5

+ 1 + 1) 1
5

( 1
5

+ 1
4

+ 1
5

) 1
5

( 1
5

+ 1
5

)

= 13
100

= 2
25

= 58
100

13
100

= 2
25

d 1
6

( 1
5

+ 1
4

) 1
6

( 1
3

) 1
6

( 1
4

) 1
6

( 3
5

+ 1 + 3
4

+ 1
3

+ 1 + 2
4

) 1
6

( 1
5

+ 1
3

+ 1
4

)

= 9
120

= 1
18

= 1
24

= 251
360

= 47
360

e 1
5

1
5

0 1
5

( 1
2

+ 1
4

) 1
5

1
5

1
5

(1 + 1 + 3
5

+ 1
2

+ 3
4

)

= 1
25

= 0 = 3
20

= 1
25

= 77
100

Table 5: Borda transition matrix

we denote the induced SWF by ‘BordaMC.’

5. Dwork et al. (2002) also proposed the Markov chain extension of the Copeland

Method for incomplete lists. For a given preference profile Π the set of alternatives

ranked by any voter are the states of the Markov chain. Pick any alternative a ∈ A with

equal probability. Then for any other alternative b move to state b if and only if b is

preferred to a by the majority of voters who rank both a and b. For the profile in Table

4 the derived transition matrix is shown in Table 6. The stationary point of this Markov-

a b c d e

a 1
5

(1 + 0 + 0 + 1 + 1) 0 0 1
5

1
5

b 1
5

1
5

(0 + 1 + 1 + 0 + 0) 0 1
5

1
5

c 1
5

1
5

1
5

(0 + 0 + 1 + 0 + 1) 1
5

0

d 0 0 0 1
5

(1 + 1 + 1 + 1 + 0) 1
5

e 0 0 0 0 1
5

(1 + 1 + 1 + 1 + 1)

Table 6: Copeland transition matrix

process equals [0, 0, 0, 0, 1]; ranking the alternatives according to these probabilities and

employing the tie-breaking rule ,we arrive to the social ranking e � a � b � c � d. (The

result is non-surprising since e is the Condorcet-winner.) In general, the Markov chain

extension of the Copeland method ranks the alternatives according to the probabilities

of the stationary point of the Markov-process so defined; below, we denote the induced

SWF by ‘CopMC.’

6. We also employ a method based on pairwise comparison matrices introduced by Saaty

(1980). The (i, j)th entry of the pairwise comparison matrix (PCM) contains the ratio

of the preferences in a profile in which alternative ai beats alternative aj . For the profile

in Table 4 the PCM is shown in Table 7. In determining the ranking for the PCM in

a b c d e
a 1 4/0 3/1 2/3 1/2
b 0/4 1 2/1 1/4 0/3
c 1/3 1/2 1 1/3 2/2
d 3/2 4/1 3/1 1 1/3
e 2/1 3/0 2/2 3/1 1

Table 7: Pairwise comparison matrix

Table 7, we replace x/0 by 10 and 0/x by 0.1, for simplicity. The weights for the ranking
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are then determined by the eigenvector associated with the dominant real eigenvalue of

this modified PCM. The non-normalized weights are 0.6510, 0.1841, 0.7285, 0.5029, 1,

resulting in the ranking of alternatives e � c � a � d � b. The SWF induced by this

method is referred to as ‘Saaty’ below.

4.2 Cardinal Methods

Among the collective utility functions, we employ the utilitarian (‘Util’), the relative utilitarian

(‘RUtil’), the Nash (‘Nash’) and the extended normalized Nash (‘RNash’) CUF, respectively.

Note that we only consider ‘utilities’ (i.e. views) that pass the 50 thousand threshold; therefore

we do not run into problems with zero values in case of the Nash and relative Nash CUF (see

Table 8 for the results).

5 Results and statistical analysis

Our main goal is to confirm or refute the hypothesis that the most famous violinists from the

early period of recordings are as attractive to today’s viewers as the prominent contemporary

violinists. To test this statistically, we produced different rankings of violinists based on the

methods described above, and grouped the artists into active and non-active violinist.

Table 8 contains the rankings according to the ten methods defined above. From the 128

violinists under consideration only 32 violinists had 10 uploaded videos passing the 50 thousand

view threshold.9 In each column we can see the rank positions of the violinists by the respective

method.10

The names of the violinists are ordered based on their positions in the last column. Indeed,

we believe that the Relative Nash CUF is the most sound ranking because it satisfies the scale

independence property at least on all full utility profiles, and because it gives each piece the

same weight. At first sight we can see that the positions of most of the violinists are ‘similar’

for all ten employed methods. We obtained the most deviations for Saaty’s eigenvalue method.

