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Abstract

This paper examines rebate rules in the context of public goods provision. These rules
aim to redistribute the surplus when total contributions exceed the cost of the project.
Using an axiomatic approach, we establish impossibility results that highlight the inherent
tensions between fairness, participation incentives, and contribution incentives. We then
propose and characterize the Proportional Rebate with Threshold rule, which identifies a
coherent trade-off across these objectives.
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1 Introduction

Public goods provision often involves collective financing arrangements in which individu-
als, firms, or municipalities pool resources to support a project. A well-known example is
crowdfunding, which has become a prominent mechanism in contexts ranging from innovation
(Miglo, 2022)) and investment (Strauszl 2017) to public goods provision itself (Spencer et al.,
2009). A defining feature of many such mechanisms is that, if total contributions fall short of
the required amount, they are reimbursed to contributorsﬂ However, when contributions ex-
ceed the project’s cost in provision point mechanisms, the surplus is typically retained, which
may discourage participation if contributors fear overcontributing. This paper develops an
axiomatic approach to rebate rules that balance contribution incentives and mitigate these
concerns.

In provision point mechanisms—including many crowdfunding campaigns—the process typ-
ically operates in two stages. In the first stage, potential contributors are informed about

the project and its cost, which determines the minimum amount required for implementation.

*We are grateful to Ingrid Ott and Utku Unver for their valuable comments and would like to express our
gratitude to the people at Boston College for their warm hospitality, where most of the theoretical analysis
was conducted.

tUniversité Paris-Saclay, ENS Paris-Saclay, CEPS, cyril.rouault@universite-paris-saclay.fr

#Karlsruhe Institute of Technology (KIT), resul.zoroglu@kit.edu

$Zoroglu gratefully acknowledges financial and ideal support from the Avicenna-Studienwerk, funded by the
German Federal Ministry of Education and Research.

'In the public goods literature, this is often referred to as reimbursement or a money-back guarantee (see
Marks and Crosonl (1998} |Zubrickas| 2014)).


mailto:cyril.rouault@universite-paris-saclay.fr
mailto:resul.zoroglu@kit.edu

Based on this information, they decide whether to contribute. The project is implemented if
total contributions meet or exceed this cost by the end of the campaign. Otherwise, contri-
butions are returned to participants, as in the all-or-nothing mechanism, or retained, as in
the keep-it-all mechanismﬂ A central challenge in this stage is the assurance problem, which
occurs when contributors hesitate to commit funds because they lack confidence that the
project will reach its funding target (Isaac et al.,|[1989). In the second stage, any surplus—that
is, contributions beyond the project’s cost—may be redistributed among contributors. The
treatment of this surplus has important implications for contribution decisions (Spencer et al.,
2009)), yet the literature has focused mainly on the first stage, leaving the second stage rela-
tively unexplored. In this paper, we focus exclusively on the rebate of surplus contributions,
excluding any distribution related to the project’s completion.

A fundamental objective of public goods provision is to reach the funding requirement needed
to implement the project. Achieving this depends on two key factors: the number of contrib-
utors and the size of their individual contributions. Both are essential to ensure the project’s
feasibility—broad participation increases the likelihood of reaching the cost, while higher in-
dividual contributions raise the total funds available. These objectives and factors are similar
in crowdfunding campaigns, where success likewise hinges on attracting many backers and
encouraging generous pledges. In both contexts, the design of rebate rules should support
these goals by fostering participation and incentivizing higher contributions.

We adopt a model where individuals contribute a predetermined, non-strategic amount, and
the total contributions determine the overall project cost. The project itself comprises mul-
tiple alternatives, each corresponding to a different level of funding. Depending on the total
funds raised, the highest feasible alternative is selected, which naturally includes all lower-
cost alternatives as part of the project’s development. This framework mirrors real-world
cases where a project’s scale or quality expands with additional funding—such as upgrading
a public facility with new features or progressing through successive stages of a development
plan. This selection rule is consistent with the Utilization Rebate approach adopted by Marks
and Croson| (1998), who show that allocating surplus to finance a more advanced alterna-
tive is generally preferred by contributors and can enhance welfare. Once the total amount
raised is determined and the project’s cost is set, we analyze how any surplus portion of the
contributions is redistributed. To structure this analysis, we define three groups of axioms.
The first establishes a fundamental fairness principle for the rebate of surplus. The following
two capture the main objectives of crowdfunding: incentivizing contributions and maximizing
participation.

These groups are formalized as follows. Fairness is imposed by ensuring that contributors who
contribute equally receive equal rebate. To incentivize contributions, we introduce a monotonic-
ity axiom, which establishes an economic relationship whereby, under a higher contribution
alternative by an individual, their expected rebate is correspondingly higher. This condition
serves to mitigate strategic behaviors aimed at avoiding overcontribution. Finally, to en-

courage widespread participation, we impose that adding contributors should not drastically

2The all-or-nothing mechanism is used by platforms such as Kickstarter, whereas Indiegogo employs the
keep-it-all mechanism. See|Coats et al.| (2009), Chemla and Tinn| (2020) and |(Cumming et al.| (2020]) for further
discussion.



alter the rebate received by individuals. The population monotonicity axiom accommodates
projects spanning multiple municipalities or successive rounds of calls for contributions.
While combining these three axiomatic principles is desirable in rebate rule design, our results
suggest that satisfying all three simultaneously is not possible. Specifically, we demonstrate
that no rebate rule can simultaneously ensure equal treatment and incentivize higher in-
dividual contributions (Theorem . Moreover, the only rebate rule that guarantees equal
treatment while encouraging an expansion of the contributing population is one that refrains
from redistributing any surplus at all (Theorem .

We introduce weaker versions of these axioms to address these limitations and identify a
rebate rule that better balances these objectives. Our proposal, the Proportional Rebate
with Threshold (PRT) rule, redistributes the surplus only to contributors whose individual
contributions exceed the project’s average cost—referred to here as the threshold. For these
contributors, the rebate reduces their net payment—defined as their contribution minus the
rebate—toward that cost. By construction, the PRT rule directs a larger share of the surplus
toward higher contributors, even when contributions—and, in practice, valuations—differ
across individuals. We characterize the PRT rule and show that it is the only rule that strikes
a balance among the desirable axioms, simultaneously promoting high contributions, broad
participation, and fairness.

We introduce the Marginal Rebate of Contribution (MRC) as a tool to assess how an individ-
ual’s rebate changes in response to a hypothetical increase in their contribution, while holding
others’ contributions constant. Although contributors in our model do not behave strategi-
cally, analyzing the MRC allows us to explore the potential incentives that could influence
contribution behavior in alternative scenarios. This conceptual exercise helps illuminate how
rebate rules might encourage or discourage higher contributions. We demonstrate that the
PRT rule sustains a higher rebate in cases of over-contribution compared to rebate rules used
in fair-division settings, such as the Shapley rule and the widely used Proportional Rebate
rule. More precisely, under these latter rules, when individuals contribute at a higher level,
a significant portion of their excess contribution is redistributed to other contributors. We
argue that the PRT rule mitigates this effect, making it a more effective rule for balancing

incentives and fairness.

Related Literature

An extensive literature on public goods provision examines mechanisms that encourage indi-
vidual contributions while mitigating free-riding, whereby individuals withhold contributions
in the expectation that others will fund the project. Similarly, crowdfunding mechanisms
often incorporate rewards to motivate contributors—these can take various forms, such as
discounted rates, exclusive products, or equity stakes in the funded venture. Moreover, the
closely related assurance problem plays a central role in both contexts; |[Isaac et al. (1989)
argue that it is even more critical than free-riding. A common solution is the money-back
guarantee, which ensures contributors are reimbursed if the project fails to reach its funding
target. In contrast, the keep-it-all mechanism allows campaign initiators to retain all contri-

butions regardless of funding success, potentially undermining contributors’ confidence and



reducing participation. Experimental and empirical evidence (e.g., [Isaac et al.,|1989; Rondeau
et al., [1999; |Coats et al., 2009; Chemla and Tinnl, 2020; |Cumming et al., 2020)) consistently
shows that money-back guarantees increase contributions and improve project completion
rates. Moreover, Bagnoli and Lipman (1989) establish that such guarantees fully implement
the core within voluntary contribution mechanisms, thereby promoting efficient public goods
provision.

Rebate rules offer an alternative approach to enhancing contribution incentives in the post-
funding stage. |Spencer et al. (2009) compare six different rebate rules and find that the
Proportional Rebate is the most effective in achieving funding targetsﬂ However, their anal-
ysis does not include the PRT rule and remains silent on its relative effectiveness. More
recently, |Oezcelik et al.| (2025)) introduce the Bid-Cap rule, which restricts the highest in-
dividual contributions to prevent excessive payments once the funding goal is met. In our
model, the set of alternatives includes a null project with zero cost. Within this framework,
the PRT rule satisfies a money-back guarantee: contributors are fully reimbursed whenever no
project is implemented. In addition, we formalize contribution incentives through the axioms
of Contribution Monotonicity and Monotonicity of Net Payment, which together ensure that
(i) when an individual revises her contribution and chooses to increase it, her rebate rises, and
and (ii) across individuals, a higher contribution leads to a weakly higher rebate, without ever
resulting in a lower net payment for the higher contributor. To compare the extent to which
different rules reward higher contributions, we rely on the MRC, which we interpret as the
incremental change in an individual’s rebate when considering alternative (higher) contribu-
tions. We show that the MRC under the PRT rule exceeds that obtained under two natural
benchmark rules, namely the Proportional Rebate and the Shapley rulesE] This suggests that,
when rebates are used, the PRT rule provides stronger incentives for contributors to increase
their contributions than these alternative rules. To the best of our knowledge, this paper is
the first to use the MRC as a criterion for comparing rebate rules.

Another approach to rebate mechanisms involves using surplus funds to expand or enhance
the project itself. This concept is formalized in the Utilization Rebate rule, introduced by
Marks and Croson| (1998). A classic example is found in projects characterized by continuously
variable funding levels—where additional contributions can be proportionally allocated—such
as tree-planting initiatives, where surplus contributions beyond the initial project cost are
allocated to additional planting efforts. However, many projects—particularly public facilities
such as municipal swimming pools, parks, or daycare centers—experience improvements in
discrete stages, corresponding to specific levels of funding rather than a continuous scale.
To accommodate this, we model the project as consisting of several distinct alternatives,
each corresponding to an enhanced version of the project with a higher funding level. This

framework reflects the fact that additional financial resources enable discrete expansions or

30ur framework differs from the classical surplus-sharing model of [Moulin| (1987). In Moulin’s setting,
surplus arises from the efficient allocation of a fixed bundle under quasi-linear utilities. In contrast, in provision-
point mechanisms such as ours, surplus is generated only ez post, when aggregate contributions exceed the
project’s cost.

4Although the Shapley value is widely used in cost-sharing, fair division, and reward-allocation settings
(Shapleyl|1953; [Moulin and Shenker, [1992), it is typically defined on total costs or total values. The Shapley rule
introduced in Section [f] instead applies the Shapley value to the surplus arising in a provision-point mechanism,
thereby generating new insights for public-good provision and crowdfunding.



upgrades, implemented in stages rather than on a continuous scale. Moreover, when the
project is unique and no alternative exists, the Utilization Rebate rule remains silent, whereas
the PRT rule still provides a rebate.

Our paper also contributes to the axiomatic literature on public goods provision. [Béal et al.
(2025) highlight the role of early backer incentives and employ an axiomatic approach to char-
acterize reward mechanisms that encourage early contributions. However, this line of research
primarily focuses on pre-funding incentives and overlooks the management of surplus funds
once the provision point has been reached. Our paper extends this literature by providing an
axiomatic analysis of post-funding surplus rebates and suggesting that the rebate amount can
be an important factor influencing participation incentives.

The structure of the paper is as follows: Section [2] introduces the model and presents axioms
used in our analysis. Section [3] establishes fundamental limitations in the design of rebate
rules. In Section [ we introduce the Proportional Rebate with Threshold rule and examine
the axioms it satisfies. Section [5] provides a comparative analysis of rebate rules. Section []
concludes with key insights and directions for future research. Appendix [A] provides an addi-

tional insight, and all proofs are collected in Appendix [B]

2 Model

This section introduces our model and the axioms we consider.

2.1 Rebate Problem

Let I = {i1,...,in} be a set of individuals, and P = { Py, Py, ..., Py, } be an ordered set of project
alternatives, where Py represents the null alternative (no project is funded). Each alternative
Py, represents a progressively expanded version of the project, with associated costs ¢ € R
such that for any k, k" € {0,...,m}, with & < K/, we have ¢t < cp. The cost of the null
alternative Py is normalized to ¢y = 0. We assume that m > 1, meaning that at least one
non-null project alternative exists. In our approach, we consider the average cost of a funded
project alternative Py, denoted by ¢, = |CT’€|

Each agent i € I contributes a non-negative amount x; € Ry. Let x = (z;);e; be the
contribution vector. The total amount collected is given by X = >, x;. A project alternative
Py is funded if and only if ¢ < X < Ck+1E| The surplus S = X — ¢, represents the portion
of X not used to finance the project. A (rebate) problem is defined by the tuple (I, P,x). Let
II be the set of all problems.

Given a problem (I, P,x) € II, a rebate is a vector of positive real numbers r = (7;);es € Rlﬂ
such that Y ;7 < S. Let R(I, P,x) denote the set of all rebates for the problem (1, P, x).
A (rebate) rule is a mapping ¢ : II — Rlﬂ that assigns, to each problem (I, P,x) € II, a

5We assume that the funded alternative is the most expensive one among those whose cost does not exceed
the total amount collected. This aligns with the logic of the Utilization Rebate rule (see Marks and Croson),
1998)), whereby using rebates to support a larger-scale project effectively functions as a preferred form of
rebate compared to direct monetary returns. Implicitly, we assume that projects are comparable in nature
and improve only in quality as the amount collected increases. If the implemented project were to change
fundamentally with the total amount collected, contributors’ incentives would be affected, as individuals may
hold preferences over specific projects rather than solely over project scale or quality.



rebate p(I, P,x) € R(I, P,x). Given rule ¢ and (I, P,x), we denote by ¢;(I, P,x) the rebate

of individual 7.

2.2 Axioms

We now consider five axioms for rebate rules. The first axiom reflects a standard fairness
principle. It states that if two agents contribute the same amount, they must receive identical
rebates.

Equal Treatment of Equals (ETE). A rule rule ¢ satisfies (ETE) if for each problem (I, P,x) €
I1, for all individuals 7, j € I such that z; = x;, we have ¢;(I, P,x) = ¢;(I, P,x).

The second axiom guarantees that a contributor is not put at a disadvantage when compar-
ing different possible contribution levels. Specifically, if an individual’s contribution in one
scenario is higher than in another, then either a more expensive project alternative is funded,
or their rebate amount increases by at least the difference in contributionsﬁ

Contribution Monotonicity (CM). A rule ¢ satisfies (CM) if, for each problem (I, P,x) € I,
with Py being the funded alternative, the following holds:

For each i € I such that z; > Ekﬂ consider an alternative contribution z; > z;. Then either
SOZ(I7 P? (X—i7 x;)) - ¢Z<I7 P7 X) > CC; - wzﬂ

or
x + Z z; > cp with &' > k.
Jen{i}

The third axiom relies on the same reasoning but considers an alternative scenario in which
an individual increases her contribution. It requires that such an increase should not reduce
the rebate received by any other individual, or that it leads to the funding of a more costly
project alternative.