The rank correlation matrix in Table 9 shows the correlation between any pair of rankings.

Most pairs of rankings have a very high rank correlation (values larger than 0.7), or high rank

correlation (between 0.5 and 0.7). There is a medium level of correlation only between the Nash

CUF and Saaty’s method.

We can also observe that Hilary Hahn is ranked first based on eight out of ten methods,

while Itzhak Perlman is the most frequent second ranked violinist. Maxim Vengerov is also

9We have taken into account only videos uploaded until the 31th of December 2023; the data were collected
during October 2024 with the data for each piece collected on the same day.

10We have also compiled rankings based on requiring just 8 or 6 pieces passing the threshold, and alternatively
considered a minimum threshold of only 25000 views. These rankings are available on request from the authors.
They all support our null hypotheses as well.
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ranked in the top 10 by all methods. Joshua Bell, Sarah Chang, Julia Fischer, Jascha Heifetz

and David Oistrakh are ranked by at least eight methods in the top 10.

Cop MBorda MedRank BordaMC CopMC Saaty Util RUtil Nash RNash
Hilary Hahn 1 2 1 1 1 1 1 1 2 1
Sarah Chang 3 10 4 4 3 3 6 2 19 2
Maxim Vengerov 8 5 4 7 6 5 4 3 5 3
David Oistrakh 6 3 2 3 4 18 5 4 3 4
Itzhak Perlman 2 1 3 2 2 7 2 7 1 5
Ray Chen 11 11 9 12 7 10 11 6 13 6
SoHyuon Ko 16 23 12 21 19 9 14 5 28 7
Jascha Heifetz 8 7 4 9 8 12 9 11 9 8
Julia Fischer 5 8 4 6 11 19 10 8 8 9
Augustin Hadelich 20 19 19 13 24 20 22 10 12 10
Joshua Bell 8 5 4 5 9 8 7 12 6 11
Janine Jansen 3 4 11 8 5 4 3 13 10 12
Clara-Jumi Kang 12 9 9 10 16 14 13 21 7 13
Leonidas Kavakos 31 26 19 24 27 30 27 14 18 14
Anne-Sophie Mutter 16 12 18 15 13 24 12 16 14 15
David Garrett 12 16 26 16 17 13 8 22 24 16
Sayaka Shoji 7 17 12 14 10 2 17 9 22 17
Gil Shaham 27 24 24 19 25 22 28 18 20 18
Kyung Wha Chung 15 18 26 22 12 15 20 17 16 19
Ai Takamatsu 12 13 15 17 15 6 15 28 11 20
Isaac Stern 23 13 12 11 18 25 23 19 4 21
Nicola Benedetti 32 31 19 31 31 28 30 29 31 22
Maria Duenas 16 22 19 23 21 17 21 15 29 23
Frank P. Zimmermann 24 32 26 32 30 29 32 24 32 24
Leonid Kogan 29 25 31 25 28 31 26 23 17 25
Soojin Han 19 15 19 18 14 23 19 30 23 26
Nathan Milstein 26 30 29 28 32 27 29 27 30 27
Yehudi Menuhin 21 20 15 20 23 16 16 20 15 28
Zia Hyunsu Shin 27 21 32 26 29 21 18 26 26 29
Shlomo Mintz 21 28 24 27 20 11 25 25 27 30
Pinchas Zuckerman 29 29 15 29 22 26 31 31 25 31
Daniel Lozakovich 24 25 29 30 26 32 24 32 21 32

Runs test (Z r) 0.567 1.636 0.567 1.636 1.101 0.567 1.636 0.567 -1.569 0.567
Wilcoxon rank-sum
test (Z-value) -0.661 -0.114 -0.410 -0.114 -0.433 -1.299 -0.570 -0.251 0.980 -0.752

Table 8: Rankings and Z-values

After these simple observations we turn to the test of our main hypothesis. Since we have no

information about the distribution of views we carry out two well-known non-parametric tests.

The standardized Z-values for the runs test and the Wilcoxon rank sum test can be found in

the last two rows of Table 8 for each method.11 For both tests we have to form two groups. Out

of the 32 violinists appearing in Table 8 Kyung Wha Chung, Jascha Heifetz, Leonid Kogan,

Yehudi Menuhin, Nathan Milstein, David Oistrakh and Isaac Stern are inactive, while the other

25 violinists are all active.