Global Monotonicity (GM). A rule ¢ satisfies (GM) if, for each problem (I, P,x) € II, with
Py, being the funded alternative, for ¢ € I with a} > x;, it holds for each j € I that

QOJ(Ia Pa (x—iax{[)) > Spj(la P7 (X)7

or
w; + Z Tj = Cpr with " > k.
jen{i}
The fourth axiom ensures that if an individual benefits from rebate, then she continues to

receive a positive rebate when new contributors join the population.

9Bagnoli and Lipman| (1989) suggest that rebate rules should have the property that an increase in the
contribution of $1 by individual ¢ should not generate a rebate to individual 7 of more than $1. We formalize
this reasoning in more detail in Section

"We rely on the project’s average cost as a benchmark to capture sufficiently high individual contributions,
while imposing no constraint when contributions are below this threshold.

8Note that this inequality can equivalently be written as

901'(17 P, (X*iaw;)) - :C; > (pi(I,P7X) — Zi,

which makes explicit the monotonicity of the individual’s net payment.



Strong-Population Monotonicity (Strong-PM). A rule ¢ satisfies (Strong-PM) if, for each
problem (I, P,x) € II and for any partition P = {I’,I"} of I such that I’ UI” = I and
I'nI"” =0:

Viel pi(I',P,x") > 0= ¢;(I,P,x) >0, and Vi € I", o;(I", P,x") > 0 = ¢;(I, P,x) > 0,

where X" = (2;);ep and X" = (2;) ey

This ensures that an agent’s rebate does not become null solely due to the addition of new
contributors. As discussed in the introduction, this axiom is crucial for encouraging broad
participation. No restriction is imposed on the partition of individuals, thereby accommodat-
ing practical situations involving multiple municipalities or successive rounds of contribution
calls.

The next axiom ensures that whenever there is a positive surplus, at least part of it must be
redistributed.

Partial Surplus Rebate (PSR). A rule ¢ satisfies (PSR) if, for each problem (I, P,x) € II,
S > 0 implies that there exists i € I such that ¢;(I, P,x) > 0.

We also adopt a stronger requirement ensuring that the entire surplus is redistributed.

Full Surplus Rebate (FSR). A rule ¢ satisfies (FSR) if, for each problem (I,P,x) € II,

ZiEIQOZ‘(I,P7X) =5.

3 Limits on Rebate Rules

In this section, we highlight the main limitations regarding the compatibility of the axioms
presented in the previous section with rebate rules. Our first result establishes a fundamental

limitation regarding contribution inducement and equal treatment.

Theorem 1. There is no rule ¢ that satisfies Equal Treatment of Equals (ETE) and Contri-
bution Monotonicity (CM).

Proof. See Appendix [ |

The implication of Theorem [1]is that ensuring equal treatment requires redistributing part of
any alternative contribution level beyond the initial one to others. In practice, this weakens
individual incentives to contribute, as they anticipate that part of any additional amount they
give will neither be returned to them nor directly benefit the project.

As discussed in the introduction, rebate is absent in many crowdfunding mechanisms. The

following definition formalizes the Null Rebate rule.

Definition 1. (Null Rebate rule). The Null Rebate rule ¢ is defined for each (I, P,x) € II
as:
Vie I, @I, P,x)=0.

In other words, ¢° specifies that the surplus is not redistributed to the participants. Our
second result establishes a limitation on surplus rebate when (ETE) and (Strong-MM) are

required.
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Figure 1: Illustration of Available Surplus

Theorem 2. A rule ¢ satisfies Equal treatment of equals (ETE) and Strong-Population
Monotonicity (Strong-PM) if, and only if, ¢ = ¢.

Proof. See Appendix |

Theorem [2| is revealing, as it shows that designing a rule that satisfies both (ETE), a fun-
damental fairness requirement, and (Strong-MM), which preserves the existence of positive
rebates when new contributors are added, is only possible when no surplus is redistributed. In
the context of crowdfunding, Theorem [2] implies that if a positive rebate is desired by adding
contributors, it is not possible to treat them equally. Our next result further extends this

limitation.

Theorem 3. There is no rule ¢ that satisfies Strong-Population Monotonicity (Strong-PM)
and Partial Surplus Rebate (PSR).

Proof. See Appendix [ |

The intuition behind this impossibility stems from the nature of alternative funding. When
contributions are added, a project (or a more expensive alternative) is funded, which reduces
the available surplus. As a result, it becomes impossible to have a partial rebate for indi-
viduals, and the addition of new individuals leads to a zero surplus. Figure [1] illustrates this

phenomenon.

4 Proportional Rebate with Threshold Rule and Axioms

In this section, we introduce a rebate rule designed to address the limitations discussed earlier,
while aiming to satisfy key axioms essential to provision point mechanisms. Beyond the axioms
presented, rebate rules implemented in practice typically satisfy two additional conditions.
First, if no project is funded, a money-back guarantee returns contributions to participantsﬂ
Second, if there is no surplus, no rebate occurs. The Proportional Rebate with Threshold
(PRT) rule satisfies both of these conditions. It operates based on the project’s average
cost, ensuring that rebates adjust contributors’ net payment—defined as their contribution
minus the rebate—toward that average. Before defining the PRT rule, we introduce two new
notations. Let X = Y jefjela;>e,..} (%5 — Cir), and X = > je{jelin;<cpe}(Crr — ;) where Py
is the project alternative funded Intuitively, X represents the total excess contributions

Ilsaac et al. (1989) show that the money-back guarantee helps mitigate the assurance problem discussed
in the Related Literature Section
YNote that we have S = X — X.



above the project’s average cost, while X captures the total shortfall of contributions below
this threshold.

Definition 2. (Proportional Rebate with Threshold (PRT) rule). The rule ¢ is defined, for
each (I, P,x) € II, with Py« being the funded project alternative, as for each i € I,

61, P.x) (x; — Cpr) — zb}f’“* x X if z; > e,

otherwise.
The rule v rebates the surplus based on how each individual’s contribution compares to the
project’s average cost. Participants who contribute more than the average cost receive a pro-
portional rebate based on the excess contributionE Those whose contributions are below
the average cost do not receive any rebate. This rule adjusts the net payments according to
each individual’s contribution relative to the overall funding, while encouraging greater par-
ticipation by offering a clear proportional rebate based on the project’s success. We formally
demonstrate this in the remainder of this section.
Given the impossibilities presented in Theorems [I] and [3] we propose weakened axioms to
address these challenges. The first of these is a weakened form of population monotonicity.
This axiom requires that when individuals are added to the population, the rebate either
remains positive or allows for the financing of a project (or a more costly alternative).
Population Monotonicity (PM). A rule ¢ satisfies (PM) if, for each problem (I, P,x) € II, and
for any partition P = {I’,I"} of I such that I’ UI"” = I and I'NI" = 0, with o(I', P,x’) with
project alternative Py funded, o(I”, P,x") with project alternative Py~ funded, and ¢(I, P, x)

with project alternative Pj funded, then the following conditions hold:
Viel pi(I',P,x") > 0= ¢;(I,P,x) >0, or k >k,

and,
Viel” oi(I", P,x") > 0= ¢;(I,P,x) >0or k>k

where x' = (2;);ep and x” = (2;)ier [

The second weakened axiom addresses the monotonicity of an individual’s rebate in relation to
their contribution. Specifically, it ensures that if an individual whose contribution exceeds the
average cost of the funded project alternative opts for a higher contribution level, their rebate
will increase by at least part of the additional amount, or a more costly project alternative
will be funded. To formalize this, we consider the sum of the excess contributions from all
individuals other than i, that is, X_; = Y jefjel\{iya; e} (T — Chr)-

Weak- Contribution Monotonicity (Weak-CM). A rule ¢ satisfies (Weak-CM) if, for each prob-
lem (I, P,x) € II, with Py being the funded project alternative the following holds:

1We implicitly assume that at least one individual contributes more than the average cost so that X >0.
By definition of the chosen funded project, we have X >0, and the case X = 0 implies that all individuals
contribute exactly ¢x=. In this situation, there is no surplus to rebate, and thus a rebate rule becomes irrelevant.
For this reason, the assumption is reasonable.

12population Monotonicity is particularly relevant in the context of public good provision involving multiple
municipalities. For instance, two neighboring towns aiming to build a public swimming facility can pool their
contributions to fund a larger, improved alternative. Otherwise, any excess contributions are returned to them.



For each i € I such that z; > ¢, if the contribution of agent i increases to x} > x;, then either

i1, P, (xi, ) = @il Prx) > (] — ) (1 - A ) ,
(X,i +x; — Ek*) X (X,Z- + x; — 6k*>
or
i + Z x; > cp with k' > k.
JeI\{i}

Note that the definition of (Weak-CM) uses the notations introduced in the PRT Rule. The
underlying rationale is that the rebate must be a function of the individual’s initial contri-
bution, a higher alternative contribution they might select, and the contributions of other
participants.

We now introduce the characterization of the PRT rule.

Theorem 4. A rule ¢ satisfies Equal Treatment of Equals (ETE), Full Surplus Rebate (FSR),
Weak-Contribution Monotonicity (Weak-CM) and Global Monotonicity (GM) if, and only if,
@ is the PRT rule 9.

Proof. See Appendix [ |

In the remainder of this section, we show that the PRT rule satisfies two additional desirable
axioms. First, it satisfies Population Monotonicity, which promotes broader participation.
Second, we introduce the axiom of Monotonicity of Net Payment (MNP), which requires that
individuals who contribute more cannot end up with a lower net payment than those who
contribute less. This condition preserves a coherent ordering of net payments across contribu-
tors and prevents manipulation incentives in which increasing one’s contribution would yield
a strictly more advantageous net outcome.

Monotonicity of Net Payment (MNP). A rule ¢ satisfies (MNP) if, for each problem (I, P,x) €
I1, for each i,j € I such that x; > x;, then x; — p;(1, P,x) > x; — ¢; (I, P,x).

Remark 1. If a rule ¢ satisfies Monotonicity of Net Payment (MNP), then ¢ satisfies Equal
Treatment of Equals (ETE).

The proof is immediate, setting x; = z; in the definition of MNP yields ¢;(/, P,x) =
©;(I, P,x).

Proposition 1. The PRT rule v satisfies Population Monotonicity (PM) and Monotonicity
of Net Payment (MNP).

Proof. See Appendix |

Theorem 4] and Proposition [1] establish that the rule ) satisfies the central axioms governing
fairness, incentives to contribute, and the ability to broaden participation.

The following remark provides further insight into the incentives to contribute when all par-
ticipants contribute more than the average cost of the project, by redistributing the entire

additional contribution.

10



Remark 2. Consider a problem (I, P,x) such that Py is funded. If for each i € I, x; > @,
then for each i € I, ¢;(I, P,x) = z; — ¢k.

Remark [2| indicates that when all contributions exceed the project’s average cost, rebates
equalize net payments across individuals: after rebates, each individual effectively contributes

the same amount—namely, the average cost of the funded projectE

5 Comparison of Rebate Rules

In this section, we evaluate how different rules affect an individual’s rebate when they in-
crease their contribution. As shown in the proof of Theorem [4] an increase in an individual’s
contribution always leads to the same share of the rebate@ or the financing of a more costly
project alternative. To quantify this effect, we define the Marginal Rebate of Contribution
(MRC) as the rate of change in an individual’s rebate with respect to their own contribution,

while keeping others’ contributions fixed.

Definition 3. (Marginal Rebate of Contribution). Given a rule ¢, the Marginal Rebate
of Contribution (MRC) of an individual ¢ when their contribution changes from z; to z is

defined as:
Soi(lv P7 (X—i7 :L“;)) - QOZ‘(I, P) X)

/
T; — Ty

MRC(p;(I, P, x), ;) =

The underlying argument is that the greater the increase in rebate in response to higher
contributions, the more individuals will be incentivized to contributeﬁ We now introduce
our two benchmark rules: the Shapley rule and the widely used Proportional Rebate (PR)

rule.

Definition 4. (Shapley rule). The rule ¢ is defined for each (I, P,x) € II, with Py being

the funded project alternative as:

714 1] |—I"!T‘ “ DY u i) - w(1).

VielLgl(I,Px)= >
TCI\{i}

where v(T') = max { 0, Xjer®j — ck*} represents the surplus that coalition 7" would generate

relative to the cost ¢+ of the funded project alternative.

The rule ¢ is based on the Shapley value, which is widely studied in the fair-division and cost-
sharing literature. In our setting, the rule adapts the Shapley value to a surplus-redistribution
problem in a provision point environment. In contrast to classical Shapley cost—sharing
rules—typically defined in terms of project costs or total values—our formulation evaluates,
for each coalition T', the surplus it generates relative to the cost cg+ of the funded project
alternative (Shapley, 1953)).

13The proof is straightforward since X is equal to 0, and is therefore omitted.

. XxX_;
"4 This share corresponds to (1 — = — - - .
(X,,Lv-‘—zi —Cp* ) X (X,i+:v1;—ck* )

15Note that the MRC corresponds to the partial derivative of the rebate rule when the increase in individual
i’s contribution, namely z; — z;, approaches 0.
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Definition 5. (Proportional Rebate (PR) rule). The rule ¢ is defined for each (I, P,x) € II,
with Py« being the funded project alternative, as:

VieI,oP(I,P,x) = ‘% x S.

Although the underlying argument behind ¢! and ) is similar, the implementation of a
threshold significantly influences the resulting rebates. In ”, the rebate is proportional for
all individuals, whereas in v, only those whose contributions exceed the average cost are
eligible for a rebate. Notably, this rebate is lower when the contributions of individuals

increase.

Proposition 2. The Shapley rule ¢° and the Proportional Rebate rule ¢ do not satisfy
Weak-Contribution Monotonicity (Weak-CM).

The consequence of Proposition [2| is that, when using rules ¢ and ¢, a larger portion of
the increase in individual contributions will be redistributed to others compared to rule .

To illustrate this phenomenon, consider the following examples.

Example 1. Consider a problem (I, P,x) where I = {iy,i2,i3}, P = {Pp, P1} with ¢; = 12,
it follows that ¢; = 4. Suppose z;;, =7, 4, = 8, x;; = 4 and x;1 = 8. Table|l|illustrates the

rebates for each rule.

Rebates PRT Shapley PR
Tiy 7 8 7 8 7 8
T4 3 4 2.83 3.33 2.58 3.2
Tig 4 4 2.83 3.33 2.95 3.2
Tig 0 0 1.33 1.33 147 1.6
Fix values Tin =8 Xy =4 c1=12 ¢ =4

Table 1: Comparison of rebates under different rules (PRT, Shapley, and PR) for Case 1
without compensatory amount (everyone contributes at least the average cost ¢ = 4). The
table presents the rebates (ri;,7i,,7i;) for different initial contributions z;, (7 and 8), given
fixed values of z;, = 8, x;; = 4, total cost ¢; = 12, and average cost ¢1 = 4.