To illustrate the tests we take the last column of Table 8. Following the ranking by the

(extended) relative Nash CUF we obtain the sequence A, A, A, I, A, A, A, I, A, A, A, A, A,

A, A, A, A, A, I, A, I, A, A, A, I, A, I, I, A, A, A, A, where A and I stands for active and

11For a detailed description ot these two tests we refer to Walpole et al. (2016).
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Cop MBorda MedRank BordaMC CopMC Saaty Util RUtil Nash RNash
Cop 1.0000 0.8796 0.7703 0.8672 0.9283 0.8369 0.9130 0.7231 0.6284 0.7561
MBorda 0.8796 1.0000 0.7972 0.9531 0.9064 0.6688 0.9285 0.6648 0.8668 0.7559
MedRank 0.7703 0.7972 1.0000 0.8491 0.8197 0.6422 0.7389 0.7393 0.7109 0.7909
BordaMC 0.8672 0.9531 0.8491 1.0000 0.8827 0.6807 0.8794 0.7771 0.8464 0.8405
CopMC 0.9283 0.9064 0.8197 0.8827 1.0000 0.7841 0.8845 0.7188 0.7060 0.7577
Saaty 0.8369 0.6688 0.6422 0.6807 0.7841 1.0000 0.7720 0.6342 0.4175 0.6213
Util 0.9130 0.9285 0.7389 0.8794 0.8845 0.7720 1.0000 0.7053 0.6946 0.7698
RUtil 0.7231 0.6648 0.7393 0.7771 0.7188 0.6342 0.7053 1.0000 0.5576 0.9106
Nash 0.6284 0.8668 0.7109 0.8464 0.7060 0.4175 0.6946 0.5576 1.0000 0.6393
RNash 0.7561 0.7559 0.7909 0.8405 0.7577 0.6213 0.7698 0.9106 0.6393 1.0000

Table 9: Rank correlation matrix

inactive, respectively. We can see 13 runs, where a run is a maximal consecutive subsequence of

‘A’s or ‘I’s. Intuitively, if the this number is relatively large we cannot separate the two groups

and our hypothesis cannot be refuted. Carrying out a respective one-tailed test, the respective

Z values have to be at least −1.65 at a significance level of 5 percent. We can see that this is

satisfied by all Z values, and therefore we can confirm our hypothesis.

Turning to the Wilcoxon rank-sum test, we still have to separate our 32 violinists into

two groups and determine the sum of the ranks for each group. The Wilcoxon test checks

whether the distributions for the two groups are sufficiently similar or not. Assuming that the

active violinists still do not get less attention on YouTube, we carry out a one-sided test. At a

significance level of 5 percent the Z values shown in the last line of Table 8 have to be larger

than −1.65. We can see that this is the case for all ten methods. Thus, based on the Wilcoxon

test we can also affirm our hypothesis. In fact, the respective Z values a far larger than −1.65

for both tests.

6 Concluding Remark

One may question if counting the number of YouTube views is in fact an appropriate basis for

judging our hypothesis. But note that our approach arguably even favors the younger genera-

tion, for instance because many of the younger artists maintain their own YouTube channels.

Moreover, even though theoretically neutral with respect to violinists, the YouTube search and

recommendation algorithm naturally favors newly uploaded content. These considerations thus

appear to even strengthen our main result that older violinists are as attractive to contemporary

audiences as contemporary artists. In addition, there is good reason to believe that our rankings

and results are robust with respect to the precise source of data; indeed, similar results can be

expected if data were collected from other platforms such as Spotify, Apple Music Classical or

IDAGIO.
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Appendix

In this appendix, for each violinist and piece, the three most viewed items with at least 25.000

views are added. It can be the case that none, one, two or three videos satisfy this criterion.

In addition, we require that the at most top 3 viewed items get altogether at least 50.000

views, and that the ranked violinist in Table 10 have 10 such pieces. In Table 10 we can see

that Hilary Hahn is ranked first by 8 out of 10 methods. Itzhak Perlman is ranked second most

frequently and always ranked in the top 10. Among the legendary artists of the previous century,

David Oistrakh and Jascha Heifetz are ranked in the top 10 by all employed methods. For all

ten methods the Wilcoxon-sum test accepts our null hypotheses that the inactive violinists

are as attractive to the viewers as contemporary active violinist (at a 5% significance level).

Concerning the runs test only the Nash CUF misses slightly the 5% significance level, for

all other methods the runs test accepts our null hypotheses safely. Out of the 34 violinists

appearing in Table 10 Kyung Wha Chung, Jascha Heifetz, Leonid Kogan, Yehudi Menuhin,

Nathan Milstein, David Oistrakh and Isaac Stern are inactive, while the other 27 violinists are

all active.