In this example, when the contribution of ¢; changes from 7 to 8, the MRC values for 4; under
each rule are:

e MRC(¥;(I,P,x),8) =1,

o MRC(p?(I, P,x),8) = 0.50, and

e« MRC(pF(I, P, x),8) = 0.62.
This example is detailed in Figure [2, where the variation in ¢;’s contribution corresponds
to Case 1. In this case, the contributions of i2 and 3 are sufficient to fund the project,
meaning there is no compensatory amount. The following table further demonstrates that

this observation holds even when accounting for the compensatory amount, i.e., X > 0.

We consider another example where the contributions of i2 and i3 differ, with z;, = 7 and
xiy = 2. Table [2 shows that when ¢;’s contribution changes from 7 to 8, the MRC values for

71 under each rule are:
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Rebates PRT Shapley PR

Tiy 7 8 7 8 7 8

T4y 2 2.86 1.67 2.17 1.75 235

Tio 2 214 1.67 2.17 1.75  2.06

Tig 0 0 0.67 0.67 0.50  0.59
Fix values Tip =71 Xy =2 c1=12 ¢ =4

Table 2: Comparison of rebates under different rules (PRT, Shapley, and PR) for Case 2
with compensatory amount (someone contributes less than the average cost ¢, = 4). The table
presents the rebates (4, ,7i,,7i;) for different initial contributions z;, (7 and 8), given fixed
values of z;, = 7, x;3 = 2, total cost ¢1 = 12, and average cost ¢; = 4.

o MRC(¥;(I,P,x),8) = 0.86,

e MRC(p?(I, P,x),8) = 0.50, and

e MRC(oF(I,P,x),8) = 0.60.
The reasoning behind this observation is that a larger portion of i;’s additional contribution
is redistributed to the other individuals. Specifically, the amount redistributed to 2 is due to
13’s contribution being lower than ¢;. These values correspond to Case 2 in Figure
Figure [2|illustrates the rebates of the three rules considered in this section across five distinct
cases. These cases vary individual contributions while keeping the total cost ¢; = 12 and the
average cost ¢; = 4 constant. The key distinction among them lies in how individual contribu-
tions compare to the average cost. By systematically adjusting this relationship, each scenario
highlights a fundamental aspect of the rebate rules. Additional cardinal combinations would
merely interpolate among these representative cases, adding minimal incremental insight, as
the essential characteristics of rebates have already been captured.
A general observation is that the PRT rule yields the highest MRC values when the initial
contribution exceeds the average cost threshold ¢;, prioritizing over-contributors in the surplus
allocation. For clarity, the direct comparison of the cases is presented in Figure
Case 1 presents a scenario in which one contributor provides a higher contribution (x;, = 8 >
¢1) while the other contributes exactly at the threshold (z;; = 4 = ¢1), with their combined
contribution exactly covering the project cost (z;, + i, = 12 = ¢1).
In this case, the PRT rule differs markedly from the other rules. The rebate of is increases as
x;, rises, absorbing part of 7;’s contribution until i’s net payment equals the project’s average
cost ¢;. Similarly, ¢; begins to receive a rebate once x;, = 4 = ¢, capturing the entire surplus
generated beyond this point. Under the other rules, all individuals start receiving a rebate
as soon as the surplus becomes positive. As a result, the rebates of i1 and 75 are necessarily
lower, since i3 absorbs part of the surplus.
Case 2 involves one contribution below ¢; (z;; = 2 < ¢;) while the other exceeds it (z;, =
7 > ¢1). Yet the total contribution is insufficient to cover the cost (z;, + ziy = 9 < ¢1).
For the PRT rule, as long as x;, remains below ¢, v, (I, P,x) increases linearly. However,
once x;, exceeds ¢y, i1 and iy proportionally share the amount needed to compensate for i3’s
contribution being below the threshold, leading to a non-linear rebate pattern. This effect

arises because, beyond ¢y, the higher contributors collectively absorb the deficit of the lower
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contributor.

In Case 3, both contributors provide contributions below ¢; (z;, = 3 < ¢1, x4, = 2 < 1),
with their total contribution remaining insufficient (z;, + x;; = 5 < ¢1). Once the provision
point is reached, the rebate to i; under the PRT rule increases at a significantly steeper rate
than under either the Shapley or PR rules. This is because, in the PRT rule, neither iy nor
i3 receives a rebate, so the entire surplus is allocated to 7.

In Case 4, the contribution of is and i3 exceed the average cost (z;, =7 > ¢1, zi; =6 > ¢1),
and their total contribution surpasses the required cost (z;, + x;; = 13 > ¢1). Under these
conditions, the PRT rule grants i; a rebate that increases linearly only once her contribution
exceeds the threshold ¢;. In contrast, both the Shapley rule and the PR rule provide rebates
from the very first unit of contribution. The Shapley rule redistributes the surplus according
to marginal contributions, leading to moderate rebates across contributors. In contrast, the
PR rule allocates the surplus proportionally among all contributors, thereby yielding smaller
individual rebates.

Finally, in Case 5, where both contributions exceed ¢; (z;, = 6 > ¢1, x;; = 5 > ¢1) but their
combined contribution is insufficient to meet the required funding level (z;,+x;, = 11 < ¢1), all
three rules result in a full reimbursement of contributions. However, a key distinction emerges
once total contributions exceed the provision point: the PRT rule ensures that contributors
with contributions below ¢; receive no rebate, whereas the Shapley rule and PR rule provide
rebates, independent of whether individual contributions exceed ¢;. Under the PRT rule, the
rebate stops increasing once the contributor’s net payment equals the project’s average cost
¢1. In contrast, under the Shapley and PR rules, part of i1’s contribution is rebated to io and
i3.

These observations indicate that the PRT rule leads to a greater increase in the rebate re-
ceived by an individual who raises their contribution, provided that the contribution exceeds
c1. The PRT rule drives net payment closer to the project’s average cost when the initial con-
tribution surpasses this threshold. By contrast, the Shapley rule allocates rebates based on an
individual’s importance in the project’s completion, thereby rebating according to systemic
importance rather than overcontribution. Meanwhile, the PR rule results in a more moderate
increase in the rebate received by an individual, as a significant portion of their additional
contribution is redistributed to other contributors.

These observations suggest that the PRT rule effectively mitigates overpayment concerns
while ensuring that high contributors receive proportionate rebates. This makes it a robust
alternative for surplus rebate in public goods provision and crowdfunding mechanisms, where

incentivizing large contributions while maintaining fairness is a key policy objective.
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Figure 2: The figure presents rebates r; across the five cases (rows) with individual contribu-
tions z;, on the horizontal axis. In each case, z;, and x;, are fixed, while the average cost ¢;
remained constant. The three columns represent the rebate rules: PRT, Shapley, and PR.
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Figure 3: The figure presents rebates r;, across the five cases, with individual contributions
x;; on the horizontal axis. Each plot represents the three rebate rules: PRT (solid line), Shapley
(two-dash line), and PR (dotted line).

6 Concluding Remarks

This paper examines rebate problems in the provision of public goods using an axiomatic
approach. We establish fundamental limitations in rebate rule design by proving that partici-
pation incentives, contribution incentives, and a fairness requirement cannot be simultaneously
satisfied. To address these constraints, we introduce the PRT rule. Our analysis shows that,
while satisfying weakened versions of these axioms, the PRT rule delivers higher rebates to
contributors who make relatively larger contributions than those obtained under traditional
benchmark rules, including the widely used Proportional Rebate rule. This suggests that the
PRT rule may better support contribution incentives than existing approaches.