The rank correlation matrix in Table 11 shows between most of the rankings very high rank

correlation (values larger than 0.7) or high rank correlation (between 0.5 and 0.7). There is

only a medium level of correlation between the Nash CUF and Saaty’s method.
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Cop MBorda MedRank BordaMC CopMC Saaty Util RUtil Nash RNash
Hilary Hahn 1 2 1 1 1 1 1 1 2 1
Bomsori Kim 6 19 2 8 5 3 14 3 30 2
Itzhak Perlman 2 1 2 2 2 10 2 5 1 3
Maxim Vengerov 10 5 7 6 12 5 5 4 7 4
David Oistrakh 5 3 2 3 4 7 7 6 3 5
Sarah Chang 3 10 5 5 3 2 6 2 18 6
Jascha Heifetz 4 4 7 4 6 9 8 7 4 7
Ray Chen 13 12 7 12 10 14 12 10 14 8
Julia Fischer 7 8 6 7 9 21 9 8 9 9
SoHyuon Ko 20 26 11 24 19 20 16 14 28 10
Augustin Hadelich 25 21 27 22 27 18 24 11 13 11
Joshua Bell 14 6 10 9 11 11 10 13 6 12
Janine Jansen 9 7 11 10 8 13 4 12 10 13
Anne-Sophie Mutter 17 11 17 14 17 25 11 17 11 14
David Garrett 11 12 22 13 14 6 3 21 21 15
Clara-Jumi Kang 11 9 11 11 16 16 13 23 8 16
Sayaka Shoji 7 15 11 15 7 4 15 9 22 17
Leonidas Kavakos 31 25 22 25 25 31 27 18 15 18
Gil Shaham 28 22 29 18 26 22 29 19 20 19
Kyung Wha Chung 18 18 26 21 21 23 21 16 17 20
Isaac Stern 25 16 17 17 20 29 23 20 5 21
Ai Takamatsu 16 14 16 16 15 8 18 29 12 22
Nicola Benedetti 33 32 11 27 30 27 30 27 32 23
Maria Duenas 15 23 22 20 13 12 22 15 29 24
Soojin Han 19 17 29 23 18 26 19 28 24 25
Leonid Kogan 29 26 33 26 31 32 28 24 19 26
Frank P. Zimmermann 21 34 28 33 34 24 34 25 34 27
Nathan Milstein 24 28 17 28 22 28 31 30 31 28
Yehudi Menuhin 22 20 17 19 24 17 17 22 16 29
Shlomo Mintz 27 29 21 29 23 15 25 26 27 30
Pinchas Zuckerman 33 31 22 31 29 33 32 32 25 31
Zia Hyunsu Shin 23 24 31 30 32 30 20 31 26 32
Daniel Lozakovich 31 29 31 32 28 34 26 33 23 33
Antal Zalai 29 33 34 34 33 19 33 34 33 34

Runs test (Z r) 0.478 0.478 -0.605 0.478 -0.605 0.478 0.478 0.478 -1.689 -0.606
Wilcoxon rank-sum
test (Z-value) -0.234 0.298 -0.128 0.192 -0.234 -0.958 -0.532 -0.106 1.171 -0.575

Table 10: Rankings and Z-values based on the top 3 viewed videos

Cop MBorda MedRank BordaMC CopMC Saaty Util RUtil Nash RNash
Cop 1.0000 0.8559 0.7662 0.8915 0.9261 0.8276 0.8859 0.7992 0.5478 0.7961
MBorda 0.8559 1.0000 0.7104 0.9486 0.8620 0.6593 0.9222 0.7376 0.8663 0.7929
MedRank 0.7662 0.7104 1.0000 0.8275 0.8483 0.6750 0.7358 0.7639 0.5306 0.8136
BordaMC 0.8915 0.9486 0.8275 1.0000 0.9199 0.7574 0.8995 0.8533 0.7717 0.8894
CopMC 0.9261 0.8620 0.8483 0.9199 1.0000 0.8011 0.8726 0.8225 0.5963 0.8252
Saaty 0.8276 0.6593 0.6750 0.7574 0.8011 1.0000 0.7299 0.7137 0.3561 0.6895
Util 0.8859 0.9222 0.7358 0.8995 0.8726 0.7299 1.0000 0.7455 0.6920 0.7953
RUtil 0.7992 0.7376 0.7639 0.8533 0.8225 0.7137 0.7455 1.0000 0.5707 0.9306
Nash 0.5478 0.8663 0.5306 0.7717 0.5963 0.3561 0.6920 0.5707 1.0000 0.6275
RNash 0.7961 0.7929 0.8136 0.8894 0.8252 0.6895 0.7953 0.9306 0.6275 1.0000

Table 11: Rank correlation matrix for the top 3 viewed videos
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