Provision point mechanisms aim to achieve efficient public goods provisionE] yet often lack
clearly defined rebate structures. The PRT rule addresses this gap by providing a systematic
way to redistribute surplus contributions, making it applicable to a wide range of contexts,
including voluntary public goods funding and crowdfunding. Beyond facilitating provision,
the PRT rule may also enhance the valuation of public goods.

This paper opens avenues for both theoretical and experimental research. A natural extension
of our model could incorporate reward-based or investment-based crowdfunding mechanisms
into the final amount paid by contributors, thereby directly influencing their incentives. Ex-
perimentally, assessing individual contribution incentives constitutes a meaningful extension.
The structure of our axioms also offers flexibility for modeling diverse market settings. In par-
ticular, our population monotonicity axiom accommodates successive rounds of contribution
calls or multiple populations across different municipalities, as reflected in the formation of
partitions. Another important research direction concerns the role of information: [Rondeau
et al.| (1999) show that withholding information about provision costs can lead to contributions

that more accurately reflect individuals’ true valuations.

16 A public good is efficiently provided if aggregate contributions meet or exceed the provision point (see
Rondeau et al., [1999).
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In this light, the PRT rule may contribute not only to surplus redistribution but also to im-
proved demand revelation. By linking rebates to the average project cost, the rule encourages
contributors to act according to their valuations while mitigating overpayment. Although the
link to demand revelation is difficult to establish purely through axiomatic analysis, future
laboratory or field experiments could examine whether the PRT rule effectively elicits true

valuations, as envisioned in the demand revelation literature.
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A Limitations Imposed by Merge-Consistency and Full Sur-
plus Rebate

In this appendix, we consider a strengthening of Strong-Population Monotonicity, namely
Merge-Consistency, for a class of particular problems. Merge-Consistency requires that no
individual’s rebate decreases when populations are merged. Unlike Population Monotonicity,
introduced in Section [4] this notion focuses exclusively on rebates and does not take into
account whether the funding of a more costly project alternative is permitted.

We establish a fundamental limitation that arises when Merge-Consistency is combined with
Full Surplus Rebate. On a natural and economically relevant domain—namely, when no in-
dividual contributes more than the cost of the smallest non-null project alternative—these
two requirements are incompatible with the funding of any positive-cost project. This re-
sult highlights that enforcing full surplus redistribution while maintaining consistency under
population merging inevitably leads to the selection of the null project.

Given a problem (I, P,x) € II, we say that a rule ¢ satisfies Merge-Consistency (M-C) in
(I, P,x) if for any partition P = {I’, I"} of I such that I' UI"”" =T and I'N 1" = {):

Viel' pi(I,P,x) > pi(I',P,x"), and Vi € I”, ¢;(I, P,x) > o(I", P,x"),
where x' = (z;)ier and X" = (2;)ieq7-

This axiom requires that, when two populations are merged into a single problem, no individ-
ual receives a lower rebate in the merged population than in the original one. In other words,
expanding the set of contributors cannot make any participant worse off in terms of rebate.
Similarly, given a problem (I, P,x) € II, a rule ¢ satisfies Full Surplus Rebate (FSR) in
(I, P,x) if Y e i1, P, x) = S.

Theorem 5. Consider a problem (I, P,x) such that for each i € I, z; < ¢1. If a rule satisfies
Merge-Consistency (M-C) and Full Surplus Rebate (FSR) in (/, P, x), then there is no funded

project.

Proof. By contradiction, suppose there exists a rule ¢ that satisfies Merge-Consistency (M-
C) and (FSR) in a problem (I, P,x) where for each i € I,x; < ¢1, and a project alternative
P, # Py is funded. We know that ¢ > 0, therefore, X — ¢ < X, meaning that there exists
i € I such that x; > ¢;(I, P,x). Without loss of generality, consider a partition such that
I'={i}and I" = I\I'. Since z; < c1, and ¢ satisfies (FSR), we know that ¢;(I', P, (z;)) = ;.
Therefore, ¢;(I', P, (z;)) > ¢i(I, P,x), leading to a contradiction. ]

In practice, the condition imposed by Theorem [5|holds in many problems, where no individual
contributes more than the cost of the first project alternative. If this condition is not met,
the first project alternative is funded by a single agent. The implication of Theorem [5]is that
the only solution to achieve full surplus rebate, ensuring independence from population size,

is if no project is funded.
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B Proofs

B.1 Proof of Theorem [1]

Proof. We prove Theorem [1| by means of an example. Consider a problem where I = {i1, 2},
P = {Py, P}, and ¢ with z;; < ¢ and 2} = 2;, > § with 2;; +2;, > ¢1. Suppose ¢ satisfies
(ETE), and (CM). Consider (I, P, (x},, xi,)), we have S = 2 x x;, — 1. Since ¢ satisfies (CM)
we know that ¢;, (I, P, (2}, xi,)) — @iy (I, P,X) > 4, — x;;, meaning that ¢; (1, P, (2], %,)) >
Ti, — ;. Since ¢ satisfies (ETE), we know that oy, (I, P, (2} ,74,)) = @i, (I, P, (x},,24,)).
Therefore, we know that g, (I, P, (2}, ,%i,)) > @i, — 2. We have ¢; (I, P, (2], %,)) +
@iy (I, P, (], 2i,)) > 2 X &3, — 2 X x;;, which is a contradiction since S = 2 x x;, —¢1 <

. . . €1
2 X wiyy —2X @, a8 vy < G |

B.2 Proof of Theorem [2

Proof. Existence: g satisfies (ETE) and (Strong-PM). Consider (I, P,x) with i,j € I such
that i # j and x; = x;. It is direct that ¢° satisfies (ETE) since ¢?(I, P,x) = ga?([, P,x) =0.
Similarly, for any partition P over I such that P = {I’,I"}, it holds that for each i € I’,
@)(I, P,x) > @)(I', P, (x;)) = 0 and for each i € I", ©}(I, P,x) > @(I", P, (x;)) = 0.
Uniqueness: If a rule satisfies (ETE) and (Strong-PM), then it has to be .

By contradiction, suppose there exists a rule ¢ that satisfies (ETE) and (Strong-PM) such that
© # . Since @ # ¢, for some problem (I, P, x), there exists i € I such that ¢;(I, P,x) > 0.
Theorem (3| implies that there is no rule such that ;(I, P,x) > 0 for some i € I, that satisfies
(ETE) and (Strong-PM). This concludes the proof. [

B.3 Proof of Theorem [3

Proof. We prove Theorem [3| by means of an example. Consider a problem where I = {ij,1i2},
P={Py, P}, z;; > 0,2, >0and ¢; = x;, +x4,. Let I' = {i1} and I"” = {is}.

Suppose ¢ satisfies (Strong-PM) and (PSR). Consider ¢(I’, P, (z;,)). We know that ¢; >
x;, > 0 and as ¢ satisfies (PSR), we have that ¢;, (I, P, (x;,)) > 0. Similarly, o(I”, P, (x,)),
we have ¢; > x;, > 0 and, by (PSR), ¢, (1", P, (z;,)) > 0.

Now consider ¢(I”, P,x). Since ¢ = m;, + x;,, project alternative Pj is realized and S =
(i +xiy)—c1 = 0. Then, ¢;, (I", P,x) = ¢;,(I", P,x) = 0. We therefore have ¢;, (I", P,x) # 0
and ¢, (I”, P,x) # 0 which contradict that ¢ satisfies (Strong-PM). |

B.4 Proof of Theorem [4]

Proof. Existence: Fix an arbitrary problem (I, P,x) and let Py« be the funded project

alternative.
o 1 satisfies Equal Treatment of Equals (ETE).

(
Let 7,5 € I such that z; = z;. If S = 0, we know that ;(/, P,x) = ¢;({,P,x) = 0.
Similarly, if x; < €+, we have (I, P,x) = 9;(I, P,x) = 0. Finally, if z; > ¢, we have
»i(I, P,x) = (x; — Cg~) i Cpx X Y ieficlizi<tp.} Ck» — T 1t is direct that

Zi’e{ie[;zi>zk* } Tl Tk

vi(1, P,x) = (I, P,x) since z; = z;.
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o 1 satisfies Full Surplus Rebate (FSR).

If S =0, we know that for each ¢ € I, ¥;(I,P,x) = 0. If S > 0, by construction, only
individuals who have contributed an amount greater than the average cost of the project

receive a refund. Let I = {i € I : 2; > ¢~} be the set of individuals that contribute more
than ¢«. We have to show that >, _;vi(I, P,x) = S.

Zwi(I,P,X):Z (.’L‘i—ék*)—wx Z(Ek*—wi/) ,

Z’Lej xl‘/ — Ek*

icl il ireI\I
=) (@i —C) = Y (G — m0),
il ireINT
= Z(ﬂfz — Cp+) + Z (zir — g+ ),
iel ireINT
= Z Ty — Ck=.
el

Since S = Yo7 @i — cx+, V¥ satisfies Full Surplus Rebate (FSR).
o 1) satisfies Weak-Contribution Monotonicity (Weak-CM).

Let i € I such that x; > z; > ¢, and Py be the funded project alternative in problem
(I, P, (x—i,x})). We have to show that

i

Ui, P, (x_i, ) — i1, Px) > (2 — i) x [ 1— — e ,
(X_i—l-.l‘; —6].3*) X (X_Z' + x; _Ek*>

lf Pk* = Pk’/'
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By construction of 1) we know that:

wi(Iv P, (X—i’xé)) - wi(L P, X)

_ :E/-—fk* v -~ X; — Ci v
:(x;—ck*)_mXX_Owi_ck*)_AzXX
- (2

(2 — ) X (X + @i — Cpe ) — (2 — ) X (X5 + —Cz:*))

() — 25) X (X4 @5 — e ) + (25 — G ) X (X_i + 27 — Cpr)
( (X i+ a2} =) x (X + 2 — Cp)
— (i — T ) X (X_j + 3 — T ) — (@) — 3;) X (37 — Tpr)
(X + 2 — o) x (X + 2 — Tpr) >
=2 — 2 — X x <(«T§ jl’i) X (X_i+ — O = (x; —ck*))>
(X_i+ o) — ) x (Xoj + 25 — Tpr)

’ X XX_i
= (25— x) x |1 - — P 5 ,
(X_Z' +x; — Ck*) X (X_l +x; — Ck*)

_l’_

o 1) satisfies Global Monotonicity (GM).

Let ¢ € I such that 2 > x; > ¢+, and Py be the funded project alternative in problem
(I, P, (x—i,x})). We have to show that for each j € I,

1/]]'(]7P7 (X—Zﬁxg)) > l/Jj(I,P,X),

if Py« = Pp.
If x; < ¢+, we know that

Q;Z)]'(I’Pa (X*iax;» =0 Zd}j(I?P’X) =0.

If z; > ¢+, we know that

wj(I)Pux) = (-7:] _6k*)_7A X X,
X
and B
_ x'7Ck* ~
1/}]'(]7P7 (X_Z',xé)) = (l'j — Cpx) — JT x X,

with X = Yirefirela, e} (Tir — Cp) and X' =X i+ (2, — ). Since z} > z; > ¢~ it follows
that X’ > X, and thus
1/]]‘(]7 P, (X—Zﬁ‘rg)) > %‘(L P7X)7

which concludes the proof.
Uniqueness: We fix a problem (I, P,x) with funded project alternative P;. Suppose that ¢
satisfies ETE, FSR, Weak-CM and GM.
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Let ¢ € I be such that z; > ¢, and let z} > x; and Py is the funded project alternative in
(I, P, (x;,2})). Since ¢ satisfies Weak-CM, we have

X x X_;
0i(I, P, (x_;, 7)) —i(I, P,x) > (2 —a3) x |1 — X _ .
(X_i + .CU; —Ek*) X (X_i +x; — 6k*)

We have shown that for the PRT rule %, we have

XxX;
(I, P, (x_;,z%)) — (I, P,x) = (2}, —x;) x [ 1 — — - .
Ol P, (xiy ) = i1, Pox) = (] — ) ( (Xﬁx;_%*)x(xim_%*))

Comparing the two expressions yields

@Z(Ia P? (X—iax;)) - (101(17 Pu X) > %(Ia P7 (x—ivx;)) - 1/}1(]7 P7 X),

for every individual i € I with z; > ¢ and every x} > x; that leaves the funded project at Pj.
By relabelling agents, the same inequality holds for every agent in I whose contribution is at
least €.

Consider now the contribution vector X defined by T; = ¢ for each ¢ € I. In this profile, the

funded project is Py, and the surplus is zero:

Z@ =c¢, and S = 0.
i€l
Since ¢ satisfies FSR, we have

> i1, P,x) =0,

el
rebates are non-negative, and ETE implies that all individuals receive the same rebate at X,
hence for each i € I, ¢;(I, P,X) = 0. Similarly, under the PRT rule ¢, it also follows that for
each i e I, ¢¥;(I,P,X)=0.
Consider now an individual i € I such that x; > ¢ in the orignal problem (I, P,x). Consider
a hypothetical path of contribution levels for individual ¢, keeping all other contributions at
¢k, from T; to x;. It follows from Weak-CM that,

901'([7 P, (i*lﬁxi)) - gDi(I, P,f) > ¢i(1a P, (ifivxi)) - wi(lv P>§)v

that is
oi(I, P, (X—i, xi)) > (L, P, (X—4,2;)).

Moreover, since ¢ satisfies GM, increasing the contribution of ¢ from T; = ¢ to x; cannot

reduce any other individual’s rebate. Therefore, for all j # 4,
QOJ(I,P, (if’hxi)) > @](I>P7i) =0= ¢](I7Pai)

We then repeat this argument for each i’ such that x;; > ¢. It follows that, when we move
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from (I, P, (X—i, %)) to (I, P, (X_{i,1}, %, i), we have

‘pi(l’ P, (i—{i,i’}7xi7xi’)) = 901'(1’ P, (i—ivl‘i))v

and

o (1, P, (i,{m-/}, i, zir)) = pir (I, Py (X—i, ) = o (L, P, (if{i,i’}axiyxi’)) — i (L, P, (X=i, 25)).

We arrive at a vector (X_j,x_;) where I={icl:zi>g}and [ ={jcl:z;<c},at
which
Vi € f7 Spi(LP? (i_faX_f)) > Q/JZ‘(I, P, (i_fv)(_[v))?

and
Vj € Iv>90j(IaP7 (ifﬁxff)) > Tzz)j(I)Pa (iffaxff)) =0.

Now sum these inequalities over all i € I. Under the PRT rule, individuals in I receive no

rebate, so

sz(l’ P, (iff,xij)) =5= sz(I, P, (iif,xij)).

iEf el

Since ¢ satisfies FSR, we have

S il P (%_;,x_p) = S.

el
Rebates are weakly positive so,
D oI, P (X_j,x_p)) = Y @;(I, P (X_j,%x_j)).
el iel

Combining these inequalities, we obtain

S > Z@E(LP’ (i_ﬁX_f)) > Z"/}i(LP7 (i_ﬁX_f)) =S

iel el

Thus, for each i € I, p;(I, P, (X_;,x_;)) = ¢i(I, P, (X_j,X_j)).
Moreover, all individuals j € I must receive zero rebate under ©, because their rebates are
weakly positive and the entire surplus S is already exhausted by individuals in I. Since PRT

also assigns zero rebate to these under-contributors, we conclude that
Vi € I7 QOZ(I7P7 (iffaxff)) = wz(Ia P7 (iffaxff))' (1)

We now relate (X_ frX_ i> to x. Consider an individual j € I , 80 xj < ¢ in the original vector

x. Under the PRT rule, such an individual has no excess contribution, so
(I, P,x) =0.

Suppose, for a contradiction, that ¢;(I, P,x) > 0. From x to (X_;,x_j), we increase only the

contributions of the individuals in I , from z; up to ¢, for each j € I while the contributions
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of individuals in I are unchanged. By GM, increasing contributions cannot decrease any

individual’s rebate, so in particular

gpj(I, P, (i_f,X_IV)) > (pj(I,P,X) > 0.

However, from and the definition of 1, we know that for each j € I ,
@i, P(X_;,x_j)) =0=1v;(I, P (X_j,x_j)),
a contradiction. Thus, for each j € I,
0;(I,P,x) =0=1;(I, P,x). (2)
Therefore, we know that

Z(pi(I,P,X):ZQOi(I,P,X):S, (3)

ief el
since ¢ satisfies FSR. Similarly, under the PRT rule,

Z¢1(IaP7X):Z¢Z(I7P7X):S (4)

Z'Gf el

Suppose, for contradiction that for i € I, we have wi(I, P,x) # 1;(I, P,x). Since the sums
over I coincide by —, there must exist 4,7 € I with

wi(I, P,x) > ;(I, P,x) and ¢y (I, P,x) < 1y (I, P, x). (5)

Consider again the transformation from x to (X_;,x_j), in which we only increase the con-
tributions of individuals in J from their original levels z; < ¢ up to ¢. Under the PRT rule,
this transformation leaves the contributions of all individuals in I unchanged, and therefore
preserves their total excess. The only effect is an increase in the total surplus.

Because the excess of the agents in I does not change when the contributions of under-
contributors are raised from below ¢ to exactly ¢, the PRT rebate of each agent in I at the
vector (X_;,x_j) is obtained from her rebate at x by a positive affine rescaling. In particular,

for every i € I ,
¢i(LPa (i_fax_f)) >¢i(]7P7X)' (6)

By GM, the transformation from x to (X_;,x_ ;) weakly increases all contributions, and

therefore cannot reduce any individual’s rebate under . Hence, for all ¢ € I,
907?(]7Pa (iffvxff)) Z(pi(I,P,X). (7)
Combining , @, and with , we obtain for individual i:

d}i(Iv P, (i_faX_f)) = 901'(]7 P, (i_fv)(_f)) > 4,01'([, PaX) > ¢i(Iv P’X)v
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and similarly for 7’
¢i’(I’P’ (i_f’X_f)) = (Pi’(I’P’ (i_ﬁX_f)) > @i’(LPaX) < ¢i/(I,P,X).

Inequalities @ and the strict inequalities in —(@ imply that at (X_;,x_ ;) we would still
have at least one individual 7 € T with o:(I, P, (X_j,x_j)) #U;(I, P,(X_j,x_j)), contradict-
ing . Therefore, for each i € I ,

wi(l, P,x) = ¢;(I, P, x).
Together with , this yields for each i € I,
@i(l, P,x) = 1i(1, P, x).
Since (I, P,x) was an arbitrary problem, we conclude that ¢ = v on II. |

B.5 Proof of Proposition [I]

Proof. Fix an arbitrary problem (I, P,x) and let Py« be the funded project alternative.
o 1 satisfies Population Monotonicity (PM).

By the definition of (PM), we only need to consider the partitions in which Py is funded and
k = k*. Suppose by contradiction that there exists ¢ € I such that, without loss of generality
i€ I',and ¢¥;(I',P,x") > 0 and ¢;(I, P,x) = 0. We know that the project alternative Pj«
is funded in (I, P,x’). Let €. = T}“—,*l It follows that €. > ¢+. If z; < €., we know that
i(I', P,x") = 0 which contradict ¢;({’, P,x") > 0. Suppose x; > ¢... Since Pj- is funded,
and ¢;(I’, P,x") > 0, we know that S’ > 0.

Claim 1. If S > 0 and x; > ¢+, then ¢;(I, P,x) > 0.
Proof. By definition,

bi(I, P,x) = (2 — o) — 2 }(C’“* x X,

:(a:i—ék*) X (1—§> .

Since S > 0 we know that X > X implying that % < 1. Therefore, (1 — %) > 0. As z; > cpx,
it follows that ;(I, P,x) > 0. ]

We know that S > 5, therefore, S > 0. Since z; > €. > ¢+, by Claim [I| we have that
;i (I, P,x) > 0.

o 1) satisfies the Monotonicity of Net Payment (MNP).
Suppose 7,j € I, without loss of generality, assume that x; > x;. We have to show that

-fi_wi(LPaX) ij_wj(vaax)'

25



« Case 1: If S = 0. Then for each ¢’ € I, ¢y (I, P,x) = 0. Since x; > x; we have that
z; — (1, Pyx) > x5 — (1, P, x).

o Case 2: If S >0, ¢~ > x; > xj. Then 9;(I, P,x) = 1;(I, P,x) = 0. Since z; > x; we
have that x; — ;(I, P,x) > x; — (I, P,x).

e« Case 3: If S > 0, z; > G+ > x;. Then ¢;(I,P,x) = 0. We have to show that
x; — Yi(I, P,x) > ¢ It follows that

_ _ Ti — Cp» _
(x; — ) > (m; — Cpr) — : ——— X > (€= — ). (8)
2iiefiela;>a) Ty~ Chr i e{i€lim; <t}
Since x; —;(I, P,x) > x;— (x; —¢x+) by equation , it is direct that x; — (z; —Cp+) > Tk,
and therefore z; — (I, P,x) > z; — ;(I, P, x).

e Case 4: If S >0, z; > x; > ¢~. We have to show that:

T ij_wj(jﬂpvx)"i_wi(I?P?x)'

T +77Z)Z(I, P,X) —¢j(I, P,X)
T; — Clx*
= xj+ (v —Crr) — -t X ) (xs — z7)

Z X1 — Cl* S
Ve{i€l:x;>Cpx } i'e{i€l:x;<Cpx}

_ (337, — Ek*) - le — Ok X Z (5k* - sz‘/)

X — 6k* . ) B
veliclmisTa} i e{iclz; <t}

= Zj+x;— Cpx — Tj+ Cpx

B Ty — Cgx — Tj + Cp « Z (Ek* B xi/)

xil *6]@: ., . —__
i'e{i€l:x;>Cy } def{iel:x; <ty }

5 — Zmz — T « Z (T — i7)

:L',L‘l —ék* ., . —__
i'e{i€l:x;>Cpx} del{ielx;<tpx}

T, — T4 B
= €Ty Z J — X Z (Ck* _ le)
Ty — Ck* L=
i'e{i€l:x;>Cpx } i'e{i€l:w;<Cpx}
i Ti—Tj . .
Since z; > x; we know that i — > 0. Similarly,
Zi’e{ie[:xi>6k*} Ty —Cp

Yieficlz; <z} (G — Tir) > 0. We therefore have

2; > ;- <Z T — Ty - ) X Z (Ek* —.'IZ‘Z'/),

iefielai>eu} T T O ) e tie <)

This implies that x; > x; — (I, P,x) + ¢;(I, P, x).
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